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LECTURE 7
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The k-means algorithm

Hierarchical Clustering

The DBSCAN algorithm

Clustering Evaluation



What is a Clustering?

• In general a grouping of objects such that the objects in a 

group (cluster) are similar (or related) to one another and 

different from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



Applications of Cluster Analysis

• Understanding
• Group related documents for 

browsing, genes and proteins
that have similar functionality, 
stocks with similar price 
fluctuations, users with same 
behavior

• Summarization
• Reduce the size of large data 

sets

• Applications
• Recommendation systems

• Search Personalization

 Discovered Clusters Industry Group 

1 
Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 

Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 

Sun-DOWN 

 

 

Technology1-DOWN 

2 
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 

ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 

Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 

 

Technology2-DOWN 

3 
Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 

MBNA-Corp-DOWN,Morgan-Stanley-DOWN 
 

Financial-DOWN 

4 
Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 

Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 

Oil-UP 

 

 

Clustering precipitation 

in Australia



Early applications of cluster analysis

• John Snow, London 1854



Notion of a Cluster can be Ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters



Types of Clusterings

• A clustering is a set of clusters

• Important distinction between hierarchical and 
partitional sets of clusters 

• Partitional Clustering
• A division data objects into subsets (clusters) such 

that each data object is in exactly one subset

• Hierarchical clustering
• A set of nested clusters organized as a hierarchical 

tree 



Partitional Clustering

Original Points A Partitional  Clustering



Hierarchical Clustering

p4

p1
p3

p2

 

p4 

p1 
p3 

p2 

p4p1 p2 p3

p4p1 p2 p3

Traditional Hierarchical 

Clustering

Non-traditional Hierarchical 

Clustering

Non-traditional Dendrogram

Traditional Dendrogram



Other types of clustering

• Exclusive (or non-overlapping) versus non-
exclusive (or overlapping)
• In non-exclusive clusterings, points may belong to 

multiple clusters.
• Points that belong to multiple classes, or ‘border’ points

• Fuzzy (or soft) versus non-fuzzy (or hard)
• In fuzzy clustering, a point belongs to every cluster 

with some weight between 0 and 1
• Weights usually must sum to 1 (often interpreted as probabilities)

• Partial versus complete
• In some cases, we only want to cluster some of the 

data



Clustering objectives

• Well-Separated Clusters: 
• A cluster is a set of points such that any point in a cluster is 

closer (or more similar) to every other point in the cluster than 
to any point not in the cluster. 

3 well-separated clusters



Clustering objectives

• Center-based
• A cluster is a set of objects such that an object in a cluster is 

closer (more similar) to the “center” of a cluster, than to the 
center of any other cluster  

• The center of a cluster is often a centroid, the minimizer of 
distances from all the points in the cluster, or a medoid, the 
most “representative” point of a cluster 

4 center-based clusters



Clustering objectives

• Contiguous Cluster (Nearest neighbor or 
Transitive)
• A cluster is a set of points such that a point in a cluster is 

closer (or more similar) to one or more other points in the 
cluster than to any point not in the cluster.

8 contiguous clusters



Types of Clusters: Density-Based

• Density-based
• A cluster is a dense region of points, which is separated by 

low-density regions, from other regions of high density. 

• Used when the clusters are irregular or intertwined, and when 
noise and outliers are present. 

6 density-based clusters



Clustering objectives

• Shared Property or Conceptual Clusters
• Finds clusters that share some common property or represent 

a particular concept. 

. 

2 Overlapping Circles



Types of Clusters: Objective Function

• Clustering as an optimization problem
• Finds clusters that minimize or maximize an objective function. 

• Enumerate all possible ways of dividing the points into clusters 
and evaluate the `goodness' of each potential set of clusters by 
using the given objective function.  (NP Hard)

• Can have global or local objectives.

• Hierarchical clustering algorithms typically have local objectives

• Partitional algorithms typically have global objectives

• A variation of the global objective function approach is to fit the 
data to a parameterized model. 

• The parameters for the model are determined from the data, and they 
determine the clustering

• E.g., Mixture models assume that the data is a ‘mixture' of a number 
of statistical distributions.  



Clustering Algorithms

• K-means and its variants

• Hierarchical clustering

• DBSCAN



K-MEANS



K-means Clustering

• Partitional clustering approach 

• Each cluster is associated with a centroid
(center point) 

• Each point is assigned to the cluster with the 
closest centroid

• Number of clusters, K, must be specified

• The objective is find K centroids and the 
assignment of points to clusters/centroids so 
as to minimize the sum of distances of the 
points to their respective centroid



K-means Clustering

• Problem: Given a set X of n objects and an 

integer K, group the points into K clusters 𝐶 =
{𝐶1, 𝐶2, … , 𝐶𝑘} such that

𝐶𝑜𝑠𝑡 𝐶 = 

𝑖=1

𝑘

 

𝑥∈𝐶𝑖

𝑑𝑖𝑠𝑡(𝑥, 𝑐𝑖)

is minimized, where 𝑐𝑖 is the centroid of the points 

in cluster 𝐶𝑖
• Note: We need to find both the grouping into 

clusters and the centroids per cluster.



K-means Clustering

• Most common definition is with euclidean distance, 
minimizing the Sum of Squares Error (SSE) function
• Sometimes K-means is defined like that

• Problem: Given a set X of n points in a d-dimensional 
space and an integer K group the points into K
clusters 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘} such that

𝐶𝑜𝑠𝑡 𝐶 = 

𝑖=1

𝑘

 

𝑥∈𝐶𝑖

𝑥 − 𝑐𝑖
2

is minimized, where 𝑐𝑖 is the mean of the points in 
cluster 𝐶𝑖 Sum of Squares Error (SSE)



Complexity of the k-means problem

• NP-hard if the dimensionality of the data is at 

least 2 (d≥2)

• Finding the best solution in polynomial time is infeasible

• For d=1 the problem is solvable in polynomial 

time (how?)

• A simple iterative algorithm works quite well in 

practice



K-means Algorithm

• Also known as Lloyd’s algorithm.

• K-means is sometimes synonymous with this 

algorithm



K-means Algorithm – Initialization

• Initial centroids are often chosen randomly.

• Clusters produced vary from one run to another.



Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids …
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Dealing with Initialization

• Do multiple runs and select the clustering with the 

smallest error

• Select original set of  points by methods other 

than random . E.g.,  pick the most distant (from 

each other) points as cluster centers (K-means++ 

algorithm)



K-means Algorithm – Centroids

• The centroid depends on the distance function
• The minimizer for the distance function

• ‘Closeness’ is measured by some similarity or 
distance function
• E.g., Euclidean distance (SSE), cosine similarity, correlation, 

etc.

• Centroid:
• The mean of the points in the cluster for SSE, and cosine 

similarity

• The median for Manhattan distance.

• Finding the centroid is not always easy 
• It can be an NP-hard problem for some distance functions

• E.g., median for multiple dimensions



K-means Algorithm – Convergence

• K-means will converge for common similarity 
measures mentioned above.
• Most of the convergence happens in the first few 

iterations.

• Often the stopping condition is changed to ‘Until 
relatively few points change clusters’

• Complexity is O( n * K * I * d )
• n = number of points, 

• K = number of clusters, 

• I = number of iterations, 

• d = dimensionality

• In general a fast and efficient algorithm



Limitations of K-means

• K-means has problems when clusters are of 

different: 

• sizes

• densities

• non-globular shapes

• K-means has problems when the data contains 

outliers.



Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)



Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)



Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)



Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.

Find parts of clusters, but need to put together.



Overcoming K-means Limitations

Original Points K-means Clusters



Overcoming K-means Limitations

Original Points K-means Clusters



Variations

• K-medoids: Similar problem definition as in K-

means, but the centroid of the cluster is defined 

to be one of the points in the cluster (the medoid).

• K-centers: Similar problem definition as in K-

means, but the goal now is to minimize the 

maximum diameter of the clusters

• diameter of a cluster is maximum distance between any 

two points in the cluster. 



HIERARCHICAL 

CLUSTERING



Hierarchical Clustering

• Two main types of hierarchical clustering
• Agglomerative:  

• Start with the points as individual clusters

• At each step, merge the closest pair of clusters until only one cluster (or 
k clusters) left

• Divisive:  

• Start with one, all-inclusive cluster 

• At each step, split a cluster until each cluster contains a point (or there 
are k clusters)

• Traditional hierarchical algorithms use a similarity or 
distance matrix
• Merge or split one cluster at a time



Hierarchical Clustering 

• Produces a set of nested clusters organized as a 

hierarchical tree

• Can be visualized as a dendrogram

• A tree like diagram that records the sequences of 

merges or splits
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Strengths of Hierarchical Clustering

• Do not have to assume any particular number of 
clusters
• Any desired number of clusters can be obtained by 

‘cutting’ the dendogram at the proper level

• They may correspond to meaningful taxonomies
• Example in biological sciences (e.g., animal kingdom, 

phylogeny reconstruction, …)



Agglomerative Clustering Algorithm

• More popular hierarchical clustering technique

• Basic algorithm is straightforward
1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity matrix

6. Until only a single cluster remains

• Key operation is the computation of the proximity 
of two clusters

• Different approaches to defining the distance between 
clusters distinguish the different algorithms



Starting Situation 

• Start with clusters of individual points and a 

proximity matrix

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



Intermediate Situation

• After some merging steps, we have some clusters 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



Intermediate Situation

• We want to merge the two closest clusters (C2 and C5)  and 

update the proximity matrix. 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



After Merging

• The question is “How do we update the proximity matrix?” 

C1

C4

C2 U C5

C3
?      ?       ?      ?    

?

?

?

C2

U 

C5C1

C1

C3

C4

C2 U C5

C3 C4

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12



How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.

Similarity?

 MIN

 MAX

 Group Average

 Distance Between Centroids

 Other methods driven by an objective 

function

– Ward’s Method uses squared error

Proximity Matrix



How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

 MIN

 MAX

 Group Average

 Distance Between Centroids

 Other methods driven by an objective 

function

– Ward’s Method uses squared error

 



Single Link – Complete Link

• Another way to view the processing of the 

hierarchical algorithm is that we create links 

between the elements in order of increasing 

distance

• The MIN – Single Link, will merge two clusters when a 

single pair of elements is linked

• The MAX – Complete Linkage will merge two clusters 

when all pairs of elements have been linked.



Hierarchical Clustering: MIN

Nested Clusters Dendrogram
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Strength of MIN

Original Points Two Clusters

• Can handle non-elliptical shapes



Limitations of MIN

Original Points Two Clusters

• Sensitive to noise and outliers



Hierarchical Clustering: MAX

Nested Clusters Dendrogram
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Strength of MAX

Original Points Two Clusters

• Less susceptible to noise and outliers



Limitations of MAX

Original Points Two Clusters

•Tends to break large clusters

•Biased towards globular clusters



Cluster Similarity: Group Average

• Proximity of two clusters is the average of pairwise proximity 

between points in the two clusters.

• Need to use average connectivity for scalability since total 

proximity favors large clusters
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Hierarchical Clustering: Group Average

Nested Clusters Dendrogram
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Hierarchical Clustering: Group Average

• Compromise between Single and 

Complete Link

• Strengths

• Less susceptible to noise and outliers

• Limitations

• Biased towards globular clusters



Cluster Similarity: Ward’s Method

• Similarity of two clusters is based on the increase
in squared error (SSE) when two clusters are 
merged
• Similar to group average if distance between points is 

distance squared

• Less susceptible to noise and outliers

• Biased towards globular clusters

• Hierarchical analogue of K-means
• Can be used to initialize K-means



Hierarchical Clustering: Comparison

Group Average
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Hierarchical Clustering:  

Time and Space requirements

• O(N2) space since it uses the proximity matrix.  

• N is the number of points.

• O(N3) time in many cases

• There are N steps and at each step the size, N2, 

proximity matrix must be updated and searched

• Complexity can be reduced to O(N2 log(N) ) time for 

some approaches



Hierarchical Clustering:  

Problems and Limitations
• Computational complexity in time and space

• Once a decision is made to combine two clusters, it 
cannot be undone

• No objective function is directly minimized

• Different schemes have problems with one or more of 
the following:
• Sensitivity to noise and outliers

• Difficulty handling different sized clusters and convex shapes

• Breaking large clusters



DBSCAN



DBSCAN: Density-Based Clustering

• DBSCAN is a Density-Based Clustering algorithm

• Reminder: In density based clustering we partition points 
into dense regions separated by not-so-dense regions.

• Important Questions:
• How do we measure density?

• What is a dense region?

• DBSCAN:
• Density at point p: number of points within a circle of radius Eps

• Dense Region: A circle of radius Eps that contains at least MinPts
points



DBSCAN

• Characterization of points
• A point is a core point if it has more than a specified 

number of points (MinPts) within Eps
• These points belong in a dense region and are at the interior of 

a cluster

• A border point has fewer than MinPts within Eps, but 
is in the neighborhood of a core point.

• A noise point is any point that is not a core point or a 
border point. 



DBSCAN: Core, Border, and Noise Points



DBSCAN: Core, Border and Noise Points

Original Points
Point types: core, 

border and noise

Eps = 10, MinPts = 4



Density-Connected points

• Density edge

• We place an edge between two core 

points q and p if they are within 

distance Eps.

• Density-connected

• A point p is density-connected to a 

point q if there is a path of edges 

from p to q

p

q
p1

p q

o



DBSCAN Algorithm

• Label points as core, border and noise

• Eliminate noise points

• For every core point p that has not been assigned 

to a cluster

• Create a new cluster with the point p and all the 

points that are density-connected to p.

• Assign border points to the cluster of the closest 

core point.



DBSCAN: Determining Eps and MinPts

• Idea is that for points in a cluster, their kth nearest neighbors 
are at roughly the same distance

• Noise points have the kth nearest neighbor at farther distance

• So, plot sorted distance of every point to its kth nearest 
neighbor

• Find the distance d where there is a “knee” in the curve
• Eps = d, MinPts = k

Eps ~ 7-10

MinPts = 4



When DBSCAN Works Well

Original Points
Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes



When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data



DBSCAN: Sensitive to Parameters



Other algorithms

• PAM, CLARANS: Solutions for the k-medoids
problem

• BIRCH: Constructs a hierarchical tree that acts a 
summary of the data, and then clusters the leaves.

• MST: Clustering using the Minimum Spanning Tree.

• ROCK: clustering categorical data by neighbor and 
link analysis

• LIMBO, COOLCAT: Clustering categorical data using 
information theoretic tools.

• CURE: Hierarchical algorithm uses different 
representation of the cluster

• CHAMELEON: Hierarchical algorithm uses closeness 
and interconnectivity for merging



CLUSTERING 

EVALUATION



Clustering Evaluation

• We need to evaluate the “goodness” of the resulting 
clusters?

• But “clustering lies in the eye of the beholder”! 

• Then why do we want to evaluate them?
• To avoid finding patterns in noise

• To compare clusterings, or clustering algorithms

• To compare against a “ground truth”



Clusters found in Random Data
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1. Determining the clustering tendency of a set of data, i.e., 

distinguishing whether non-random structure actually exists in the 

data. 

2. Comparing the results of a cluster analysis to externally known 

results, e.g., to externally given class labels.

3. Evaluating how well the results of a cluster analysis fit the data 

without reference to external information. 

- Use only the data

4. Comparing the results of two different sets of cluster analyses to 

determine which is better.

5. Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to 

evaluate the entire clustering or just individual clusters. 

Different Aspects of Cluster Validation



• Numerical measures that are applied to judge various aspects 

of cluster validity, are classified into the following three types.

• External Index: Used to measure the extent to which cluster labels 

match externally supplied class labels.
• E.g., entropy, precision, recall

• Internal Index: Used to measure the goodness of a clustering 

structure without reference to external information. 
• E.g., Sum of Squared Error (SSE)

• Relative Index: Used to compare two different clusterings or 

clusters. 
• Often an external or internal index is used for this function, e.g., SSE or 

entropy

• Sometimes these are referred to as criteria instead of indices

• However, sometimes criterion is the general strategy and index is the 

numerical measure that implements the criterion.

Measures of Cluster Validity



 Two matrices 
 Similarity or Distance Matrix

 One row and one column for each data point

 An entry is the similarity or distance of the associated pair of points

 “Incidence” Matrix
 One row and one column for each data point

 An entry is 1 if the associated pair of points belong to the same cluster

 An entry is 0 if the associated pair of points belongs to different clusters

 Compute the correlation between the two matrices
 Since the matrices are symmetric, only the correlation between 

n(n-1) / 2 entries needs to be calculated.

𝐶𝑜𝑟𝑟𝐶𝑜𝑒𝑓𝑓(𝑋, 𝑌) =
 𝑖(𝑥𝑖 − 𝜇𝑋)(𝑦𝑖 − 𝜇𝑌)

 𝑖 𝑥𝑖 − 𝜇𝑋
2  𝑖 𝑦𝑖 − 𝜇𝑌

2

 High correlation (positive for similarity, negative for distance) 
indicates that points that belong to the same cluster are close to 
each other. 

 Not a good measure for some density or contiguity based 
clusters.

Measuring Cluster Validity Via Correlation



Measuring Cluster Validity Via Correlation

• Correlation of incidence and proximity matrices 

for the K-means clusterings of the following two 

data sets. 
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• Order the similarity matrix with respect to cluster 

labels and inspect visually. 

Using Similarity Matrix for Cluster Validation
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Using Similarity Matrix for Cluster Validation

• Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

• Clusters in random data are not so crisp

K-means
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Using Similarity Matrix for Cluster Validation

• Clusters in random data are not so crisp

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
y

Points

P
o

in
ts

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
Similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Complete Link



Using Similarity Matrix for Cluster Validation
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• Clusters in more complicated figures are not well separated

• This technique can only be used for small datasets since it requires a 

quadratic computation



• Internal Index:  Used to measure the goodness of a 

clustering structure without reference to external 

information

• Example: SSE

• SSE is good for comparing two clusterings or two clusters 

(average SSE).

• Can also be used to estimate the number of clusters

Internal Measures: SSE
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• Cluster Cohesion: Measures how closely related 
are objects in a cluster

• Cluster Separation: Measure how distinct or well-
separated a cluster is from other clusters

• Example: Squared Error
• Cohesion is measured by the within cluster sum of squares (SSE)

• Separation is measured by the between cluster sum of squares

• Where mi is the size of cluster i , c the overall mean

• Interesting observation: WSS+BSS = constant

Internal Measures: Cohesion and Separation
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• A proximity graph based approach can also be used for 

cohesion and separation.

• Cluster cohesion is the sum of the weight of all links within a cluster.

• Cluster separation is the sum of the weights between nodes in the cluster 

and nodes outside the cluster.

Internal Measures: Cohesion and Separation

cohesion separation



Internal measures – caveats 

• Internal measures have the problem that the 

clustering algorithm did not set out to optimize 

this measure, so it is will not necessarily do well 

with respect to the measure.

• An internal measure can also be used as an 

objective function for clustering



 Need a framework to interpret any measure. 
 For example, if our measure of evaluation has the value, 10, is that good, 

fair, or poor?

• Statistics provide a framework for cluster validity
• The more “non-random” a clustering result is, the more likely it represents 

valid structure in the data

• Can compare the values of an index that result from random data or 

clusterings to those of a clustering result.

• If the value of the index is unlikely, then the cluster results are valid

• For comparing the results of two different sets of cluster 

analyses, a framework is less necessary.
• However, there is the question of whether the difference between two 

index values is significant

Framework for Cluster Validity



• Example
• Compare SSE of 0.005 against three clusters in random data

• Histogram of SSE for three clusters in 500 random data sets of 

100 random points distributed in the range 0.2 – 0.8 for x and y

• Value 0.005 is very unlikely

Statistical Framework for SSE
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• Correlation of incidence and proximity matrices for the 

K-means clusterings of the following two data sets. 

Statistical Framework for Correlation
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Empirical p-value

• If we have a measurement v (e.g., the SSE value)

• ..and we have N measurements on random datasets

• …the empirical p-value is the fraction of 
measurements in the random data that have value 
less or equal than value v (or greater or equal if we 
want to maximize) 
• i.e., the value in the random dataset is at least as good as 

that in the real data

• We usually require that p-value ≤ 0.05

• Hard question: what is the right notion of a random 
dataset?



Estimating the “right” number of clusters

• Typical approach: find a “knee” in an internal measure curve.

• Question: why not the k that minimizes the SSE?
• Forward reference: minimize a measure, but with a “simple” clustering

• Desirable property: the clustering algorithm does not require 
the number of clusters to be specified (e.g., DBSCAN)
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Estimating the “right” number of clusters

• SSE curve for a more complicated data set
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SSE of clusters found using K-means



External Measures for Clustering Validity

• Assume that the data is labeled with some class 
labels
• E.g., documents are classified into topics, people classified 

according to their income, politicians classified according to 
the political party.

• This is called the “ground truth”

• In this case we want the clusters to be homogeneous
with respect to classes
• Each cluster should contain elements of mostly one class

• Each class should ideally be assigned to a single cluster

• This does not always make sense
• Clustering is not the same as classification

• …but this is what people use most of the time



Confusion matrix

• 𝑛 = number of points

•𝑚𝑖 = points in cluster i

• 𝑐𝑗 = points in class j

• 𝑛𝑖𝑗= points in cluster i

coming from class j

• 𝑝𝑖𝑗 = 𝑛𝑖𝑗/𝑚𝑖= probability 

of element from cluster i

to be assigned in class j

Class 1 Class 2 Class 3

Cluster 1 𝑛11 𝑛12 𝑛13 𝑚1

Cluster 2 𝑛21 𝑛22 𝑛23 𝑚2

Cluster 3 𝑛31 𝑛32 𝑛33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛

Class 1 Class 2 Class 3

Cluster 1 𝑝11 𝑝12 𝑝13 𝑚1

Cluster 2 𝑝21 𝑝22 𝑝23 𝑚2

Cluster 3 𝑝31 𝑝32 𝑝33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛



Measures

• Entropy:

• Of a cluster i: 𝑒𝑖 = − 𝑗=1
𝐿 𝑝𝑖𝑗 log 𝑝𝑖𝑗

• Highest when uniform, zero when single class

• Of a clustering: 𝑒 =  𝑖=1
𝐾 𝑚𝑖

𝑛
𝑒𝑖

• Purity:

• Of a cluster i: 𝑝𝑖 = max
𝑗
𝑝𝑖𝑗

• Of a clustering: 𝑝(𝐶) =  𝑖=1
𝐾 𝑚𝑖

𝑛
𝑝𝑖

Class 1 Class 2 Class 3

Cluster 1 𝑝11 𝑝12 𝑝13 𝑚1

Cluster 2 𝑝21 𝑝22 𝑝23 𝑚2

Cluster 3 𝑝31 𝑝32 𝑝33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛



Measures

• Precision:

• Of cluster i with respect to class j: 𝑃𝑟𝑒𝑐 𝑖, 𝑗 = 𝑝𝑖𝑗

• Recall:

• Of cluster i with respect to class j: 𝑅𝑒𝑐 𝑖, 𝑗 =
𝑛𝑖𝑗

𝑐𝑗

• F-measure:

• Harmonic Mean of Precision and Recall:

𝐹 𝑖, 𝑗 =
2 ∗ 𝑃𝑟𝑒𝑐 𝑖, 𝑗 ∗ 𝑅𝑒𝑐(𝑖, 𝑗)

𝑃𝑟𝑒𝑐 𝑖, 𝑗 + 𝑅𝑒𝑐(𝑖, 𝑗)

Class 1 Class 2 Class 3

Cluster 1 𝑝11 𝑝12 𝑝13 𝑚1

Cluster 2 𝑝21 𝑝22 𝑝23 𝑚2

Cluster 3 𝑝31 𝑝32 𝑝33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛



Measures

• Assign to cluster 𝑖 the class 𝑘𝑖 such that 𝑘𝑖 = argmax
𝑗
𝑛𝑖𝑗

• Precision:

• Of cluster i: 𝑃𝑟𝑒𝑐 𝑖 =
𝑛𝑖𝑘𝑖
𝑚𝑖

• Of the clustering: 𝑃𝑟𝑒𝑐(𝐶) =  𝑖
𝑚𝑖

𝑛
𝑃𝑟𝑒𝑐(𝑖)

• Recall:

• Of cluster i: 𝑅𝑒𝑐 𝑖 =
𝑛𝑖𝑘𝑖
𝑐𝑘𝑖

• Of the clustering: 𝑅𝑒𝑐 𝐶 =  𝑖
𝑚𝑖

𝑛
𝑅𝑒𝑐(𝑖)

• F-measure:
• Harmonic Mean of Precision and Recall

Class 1 Class 2 Class 3

Cluster 1 𝑛11 𝑛12 𝑛13 𝑚1

Cluster 2 𝑛21 𝑛22 𝑛23 𝑚2

Cluster 3 𝑛31 𝑛32 𝑛33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛

Precision/Recall for clusters and clusterings



Good and bad clustering

Class 1 Class 2 Class 3

Cluster 1 20 35 35 90

Cluster 2 30 42 38 110

Cluster 3 38 35 27 100

100 100 100 300

Class 1 Class 2 Class 3

Cluster 1 2 3 85 90

Cluster 2 90 12 8 110

Cluster 3 8 85 7 100

100 100 100 300

Purity: (0.94, 0.81, 0.85) 

– overall 0.86

Precision: (0.94, 0.81, 0.85) 

– overall 0.86

Recall: (0.85, 0.9, 0.85)  

- overall 0.87 

Purity: (0.38, 0.38, 0.38) 

– overall 0.38

Precision: (0.38, 0.38, 0.38) 

– overall 0.38

Recall: (0.35, 0.42, 0.38) 

– overall 0.39 



Another clustering

Class 1 Class 2 Class 3

Cluster 1 0 0 35 35

Cluster 2 50 77 38 165

Cluster 3 38 35 27 100

100 100 100 300

Cluster 1: 

Purity: 1

Precision: 1

Recall: 0.35  



External Measures of Cluster Validity: 

Entropy and Purity



“The validation of clustering structures is the most 
difficult and frustrating part of cluster analysis. 

Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only to 
those true believers who have experience and 
great courage.”

Algorithms for Clustering Data, Jain and Dubes

Final Comment on Cluster Validity


