DATA MINING LECTURE 9

Classification

Basic Concepts
Decision Trees
Evaluation

What is a hipster?

- Examples of hipster look

- A hipster is defined by facial hair

Hipster or Hippie?

Facial hair alone is not enough to characterize hipsters

How to be a hipster

There is a big set of features that defines a hipster

Classification

- The problem of discriminating between different classes of objects
- In our case: Hipster vs. Non-Hipster
- Classification process:
- Find examples for which you know the class (training set)
- Find a set of features that discriminate between the examples within the class and outside the class
- Create a function that given the features decides the class
- Apply the function to new examples.

Catching tax-evasion

Tid		Refund	Marital Status	Taxable Income
1	Cheat			
2	No	Single	125 K	No
3	No	Single	100 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

Tax-return data for year 2011

A new tax return for 2012 Is this a cheating tax return?

Refund	Marital Status	Taxable Income	Cheat
No	Married	80 K	$?$

An instance of the classification problem: learn a method for discriminating between records of different classes (cheaters vs non-cheaters)

What is classification?

- Classification is the task of learning a target function f that maps attribute set x to one of the predefined class labels y

				$0^{00^{0^{s}}}$
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

One of the attributes is the class attribute In this case: Cheat

Two class labels (or classes): Yes (1), No (0)

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

Why classification?

- The target function f is known as a classification model
- Descriptive modeling: Explanatory tool to distinguish between objects of different classes (e.g., understand why people cheat on their taxes, or what makes a hipster)
- Predictive modeling: Predict a class of a previously unseen record

Examples of Classification Tasks

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Identifying spam email, spam web pages, adult content
- Understanding if a web query has commercial intent or not

Classification is everywhere in data science Big data has the answers all questions.

General approach to classification

- Training set consists of records with known class labels
- Training set is used to build a classification model
- A labeled test set of previously unseen data records is used to evaluate the quality of the model.
- The classification model is applied to new records with unknown class labels

Illustrating Classification Task

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125 K	No
2	No	Medium	100 K	No
3	No	Small	70 K	No
4	Yes	Medium	120 K	No
5	No	Large	95 K	Yes
6	No	Medium	60 K	No
7	Yes	Large	220 K	No
8	No	Small	85 K	Yes
9	No	Medium	75 K	No
10	No	Small	90 K	Yes
Training Set				

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55 K	$?$
12	Yes	Medium	80 K	$?$
13	Yes	Large	110 K	$?$
14	No	Small	95 K	$?$
15	No	Large	67 K	$?$

Evaluation of classification models

- Counts of test records that are correctly (or incorrectly) predicted by the classification model
- Confusion matrix

Predicted Class

	Class = 1	Class = 0
Class = 1	f_{11}	f_{10}
Class $=0$	f_{01}	f_{00}

$$
\text { Accuracy }=\frac{\# \text { correct predictions }}{\text { total\# of predictions }}=\frac{f_{11}+f_{00}}{f_{11}+f_{10}+f_{01}+f_{00}}
$$

$$
\text { Error rate }=\frac{\# \text { wrong predictions }}{\text { total\# of predictions }}=\frac{f_{10}+f_{01}}{f_{11}+f_{10}+f_{01}+f_{00}}
$$

Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

Decision Trees

- Decision tree
- A flow-chart-like tree structure
- Internal node denotes a test on an attribute
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution

Example of a Decision Tree

	$c^{2 \theta^{9 g^{0}}} c^{0^{x}}+0^{00^{0}}$			$c^{2^{5}}$
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Splitting Attributes

Model: Decision Tree

Another Example of Decision Tree

	$c^{2^{20}} 0^{\theta^{00^{2}}}+0^{\theta^{0}}$			$d^{2^{5^{5}}}$
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Tid	Attrib1	Attrib2	Attrib3	Class	
1	Yes	Large	125 K	No	
2	No	Medium	100 K	No	
3	No	Small	70 K	No	
4	Yes	Medium	120 K	No	
5	No	Large	95 K	Yes	
6	No	Medium	60 K	No	
7	Yes	Large	220 K	No	
8	No	Small	85 K	Yes	
9	No	Medium	75 K	No	
10	No	Small	90 K	Yes	
Training Set					

Apply Model to Test Data

Test Data

Start from the root of tree.

Refund	Marital	Taxable Income	Cheat
Status			
No	Married	80 K	$?$

Apply Model to Test Data

Apply Model to Test Data

Apply Model to Test Data

Apply Model to Test Data

Test Data

Apply Model to Test Data

Test Data

Decision Tree Classification Task

Tid	Attrib1	Attrib2	Attrib3	Class	
1	Yes	Large	125 K	No	
2	No	Medium	100 K	No	
3	No	Small	70 K	No	
4	Yes	Medium	120 K	No	
5	No	Large	95 K	Yes	
6	No	Medium	60 K	No	
7	Yes	Large	220 K	No	
8	No	Small	85 K	Yes	
9	No	Medium	75 K	No	
10	No	Small	90 K	Yes	

Tid			Attrib1	Attrib2
Attrib3	Class			
11	No	Small	55 K	$?$
12	Yes	Medium	80 K	$?$
13	Yes	Large	110 K	$?$
14	No	Small	95 K	$?$
15	No	Large	67 K	$?$

Tree Induction

- Goal: Find the tree that has low classification error in the training data (training error)
- Finding the best decision tree (lowest training error) is NP-hard
- Greedy strategy.
- Split the records based on an attribute test that optimizes certain criterion.
- Many Algorithms:
- Hunt's Algorithm (one of the earliest)
- CART
- ID3, C4.5
- SLIQ,SPRINT

General Structure of Hunt's Algorithm

- Let D_{t} be the set of training records that reach a node t
- General Procedure:
- If D_{t} contains records that belong the same class y_{t}, then t is a leaf node labeled as y_{t}
- If D_{t} contains records with the same attribute values, then t is a leaf node labeled with the majority class y_{t}
- If $D_{\text {t }}$ is an empty set, then t is a leaf node labeled by the default class, y_{d}
- If D_{t} contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.
- Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

Hunt's Algorithm

Constructing decision-trees (pseudocode)

GenDecTree(Sample S, Features F)

1. If stopping_condition(S,F) = true then
a. leaf = createNode()
b. leaf.label= Classify(S)
c. return leaf
2. root $=$ createNode()
3. root.test_condition = findBestSplit(S,F)
4. $\mathrm{V}=\{\mathrm{v} \mid \mathrm{v}$ a possible outcome of root.test_condition $\}$
5. for each value $v \in \mathrm{~V}$:
a. $\quad \mathrm{S}_{\mathrm{v}}:=\{\mathrm{s} \mid$ root.test_condition(s) $=\mathrm{v}$ and $\mathrm{s} \in \mathrm{S}\}$;
b. child = GenDecTree($\left.\mathrm{S}_{\mathrm{v}}, \mathrm{F}\right)$;
c. Add child as a descent of root and label the edge (root \rightarrow child) as v
6. return root

Tree Induction

- Issues
- How to Classify a leaf node
- Assign the majority class
- If leaf is empty, assign the default class - the class that has the highest popularity (overall or in the parent node).
- Determine how to split the records
- How to specify the attribute test condition?
- How to determine the best split?
- Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
- Nominal
- Ordinal
- Continuous
- Depends on number of ways to split
- 2-way split
- Multi-way split

Splitting Based on Nominal Attributes

- Multi-way split: Use as many partitions as distinct values.

- Binary split: Divides values into two subsets. Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

- Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets respects the order. Need to find optimal partitioning.

OR

- What about this split?

Splitting Based on Continuous Attributes

- Different ways of handling
- Discretization to form an ordinal categorical attribute
- Static - discretize once at the beginning
- Dynamic - ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
- Binary Decision: $(\mathrm{A}<\mathrm{v})$ or $(\mathrm{A} \geq \mathrm{v})$
- consider all possible splits and finds the best cut
- can be more computationally intensive

Splitting Based on Continuous Attributes

(i) Binary split
(ii) Multi-way split

How to determine the Best Split

Before Splitting: 10 records of class 0 , 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
- Creation of nodes with homogeneous class distribution is preferred
- Need a measure of node impurity:

$$
\begin{aligned}
& \text { C0: } 5 \\
& \text { C1: } 5
\end{aligned}
$$

Non-homogeneous,
High degree of impurity

$$
\begin{aligned}
& \mathrm{C} 0: 9 \\
& \mathrm{C} 1: 1
\end{aligned}
$$

Homogeneous,
Low degree of impurity

- Ideas?

Measuring Node Impurity

- $\mathrm{p}(\mathrm{i} \mid \mathrm{t})$: fraction of records associated with node t belonging to class i
$\operatorname{Entropy}(t)=-\sum_{i=1}^{c} p(i \mid t) \log p(i \mid t)$
- Used in ID3 and C4.5
$\operatorname{Gini}(t)=1-\sum_{i=1}^{c}[p(i \mid t)]^{2}$
- Used in CART, SLIQ, SPRINT.

Classification error $(t)=1-\max _{i}[p(i \mid t)]$

Gain

- Gain of an attribute split: compare the impurity of the parent node with the average impurity of the child nodes

$$
\Delta=I(\text { parent })-\sum_{j=1}^{k} \frac{N\left(v_{j}\right)}{N} I\left(v_{j}\right)
$$

- Maximizing the gain \Leftrightarrow Minimizing the weighted average impurity measure of children nodes \Leftrightarrow Maximizing purity
- If I()$=$ Entropy () , then $\Delta_{\text {info }}$ is called information gain

Example

$$
P(C 1)=0 / 6=0 \quad P(C 2)=6 / 6=1
$$

C 1	$\mathbf{0}$
C 2	$\mathbf{6}$

Gini $=1-P(C 1)^{2}-P(C 2)^{2}=1-0-1=0$
Entropy $=-0 \log 0-1 \log 1=-0-0=0$
Error $=1-\max (0,1)=1-1=0$
$P(C 1)=1 / 6 \quad P(C 2)=5 / 6$

C 1	$\mathbf{1}$
C 2	$\mathbf{5}$

Gini $=1-(1 / 6)^{2}-(5 / 6)^{2}=0.278$
Entropy $=-(1 / 6) \log _{2}(1 / 6)-(5 / 6) \log _{2}(1 / 6)=0.65$
Error $=1-\max (1 / 6,5 / 6)=1-5 / 6=1 / 6$
$P(C 1)=2 / 6 \quad P(C 2)=4 / 6$
Gini $=1-(2 / 6)^{2}-(4 / 6)^{2}=0.444$
Entropy $=-(2 / 6) \log _{2}(2 / 6)-(4 / 6) \log _{2}(4 / 6)=0.92$
Error $=1-\max (2 / 6,4 / 6)=1-4 / 6=1 / 3$

Impurity measures

- All of the impurity measures take value zero (minimum) for the case of a pure node where a single value has probability 1
- All of the impurity measures take maximum value when the class distribution in a node is uniform.

Comparison among Splitting Criteria

For a 2-class problem:

Categorical Attributes

- For binary values split in two
- For multivalued attributes, for each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Continuous Attributes

- Use Binary Decisions based on one value
- Choices for the splitting value
- Number of possible splitting values = Number of distinct values
- Each splitting value has a count matrix associated with it
- Class counts in each of the partitions, $A<v$ and $A \geq v$
- Exhaustive method to choose best v
- For each v, scan the database to gather count matrix and compute the impurity index
- Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

Taxable Income
$>80 \mathrm{~K}$?

Continuous Attributes

- For efficient computation: for each attribute,
- Sort the attribute on values
- Linearly scan these values, each time updating the count matrix and computing impurity
- Choose the split position that has the least impurity

Sorted Values Split Positions	Cheat	No		No			No		Yes			Yes		Yes			No		No		No			No	
													xab	le In	co	me									
		60		70			75		85			90		95			100		120		125			220	
		55		65		72		80		87			92		97			110		122		172		230	
		<=	>	<=	$>$	<=	>	<=	$>$		<=	>	<=	$>$		<=	$>$	<=	$>$	<=	$>$	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	1	2	2	1		3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4		3	4	3	4		3	4	4	3	5	2	6	1	7	0
	Gini	0.420		0.400		0.375		0.343		0.417			0.400		0.300			0.343		0.375		0.400		0.420	

Splitting based on impurity

- Impurity measures favor attributes with large number of values
- A test condition with large number of outcomes may not be desirable
- \# of records in each partition is too small to make predictions

Splitting based on INFO

Figure 4.12. Multiway versus binary splits.

Gain Ratio

- Splitting using information gain

$$
\text { GainRATIO }_{\text {splut }}=\frac{\text { GAIN }_{\text {splut }}}{\text { SplitINFO }} \text { SplitINFO }=-\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}
$$

Parent Node, p is split into k partitions
n_{i} is the number of records in partition i

- Adjusts Information Gain by the entropy of the partition (SplitINFO). Higher entropy partition (large number of small partitions) is penalized!
- Used in C4.5
- Designed to overcome the disadvantage of impurity

Stopping Criteria for Tree Induction

- Stop expanding a node when all the records belong to the same class
- Stop expanding a node when all the records have similar attribute values
- Early termination (to be discussed later)

Decision Tree Based Classification

- Advantages:
- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

Example: C4.5

- Simple depth-first construction.
- Uses Information Gain
- Sorts Continuous Attributes at each node.
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.
- Needs out-of-core sorting.
- You can download the software from: http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

Other Issues

- Data Fragmentation
- Expressiveness

Data Fragmentation

- Number of instances gets smaller as you traverse down the tree
- Number of instances at the leaf nodes could be too small to make any statistically significant decision
- You can introduce a lower bound on the number of items per leaf node in the stopping criterion.

Expressiveness

- A classifier defines a function that discriminates between two (or more) classes.
- The expressiveness of a classifier is the class of functions that it can model, and the kind of data that it can separate
- When we have discrete (or binary) values, we are interested in the class of boolean functions that can be modeled
- If the data-points are real vectors we talk about the decision boundary that the classifier can model

Decision Boundary

- Border line between two neighboring regions of different classes is known as decision boundary
- Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

Expressiveness

- Decision tree provides expressive representation for learning discrete-valued function
- But they do not generalize well to certain types of Boolean functions
- Example: parity function:
- Class = 1 if there is an even number of Boolean attributes with truth value = True
- Class $=0$ if there is an odd number of Boolean attributes with truth value = True
- For accurate modeling, must have a complete tree
- Less expressive for modeling continuous variables
- Particularly when test condition involves only a single attribute at-a-time

Oblique Decision Trees

- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive

Practical Issues of Classification

- Underfitting and Overfitting
- Evaluation

Underfitting and Overfitting (Example)

500 circular and 500 triangular data points.

Circular points:
$0.5 \leq \operatorname{sqrt}\left(x_{1}^{2}+x_{2}^{2}\right) \leq 1$

Triangular points:
$\operatorname{sqrt}\left(\mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2}{ }^{2}\right)>0.5$ or
$\operatorname{sqrt}\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)<1$

Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large
Overfitting: when model is too complex it models the details of the training set and fails on the test set

Overfiting due to Noise

Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary
- Training error no longer provides a good estimate of test error, that is, how well the tree will perform on previously unseen records
- The model does not generalize well
- Generalization: The ability of the model to predict data points that it has not already seen.
- Need new ways for estimating errors

Estimating Generalization Errors

- Re-substitution errors: error on training $\left(\sum e(t)\right)$
- Generalization errors: error on testing ($\left.\sum e^{\prime}(t)\right)$
- Methods for estimating generalization errors:
- Optimistic approach: $e^{\prime}(t)=e(t)$
- Pessimistic approach:
- For each leaf node: $e^{\prime}(t)=(e(t)+0.5)$
- Total errors: $e^{\prime}(T)=e(T)+N \times 0.5$ (N : number of leaf nodes)
- Penalize large trees
- For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances)
- Training error $=10 / 1000=1 \%$
- Generalization error $=(10+30 \times 0.5) / 1000=2.5 \%$
- Using validation set:
- Split data into training, validation, test
- Use validation dataset to estimate generalization error
- Drawback: less data for training.

Occam's Razor

- Occam's razor: All other things being equal, the simplest explanation/solution is the best.
- A good principle for life as well
- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
- For complex models, there is a greater chance that it was fitted accidentally by errors in data
- Therefore, one should include model complexity when evaluating a model

Minimum Description Length (MDL)

\mathbf{X}	\mathbf{y}
\mathbf{X}_{1}	1
\mathbf{X}_{2}	0
\mathbf{X}_{3}	0
\mathbf{X}_{4}	1
\ldots	\ldots
\mathbf{X}_{n}	1

\mathbf{X}	y
X_{1}	$?$
X_{2}	$?$
X_{3}	$?$
X_{4}	$?$
\ldots	\ldots
X_{n}	$?$

- Cost(Model,Data) $=\operatorname{Cost(Model)~}+\operatorname{Cost(Data|Model)~}$
- Search for the least costly model.
- Cost(Model) encodes the decision tree
- node encoding (number of children) plus splitting condition encoding.
- Cost(Data|Model) encodes the misclassification errors.

Example

- Regression: find a polynomial for describing a set of values
- Model complexity (model cost): polynomial coefficients
- Goodness of fit (data cost): difference between real value and the polynomial value

Minimum model cost High data cost

High model cost
Minimum data cost

Low model cost
Low data cost

MDL avoids overfitting automatically!

How to Address Overfitting

- Pre-Pruning (Early Stopping Rule)
- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
- Stop if all instances belong to the same class
- Stop if all the attribute values are the same
- More restrictive conditions:
- Stop if number of instances is less than some user-specified threshold
- Stop if class distribution of instance classes are independent of the available features (e.g., using χ^{2} test)
- Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

How to Address Overfitting...

- Post-pruning
- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree
- Can use MDL for post-pruning

Example of Post-Pruning

Training Error $($ Before splitting) $=10 / 30$

Class $=$ Yes	20
Class $=$ No	10
Error $=10 / 30$	

Pessimistic error $=(10+0.5) / 30=10.5 / 30$
Training Error (After splitting) $=9 / 30$
Pessimistic error (After splitting)

$$
\begin{aligned}
& =(9+4 \times 0.5) / 30=11 / 30 \\
& \text { PRUNE! }
\end{aligned}
$$

| Class $=$ Yes | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Class $=$ No | 4 |\(\left|\begin{array}{ll}\hline Class=Yes \& 3

\hline Class=No \& 4

\hline\end{array}\right|\)| Class $=$ Yes | 5 |
| :--- | :--- |
| Class $=$ No | 4 |

Model Evaluation

- Metrics for Performance Evaluation
- How to evaluate the performance of a model?
- Methods for Performance Evaluation
- How to obtain reliable estimates?
- Methods for Model Comparison
- How to compare the relative performance among competing models?

Model Evaluation

- Metrics for Performance Evaluation
- How to evaluate the performance of a model?
- Methods for Performance Evaluation
- How to obtain reliable estimates?
- Methods for Model Comparison
- How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
- Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a	b

a: TP (true positive)
b: FN (false negative)
c: FP (false positive)
d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

- Most widely-used metric:

Accuracy $=\frac{a+d}{a+b+c+d}=\frac{T P+T N}{T P+T N+F P+F N}$

Limitation of Accuracy

- Consider a 2-class problem
- Number of Class 0 examples $=9990$
- Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 \%
- Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS		
ACTUAL CLASS	Cliass=Yes	C(Yes\|Yes)	C(No\|Yes)
	Class=No	C(Yes\|No)	C(No\|No)

C(i|j): Cost of classifying class j example as class i

CONFUSION	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	$\begin{gathered} \text { a } \\ \text { (TP) } \end{gathered}$	$\begin{gathered} \text { b } \\ (\mathrm{FN}) \end{gathered}$
	Class=No	$\begin{gathered} c \\ (F P) \end{gathered}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{TN}) \end{gathered}$
COST MATRIX	PREDICTED CLASS		
ACTUAL CLASS	C(ij)	Class=Yes	Class=No
	Class=Yes	C(Yes\|Yes)	$\mathrm{C}(\mathrm{No} \mid \mathrm{Yes})$
	Class=No	$\begin{gathered} w_{3} \\ \mathrm{C}(\mathrm{Yes} \mid \mathrm{No}) \\ \hline \end{gathered}$	$\begin{gathered} w_{4} \\ \mathrm{C}(\mathrm{No} \mid \mathrm{No}) \\ \hline \end{gathered}$

Weighted Accuracy

Weighted Accuracy $=\frac{w_{1} a+w_{4} d}{w_{1} a+w_{2} b+w_{3} c+w_{4} d}$

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL	C(iij)	$\boldsymbol{+}$	-
	$\boldsymbol{+}$	1	100
	-	1	1

Model M_{1}	PREDICTED CLASS		
ACTUAL CLASS	+	+	-
	$\boldsymbol{+}$	150	40
		60	250

Accuracy $=80 \%$
Weighted Accuracy = 8.9\%

Model	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	250	45
	-	5	200

Accuracy $=90 \%$
Weighted Accuracy=9\%

Classification Cost	CONFUSION MATRIX	PREDICTED CLASS		
	ACTUAL CLASS		Class=Yes	Class=No
		Class=Yes	$\begin{gathered} \text { a } \\ (\mathrm{TP}) \end{gathered}$	$\begin{gathered} \mathrm{b} \\ (\mathrm{FN}) \end{gathered}$
		Class=No	$\begin{gathered} c \\ (F P) \end{gathered}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{TN}) \end{gathered}$
	COST MATRIX	PREDICTED CLASS		
	ACTUAL CLASS	C(ij)	Class=Yes	Class=No
		Class=Yes	$\begin{gathered} w_{1} \\ \mathrm{C}(\mathrm{Yes} \mid \mathrm{Yes}) \\ \hline \end{gathered}$	$\begin{gathered} w_{2} \\ \mathrm{C}(\mathrm{No} \mid \mathrm{Yes}) \end{gathered}$
		Class=No	$\begin{gathered} w_{3} \\ \mathrm{C}(\mathrm{Yes} \mid \mathrm{No}) \\ \hline \end{gathered}$	$\begin{gathered} w_{4} \\ \mathrm{C}(\mathrm{No} \mid \mathrm{No}) \\ \hline \end{gathered}$

Classification Cost $=w_{1} a+w_{2} b+w_{3} c+w_{4} d$
Some weights can also be negative

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
	$\mathrm{C}(\mathrm{ij})$	$\boldsymbol{+}$	-
ACTUAAL	$\boldsymbol{+}$	-1	100
CLASS	-	1	0

Model M_{1}	PREDICTED CLASS		
ACTUAL CLASS		$\boldsymbol{+}$	$\boldsymbol{-}$
	$\boldsymbol{+}$	150	40
	60	250	

Accuracy = 80\%
Cost $=3910$

Model	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	250	45
	-	5	200

Accuracy $=90 \%$
Cost $=4255$

Cost vs Accuracy

Count	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a	b
CLASS	Class=No	c	d

Accuracy is proportional to cost if 1. $\mathrm{C}($ Yes $\mid \mathrm{No})=\mathrm{C}($ No|Yes $)=\mathrm{q}$
2. $\mathrm{C}(\mathrm{Yes} \mid \mathrm{Yes})=\mathrm{C}(\mathrm{No} \mid \mathrm{No})=\mathrm{p}$
$N=a+b+c+d$

$$
\text { Accuracy }=(a+d) / N
$$

Cost	PREDICTED CLASS		
ACTUAL CLASS	Class=Yes	Class=No	
	Class=No	p	q

$$
\begin{aligned}
\text { Cost } & =p(a+d)+q(b+c) \\
& =p(a+d)+q(N-a-d) \\
& =q N-(q-p)(a+d) \\
& =N[q-(q-p) \times \text { Accuracy }]
\end{aligned}
$$

Precision-Recall

$$
\begin{aligned}
& \text { Precision }(\mathrm{p})=\frac{a}{a+c}=\frac{T P}{T P+F P} \\
& \text { Recall }(\mathrm{r})=\frac{a}{a+b}=\frac{T P}{T P+F N}
\end{aligned}
$$

Count	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a	b
	Class=No	c	d

F -measure $(\mathrm{F})=\frac{1}{\left(\frac{1 / r+1 / p}{2}\right)}=\frac{2 r p}{r+p}=\frac{2 a}{2 a+b+c}=\frac{2 T P}{2 T P+F P+F N}$

- Precision is biased towards $\mathrm{C}(\mathrm{Yes} \mid \mathrm{Yes}) \& \mathrm{C}(\mathrm{Yes} \mid \mathrm{No})$
- Recall is biased towards $\mathrm{C}(\mathrm{Yes} \mid \mathrm{Yes}) \& \mathrm{C}(\mathrm{No} \mid \mathrm{Yes})$
- F-measure is biased towards all except $\mathbf{C}(\mathbf{N o} \mid \mathrm{No})$

Model Evaluation

- Metrics for Performance Evaluation
- How to evaluate the performance of a model?
- Methods for Performance Evaluation
- How to obtain reliable estimates?
- Methods for Model Comparison
- How to compare the relative performance among competing models?

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
- Class distribution
- Cost of misclassification
- Size of training and test sets

Methods of Estimation

- Holdout
- Reserve 2/3 for training and 1/3 for testing
- Random subsampling
- One sample may be biased -- Repeated holdout
- Cross validation
- Partition data into k disjoint subsets
- k-fold: train on k-1 partitions, test on the remaining one
- Leave-one-out: k=n
- Guarantees that each record is used the same number of times for training and testing
- Bootstrap
- Sampling with replacement
- $\sim 63 \%$ of records used for training, $\sim 27 \%$ for testing

Dealing with class Imbalance

- If the class we are interested in is very rare, then the classifier will ignore it.
- The class imbalance problem
- Solution
- We can modify the optimization criterion by using a cost sensitive metric
- We can balance the class distribution
- Sample from the larger class so that the size of the two classes is the same
- Replicate the data of the class of interest so that the classes are balanced
- Over-fitting issues

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve

Effect of small sample size:

- Bias in the estimate
- Poor model
- Variance of estimate
- Poor training data

Model Evaluation

- Metrics for Performance Evaluation
- How to evaluate the performance of a model?
- Methods for Performance Evaluation
- How to obtain reliable estimates?
- Methods for Model Comparison
- How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
- Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (true positive rate) (on the y-axis) against FPR (false positive rate) (on the x-axis)

Look at the positive predictions of the classifier and compute:
$T P R=\frac{T P}{T P+F N}$
What fraction of true positive instances are predicted correctly ?

$$
F P R=\frac{F P}{F P+T N}
$$

	PREDICTED CLASS		
Actual		Yes	No
	Yes	a (TP)	b (FN)
	No	c (FP)	d (TN)

What fraction of true negative instances were predicted incorrectly?

ROC (Receiver Operating Characteristic)

- Performance of a classifier represented as a point on the ROC curve
- Changing some parameter of the algorithm, sample distribution, or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at $x>t$ is classified as positive

ROC Curve

(TP,FP):

- $(0,0)$: declare everything to be negative class
- $(1,1)$: declare everything to be positive class
- $(1,0)$: ideal
- Diagonal line:
- Random guessing
- Below diagonal line:
- prediction is opposite of the true class

	PREDICTED CLASS		
Actual		Yes	No
	Yes	a (TP)	b (FN)
	No	c (FP)	d (TN)

Usina ROC for Model Comparison

- No model consistently outperform the other
- \mathbf{M}_{1} is better for small FPR
- \mathbf{M}_{2} is better for large FPR
- Area Under the ROC curve (AUC)
- Ideal: Area = 1
- Random guess:
- Area = 0.5

Precision-Recall plot

- Usually for parameterized models, it controls the precision/recall tradeoff

ROC curve vs Precision-Recall curve

Area Under the Curve (AUC) as a single number for evaluation

