DATA MINING LECTURE 2

What is data?
The data mining pipeline

What is Data Mining?

- Data mining is the use of efficient techniques for the analysis of very large collections of data and the extraction of useful and possibly unexpected patterns in data.
- "Data mining is the analysis of (often large) observational data sets to find unsuspected relationships and to summarize the data in novel ways that are both understandable and useful to the data analyst" (Hand, Mannila, Smyth)
- "Data mining is the discovery of models for data" (Rajaraman, Ullman)
- We can have the following types of models
- Models that explain the data (e.g., a single function)
- Models that predict the future data instances.
- Models that summarize the data
- Models the extract the most prominent features of the data.

Why do we need data mining?

- Really huge amounts of complex data generated from multiple sources and interconnected in different ways
- Scientific data from different disciplines
- Weather, astronomy, physics, biological microarrays, genomics
- Huge text collections
- The Web, scientific articles, news, tweets, facebook postings.
- Transaction data
- Retail store records, credit card records
- Behavioral data
- Mobile phone data, query logs, browsing behavior, ad clicks
- Networked data
- The Web, Social Networks, IM networks, email network, biological networks.
- All these types of data can be combined in many ways
- Facebook has a network, text, images, user behavior, ad transactions.
- We need to analyze this data to extract knowledge
- Knowledge can be used for commercial or scientific purposes.
- Our solutions should scale to the size of the data

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
- Examples: name, date of birth, height, occupation.
- Attribute is also known as variable, field, characteristic, or feature
- For each object the attributes take some values.
- The collection of attribute-value pairs describes a specific object
- Object is also known as record, point, case, sample, entity, or instance

Attributes

Objects $\left\{\right.$| Tid | Refund | Marital | $\begin{array}{l}\text { Taxable } \\ \text { Income }\end{array}$ | | Cheat |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Yes | Single | 125 K | No | |
| 2 | No | Married | 100 K | No | |
| 3 | No | Single | 70 K | No | |
| 4 | Yes | Married | 120 K | No | |
| 5 | No | Divorced | 95 K | Yes | |
| 6 | No | Married | 60 K | No | |
| 7 | Yes | Divorced | 220 K | No | |
| 8 | No | Single | 85 K | Yes | |
| 9 | No | Married | 75 K | No | |
| 10 | No | Single | 90 K | Yes | |

Size (n): Number of objects
Dimensionality (d): Number of attributes Sparsity: Number of populated object-attribute pairs

Types of Attributes

- There are different types of attributes
- Numeric
- Examples: dates, temperature, time, length, value, count.
- Discrete (counts) vs Continuous (temperature)
- Special case: Binary/Boolean attributes (yes/no, exists/not exists)
- Categorical
- Examples: eye color, zip codes, strings, rankings (e.g, good, fair, bad), height in \{tall, medium, short\}
- Nominal (no order or comparison) vs Ordinal (order but not comparable)

Numeric Relational Data

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points/vectors in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an n-by-d data matrix, where there are n rows, one for each object, and d columns, one for each attribute

Temperature	Humidity	Pressure
30	0.8	90
32	0.5	80
24	0.3	95

Numeric data

- Thinking of numeric data as points or vectors is very convenient
- For small dimensions we can plot the data
- We can use geometric analogues to define concepts like distance or similarity
- We can use linear algebra to process the data matrix

Categorical Relational Data

- Data that consists of a collection of records, each of which consists of a fixed set of categorical attributes

ID Number	Zip Code	Marital Status	Income Bracket
1129842	45221	Single	High
2342345	45223	Married	Low
1234542	45221	Divorced	High
1243535	45224	Single	Medium

Mixed Relational Data

- Data that consists of a collection of records, each of which consists of a fixed set of both numeric and categorical attributes

ID Number	Zip Code	Age	Marital Status	Income	Income Bracket
1129842	45221	55	Single	250000	High
2342345	45223	25	Married	30000	Low
1234542	45221	45	Divorced	200000	High
1243535	45224	43	Single	150000	Medium

Mixed Relational Data

- Data that consists of a collection of records, each of which consists of a fixed set of both numeric and categorical attributes

ID Number	Zip Code	Age	Marital Status	Income	Income Bracket	Refund
1129842	45221	55	Single	250000	High	No
2342345	45223	25	Married	30000	Low	Yes
1234542	45221	45	Divorced	200000	High	No
1243535	45224	43	Single	150000	Medium	No

Mixed Relational Data

- Data that consists of a collection of records, each of which consists of a fixed set of both numeric and categorical attributes

ID Number	Zip Code	Age	Marital Status	Income	Income Bracket	Refund
1129842	45221	55	Single	250000	High	0
2342345	45223	25	Married	30000	Low	1
1234542	45221	45	Divorced	200000	High	0
1243535	45224	43	Single	150000	Medium	0

Boolean attributes can be thought as both numeric and categorical When appearing together with other attributes they make more sense as categorical They are often represented as numeric though

Mixed Relational Data

- Some times it is convenient to represent categorical attributes as boolean.

ID	Zip 45221	Zip 45223	Zip 45224	Age	Single	Married	Divorced	Income	Refund
1129842	1	0	0	55	0	0	0	250000	0
2342345	0	1	0	25	0	1	0	30000	1
1234542	1	0	0	45	0	0	1	200000	0
1243535	0	0	1	43	0	0	0	150000	0

We can now view the whole vector as numeric

Physical data storage

- Stored in a Relational Database
- Assumes a strict schema and relatively dense data (few missing/Null values)
- Tab or Comma separated files (TSV/CSV), Excel sheets, relational tables
- Assumes a strict schema and relatively dense data (few missing/Null values)
- Flat file with triplets (record id, attribute, attribute value)
- A very flexible data format, allows multiple values for the same attribute (e.g., phone number)
- JSON, XML format
- Standards for data description that are more flexible than relational tables
- There exist parsers for reading such data.

Examples

Comma Separated File

id, Name, Surname, Age, Zip
1 , John, Smith , 25,10021
2 ,Mary, Jones, 50,96107
3,Joe ,Doe, 80,80235

- Can be processed with simple parsers, or loaded to excel or a database

Triple-store

```
1, Name, John
1, Surname, Smith
1, Age, 25
1, Zip, 10021
2, Name, Mary
2, Surname, Jones
2, Age, 50
2, Zip, 96107
3, Name, Joe
3, Surname, Doe
3, Age, 80
3, Zip, 80235
```

- Easy to deal with missing values

Examples

```
```

JSON EXAMPLE - Record of a person

```
```

JSON EXAMPLE - Record of a person
{
{
"firstName": "John",
"firstName": "John",
"lastName": "Smith",
"lastName": "Smith",
"isAlive": true,
"isAlive": true,
"age": 25,
"age": 25,
"address": {
"address": {
"streetAddress": "21 2nd Street",
"streetAddress": "21 2nd Street",
"city": "New York",
"city": "New York",
"state": "NY",
"state": "NY",
"postalCode": "10021-3100"
"postalCode": "10021-3100"
},
},
"phoneNumbers": [
"phoneNumbers": [
{
{
"type": "home",
"type": "home",
"number": "212 555-1234"
"number": "212 555-1234"
},
},
{
{
"type": "office",
"type": "office",
"number": "646 555-4567"
"number": "646 555-4567"
}
}
],
],
"children": [],
"children": [],
"spouse": null
"spouse": null
}

```
```

}

```
```


XML EXAMPLE - Record of a person

```
```

<person>
```
```
<person>
 <firstName>John</firstName>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 <lastName>Smith</lastName>
 <age>25</age>
 <age>25</age>
 <address>
 <address>
 <streetAddress>21 2nd
 <streetAddress>21 2nd
Street</streetAddress>
Street</streetAddress>
 <city>New York</city>
 <city>New York</city>
 <state>NY</state>
 <state>NY</state>
 <postalCode>10021</postalCode>
 <postalCode>10021</postalCode>
 </address>
 </address>
 <phoneNumbers>
 <phoneNumbers>
 <phoneNumber>
 <phoneNumber>
 <type>home</type>
 <type>home</type>
 <number>212 555-1234</number>
 <number>212 555-1234</number>
 </phoneNumber>
 </phoneNumber>
 <phoneNumber>
 <phoneNumber>
 <type>fax</type>
 <type>fax</type>
 <number>646 555-4567</number>
 <number>646 555-4567</number>
 </phoneNumber>
 </phoneNumber>
 </phoneNumbers>
 </phoneNumbers>
 <gender>
 <gender>
 <type>male</type>
 <type>male</type>
 </gender>
 </gender>
</person>
```
```
</person>
```
```


Set data

- Each record is a set of items from a space of possible items
- Example: Transaction data
- Also called market-basket data

TID	Items
$\mathbf{1}$	Bread, Coke, Milk
2	Beer, Bread
$\mathbf{3}$	Beer, Coke, Diaper, Milk
$\mathbf{4}$	Beer, Bread, Diaper, Milk
$\mathbf{5}$	Coke, Diaper, Milk

Set data

- Each record is a set of items from a space of possible items
- Example: Document data
- Also called bag-of-words representation

Doc Id	Words
1	the, dog, followed, the, cat
2	the, cat, chased, the, cat
3	the, man, walked, the, dog

Vector representation of market-basket data

- Market-basket data can be represented, or thought of, as numeric vector data
- The vector is defined over the set of all possible items
- The values are binary (the item appears or not in the set)

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
$\mathbf{3}$	Beer, Coke, Diaper, Milk
$\mathbf{4}$	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

TID		$\begin{aligned} & 9 \\ & 0 \\ & \hline 0 \end{aligned}$	关	¢	-
1	1	1	1	0	0
2	1	0	0	1	0
3	0	1	1	1	1
4	1	0	1	1	1
5	0	1	1	0	1

Sparsity: Most entries are zero. Most baskets contain few items

Vector representation of document data

- Document data can be represented, or thought of, as numeric vector data
- The vector is defined over the set of all possible words
- The values are the counts (number of times a word appears in the document)

Doc Id	Words
1	the, dog, follows, the, cat
2	the, cat, chases, the, cat
3	the, man, walks, the, dog

$\begin{aligned} & \text { Doc } \\ & \text { Id } \end{aligned}$	$\stackrel{9}{ \pm}$	$\begin{aligned} & \text { 응 } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \text { ㅇ } \\ & \hline \overline{0} \end{aligned}$	$\stackrel{\widetilde{8}}{8}$	$\begin{aligned} & \mathscr{4} \\ & \$ \\ & 0 \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & \frac{\mathrm{C}}{\overline{\mathrm{E}}} \\ & \end{aligned}$	9 0 0
1	2	1	1	1	0	0	0
2	2	0	0	2	1	0	0
3	1	1	0	0	0	1	1

Sparsity: Most entries are zero. Most documents contain few of the words

Physical data storage

- Usually set data is stored in flat files
 - One line per set

```
0}11223\mp@code{4}
30}313
33 34 35
36}37
38}394474
38 39 48 49 50 51 52 53 54 55 56 57 58
32 41 59 60 61 62
3 3948
```

- I heard so many good things about this place so I was pretty juiced to try it. I'm from Cali and I heard Shake Shack is comparable to IN-N-OUT and I gotta say, Shake Shake wins hands down. Surprisingly, the line was short and we waited about 10 MIN. to order. I ordered a regular cheeseburger, fries and a black/white shake. So yummerz. I love the location too! It's in the middle of the city and the view is breathtaking. Definitely one of my favorite places to eat in NYC.
- I'm from California and I must say, Shake Shack is better than IN-N-OUT, all day, err'day.

Ordered Data

- Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCCGTC GAGAAGGGCCCGCCTGGCGGGCG GGGGGAGGCGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC СССТСТGСTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

- Data is a long ordered string

Ordered Data

- Time series
- Sequence of ordered (over "time") numeric values.

Graph Data

Graph data: a collection of entities and their pairwise relationships. Examples:

- Web pages and hyperlinks
- Facebook users and friendships
- The connections between brain neurons

In this case the data consists of pairs:

Who links to whom

Representation

- Adjacency matrix
- Very sparse, very wasteful, but useful conceptually

Representation

- Adjacency list
- Not so easy to maintain

Representation

- List of pairs
- The simplest and most efficient representation
$(1,2)$
$(2,3)$
$(1,3)$
$(3,4)$
$(4,5)$

Types of data: summary

- Numeric data: Each object is a point in a multidimensional space
- Categorical data: Each object is a vector of categorical values
- Set data: Each object is a set of values (with or without counts)
- Sets can also be represented as binary vectors, or vectors of counts
- Ordered sequences: Each object is an ordered sequence of values.
- Graph data: A collection of pairwise relationships

The data analysis pipeline

Mining is not the only step in the analysis process

The data analysis pipeline

- Today there is an abundance of data online
- Facebook, Twitter, Wikipedia, Web, City data, Open data initiatives, etc
- Collecting the data is a separate task
- Customized crawlers, use of public APIs
- Respect of crawling etiquette
- How should we store them?
- In many cases when collecting data we also need to label them
- E.g., how do we identify fraudulent transactions?
- E.g., how do we elicit user preferences?

The data analysis pipeline

- Preprocessing: Real data is large, noisy, incomplete and inconsistent. Data cleaning is required to make sense of the data
- Techniques: Sampling, Dimensionality Reduction, Feature selection.
- The preprocessing step determines the input to the data mining algorithm
- A dirty work, but someone has to do it.
- It is often the most important step for the analysis

The data analysis pipeline

- Post-Processing: Make the data actionable and useful to the user
- Statistical analysis of importance of results
- Visualization

The data analysis pipeline

Mining is not the only step in the analysis process

- Pre- and Post-processing are often data mining tasks as well

Data Quality

- Examples of data quality problems:
- Noise and outliers
- Missing values
- Duplicate data

A mistake or a millionaire?

```
Missing values
```

Inconsistent duplicate entries

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	NULL
8	No	Sinale	85K	Yes
9	No	Married	90K	No
9	No	Single	90K	No

Sampling

- Sampling is the main technique employed for data selection.
- It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Example: What is the average height of a person in Greece?
- We cannot measure the height of everybody
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.
- Example: We have 1 M documents. What fraction of pairs has at least 100 words in common?
- Computing number of common words for all pairs requires 10^{12} comparisons
- Example: What fraction of tweets in a year contain the word "Greece"?
- 500 M tweets per day, if 100 characters on average, 86.5 TB to store all tweets

Sampling ...

- The key principle for effective sampling is the following:
- using a sample will work almost as well as using the entire data sets, if the sample is representative
- A sample is representative if it has approximately the same property (of interest) as the original set of data
- Otherwise we say that the sample introduces some bias
- What happens if we take a sample from the university campus to compute the average height of a person at loannina?

Types of Sampling

- Simple Random Sampling
- There is an equal probability of selecting any particular item
- Sampling without replacement
- As each item is selected, it is removed from the population
- Sampling with replacement
- Objects are not removed from the population as they are selected for the sample.
- In sampling with replacement, the same object can be picked up more than once. This makes analytical computation of probabilities easier
- E.g., we have 100 people, 51 are women $P(W)=0.51$, 49 men $P(M)=0.49$. If I pick two persons what is the probability $P(W, W)$ that both are women?
- Sampling with replacement: $\mathrm{P}(\mathrm{W}, \mathrm{W})=0.51^{2}$
- Sampling without replacement: $P(W, W)=51 / 100$ * $50 / 99$

Types of Sampling

- Stratified sampling
- Split the data into several groups; then draw random samples from each group.
- Ensures that all groups are represented.
- Example 1. I want to understand the differences between legitimate and fraudulent credit card transactions. 0.1% of transactions are fraudulent. What happens if I select 1000 transactions at random?
- I get 1 fraudulent transaction (in expectation). Not enough to draw any conclusions. Solution: sample 1000 legitimate and 1000 fraudulent transactions
Probability Reminder: If an event has probability p of happening and I do N trials, the expected number of times the event occurs is pN
- Example 2. I want to answer the question: Do web pages that are linked have on average more words in common than those that are not? I have 1 M pages, and 1 M links, what happens if I select 10 K pairs of pages at random?
- Most likely I will not get any links. Solution: sample 10K random pairs, and 10K links

Sample Size

8000 points

2000 Points

500 Points

Sample Size

What sample size is necessary to get at least one object from each of $\mathbf{1 0}$ groups.

A data mining challenge

- You have N items and you want to sample one item uniformly at random. How do you do that?
- The items are coming in a stream: you do not know the size of the stream in advance, and there is not enough memory to store the stream in memory. You can only keep a constant amount of items in memory
- How do you sample?
- Hint: if the stream ends after reading k items the last item in the stream should have probability $1 / k$ to be selected.
- Reservoir Sampling:
- Standard interview question for many companies

Reservoir sampling

- Algorithm: With probability $1 / k$ select the k-th item of the stream and replace the previous choice.
- Claim: Every item has probability $1 / \mathrm{N}$ to be selected after N items have been read.
- Proof
-What is the probability of the k-th item to be selected?
- $\frac{1}{k}$
- What is the probability of the n -th item to survive for $\mathrm{N}-\mathrm{n}$ rounds?

$$
\text { - }\left(1-\frac{1}{n+1}\right)\left(1-\frac{1}{n+2}\right) \cdots\left(1-\frac{1}{N}\right)=\frac{1}{N}
$$

Proof by Induction

- We want to show that the probability the k-th item is selected after $n \geq k$ items have been seen is $\frac{1}{n}$
- Induction on the number of steps
- Base of the induction: For $n=k$, the probability that the k-th item is selected is $\frac{1}{k}$
- Inductive Hypothesis: Assume that it is true for N
- Inductive Step: The probability that the item is still selected after $N+1$ items is

$$
\frac{1}{N}\left(1-\frac{1}{N+1}\right)=\frac{1}{N+1}
$$

A data preprocessing example

- Suppose we want to mine the comments/reviews of people on Yelp or Foursquare.

Mining Task

- Collect all reviews for the top-10 most reviewed restaurants in NY in Yelp

```
{"votes": {"funny": 0, "useful": 2, "cool": 1},
    "user_id": "Xqd0DzHaiyRqVH3WRG7hzg",
    "review_id": "15SdjuK7DmYqUAj6rjGowg",
    "stars": 5, "date": "2007-05-17",
    "text": "I heard so many good things about this place so I was pretty juiced to
try it. I'm from Cali and I heard Shake Shack is comparable to IN-N-OUT and I
gotta say, Shake Shake wins hands down. Surprisingly, the line was short and
we waited about 10 MIN. to order. I ordered a regular cheeseburger, fries and a
black/white shake. So yummerz. I love the location too! It's in the middle of
the city and the view is breathtaking. Definitely one of my favorite places to
eat in NYC.",
    "type": "review",
    "business_id": "vcNAWiLM4dR7D2nwwJ7nCA"}
```

- Find few terms that best describe the restaurants. - Algorithm?

Example data

I heard so many good things about this place so I was pretty juiced to try it. I'm from Cali and I heard Shake Shack is comparable to IN-N-OUT and I gotta say, Shake Shake wins hands down. Surprisingly, the line was short and we waited about 10 MIN. to order. I ordered a regular cheeseburger, fries and a black/white shake. So yummerz. I love the location too! It's in the middle of the city and the view is breathtaking. Definitely one of my favorite places to eat in NYC.

I'm from California and I must say, Shake Shack is better than IN-N-OUT, all day, err'day.

Would I pay $\$ 15+$ for a burger here? No. But for the price point they are asking for, this is a definite bang for your buck (though for some, the opportunity cost of waiting in line might outweigh the cost savings) Thankfully, I came in before the lunch swarm descended and I ordered a shake shack (the special burger with the patty + fried cheese \& portabella topping) and a coffee milk shake. The beef patty was very juicy and snugly packed within a soft potato roll. On the downside, I could do without the fried portabella-thingy, as the crispy taste conflicted with the juicy, tender burger. How does shake shack compare with in-and-out or 5 -guys? I say a very close tie, and I think it comes down to personal affliations. On the shake side, true to its name, the shake was well churned and very thick and luscious. The coffee flavor added a tangy taste and complemented the vanilla shake well. Situated in an open space in NYC, the open air sitting allows you to munch on your burger while watching people zoom by around the city. It's an oddly calming experience, or perhaps it was the food coma I was slowly falling into. Great place with food at a great price.

First cut

- Do simple processing to "normalize" the data (remove punctuation, make into lower case, clear white spaces, other?)
- Break into words, keep the most popular words

```
the 27514
and 14508
i 13088
a 12152
to 10672
of }870
ramen 8518
was }827
is 6835
it 6802
in 6402
for 6145
but 5254
that 4540
you 4366
with 4181
pork 4115
my 3841
this 3487
wait 3184
not }301
we 2984
at 2980
on 2922
```

the 16710
and 9139
a 8583
i 8415
to 7003
in 5363
it 4606
of 4365
is 4340
burger 432
was 4070
for 3441
but 3284
shack 3278
shake 3172
that 3005
you 2985
my 2514
line 2389
this 2242
fries 2240
on 2204
are 2142
with 2095

```
the 16010
and 9504
i 7966
to 6524
a 6370
it 5169
of 5159
is 4519
sauce 4020
in 3951
this 3519
was 3453
for 3327
you 3220
that 2769
but 2590
food 2497
on 2350
my }231
cart 2236
chicken 2220
with 2195
rice 2049
so 1825
```

```
the 14241
and }823
a }818
i 7001
to 6727
of 4874
you 4515
it 4308
is 4016
was 3791
pastrami 3748
in 3508
for 3424
sandwich 2928
that 2728
but 2715
on 2247
this 2099
my 2064
with 2040
not 1655
your 1622
so 1610
have 1585
```


First cut

- Do simple processing to "normalize" the data (remove punctuation, make into lower case, clear white spaces, other?)
- Break into words, keep the most popular words

```
the 27514
and 14508
i 13088
a 12152
to 10672
of }870
ramen }851
was }827
is 6835
it 6802
in 6402
for 6145
but 5254
that 4540
you 4366
with 4181
pork 4115
my 3841
this 3487
wait 3184
not }301
we 2984
at 2980
on 2922
```

```
the 16710
```

the 16710
and 9139
and 9139
a 8583
a 8583
i 8415
i 8415
to 7003
to 7003
in 5363
in 5363
it 4606
it 4606
of 4365
of 4365
is 4340
is 4340
burger 432
burger 432
was 4070
was 4070
for 3441
for 3441
but 3284
but 3284
shack }327
shack }327
shake }317
shake }317
that 3005
that 3005
you 2985
you 2985
my 2514
my 2514
line 2389
line 2389
this 2242
this 2242
fries 2240
fries 2240
on 2204
on 2204
are 2142
are 2142
with 2095

```
with 2095
```

```
the 16010
and 9504
i 7966
to 6524
a 6370
it 5169
of 5159
is 4519
sauce 4020
in 3951
this 3519
was 3453
for 3327
you 3220
that 2769
but 2590
food 2.497
```

```
the 14241
and }823
a }818
i 7001
to 6727
of 4874
you 4515
it 4308
is 4016
was }379
pastrami 3748
in 3508
for 3424
sandwich }292
that 2728
but }271
on 2247
```

Most frequent words are stop words

```
cart 2236
chicken }222
with 2195
rice 2049
so 1825
```

not 1655
your 1622
so 1610
have 1585

Second cut

- Remove stop words

- Stop-word lists can be found online.
a, about, above, after, again, against, all, am, an, and, any, are, aren't, as, at, be, be cause, been, before, being, below, between, both, but, by, can't, cannot, could, could n't,did, didn't,do,does, doesn't,doing, don't,down, during,each,few, for, from, f urther, had,hadn't,has,hasn't,have, haven't,having, he, he'd,he'll, he's,her, he re,here's,hers,herself,him,himself,his,how,how's,i,i'd,i'll,i'm,i've,if,in , into,is,isn't,it,it's,its,itself,let's,me,more,most,mustn't,my,myself,no, nor, not, of,off, on, once, only, or, other, ought, our, ours, ourselves, out, over, own , same, shan't,she,she'd,she'll,she's,should, shouldn't, so, some, such, than, tha t,that's, the, their, theirs, them, themselves, then, there, there's, these, they, th ey'd,they'll, they're, they've, this, those, through, to, too, under, until, up, very , was,wasn't,we,we'd,we'll,we're,we've, were, weren't, what, what's, when, when's , where, where's,which,while, who, who's,whom,why,why's,with, won't,would, would n't,you, you'd, you'll, you're, you've, your, yours, yourself, yourselves,

Second cut

- Remove stop words
 - Stop-word lists can be found online.

```
ramen 8572
pork 4152
wait 3195
good 2867
place 2361
noodles 2279
ippudo 2261
buns 2251
broth 2041
like 1902
just 1896
get 1641
time 1613
one 1460
really 1437
go 1366
food 1296
bowl }127
can 1256
great 1172
best 1167
```

```
burger 4340
```

burger 4340
shack }329
shack }329
shake 3221
shake 3221
line 2397
line 2397
fries 2260
fries 2260
good 1920
good 1920
burgers 1643
burgers 1643
wait 1508
wait 1508
just 1412
just 1412
cheese 1307
cheese 1307
like 1204
like 1204
food 1175
food 1175
get }116
get }116
place 1159
place 1159
one 1118
one 1118
long 1013
long 1013
go 995
go 995
time 951
time 951
park 887
park 887
can 860
can 860
best }84

```
best }84
```

```
sauce 4023
food 2507
cart 2239
chicken 2238
rice 2052
hot 1835
white 1782
line 1755
good 1629
lamb }142
halal 1343
just 1338
get }133
one 1222
like 1096
place 1052
go 965
can }87
night 832
time }79
long 792
people 790
```

```
pastrami 3782
sandwich 2934
place 1480
good 1341
get 1251
katz's 1223
just 1214
like 1207
meat }116
one 1071
deli 984
best 965
go 961
ticket 955
food 896
sandwiches }81
can }81
beef }76
order }72
pickles }69
time 662
```


Second cut

- Remove stop words

- Stop-word lists can be found online.

ramen 8572	burger 4340	sauce 4023	pastrami 3782
pork 4152	shack 3291	food 2507	sandwich 2934
wait 3195	shake 3221	cart 2239	place 1480
good 2867	line 2397	chicken 2238	good 1341
place 2361	fries 2260	rice 2052	get 1251
noodles 2279	good 1920	hot 1835	katz's 1223
ippudo 2261	burgers 1643	white 1782	just 1214
buns 2251	wait 1508	line 1755	like 1207
broth 2041	just 1412	good 1629	meat 1168
like 1902	cheese 1307	lamb 1422	one 1071
just 1896	like 1204	halal 1343	deli 984
get 1641	food 1175	just 1338	best 965
time 1613	get 1162	get 1332	go 961
one 1460	place 1159	one 1222	ticket 955
really 1437	one 1118	like 1096	food 896
go 1366	1~n~1012	-1...-1nen	
food 1296 bowl 1272	Commonly used words in reviews, not so interesting		
can 1256	park 887	night 832	order 720
great 1172	can 860	time 794	pickles 699
best 1167	best 849	long 792	time 662

IDF

- Important words are the ones that are unique to the document (differentiating) compared to the rest of the collection
- All reviews use the word "like". This is not interesting
- We want the words that characterize the specific restaurant
- Document Frequency $D F(w)$: fraction of documents that contain word w.

$$
D F(w)=\frac{D(w)}{D}
$$

$D(w)$: num of docs that contain word w
D : total number of documents

- Inverse Document Frequency IDF (w):

$$
\operatorname{IDF}(w)=\log \left(\frac{1}{D F(w)}\right)
$$

- Maximum when unique to one document : $\operatorname{IDF}(w)=\log (D)$
- Minimum when the word is common to all documents: $\operatorname{IDF}(w)=0$

TF-IDF

- The words that are best for describing a document are the ones that are important for the document, but also unique to the document.
- TF (w,d): term frequency of word w in document d
- Number of times that the word appears in the document
- Natural measure of importance of the word for the document
- IDF(w): inverse document frequency
- Natural measure of the uniqueness of the word w
- $\operatorname{TF}-\operatorname{IDF}(\mathrm{w}, \mathrm{d})=\operatorname{TF}(\mathrm{w}, \mathrm{d}) \times \operatorname{IDF}(\mathrm{w})$

Third cut

- Ordered by TF-IDF

ramen 3057.4176194 akamaru 2353.24196 noodles 1579.68242 broth 1414.7133955 miso 1252.60629058 hirata 709.1962086 hakata 591.7643688 shiromaru 587.1591 noodle 581.8446147 tonkotsu 529.59457 ippudo 504.5275695 buns 502.296134008 ippudo's 453.60926 modern 394.8391629 egg 367.3680056967 shoyu 352.29551922 chashu 347.6903490 karaka 336.1774235 kakuni 276.3102111 ramens 262.4947006 bun 236.5122638036 wasabi 232.3667512 dama 221.048168927 brulee 201.1797390
fries 806.08537330 lamb 985.655290756243 custard 729.607519 halal 686.038812717726 shakes 628.4738038 shroom 515.7790608 burger 457.2646379 crinkle 398.347221
burgers 366.624854 madison 350.939350 shackburger 292.42 'shroom 287.823136 portobello 239.806 custards 211.83782 concrete 195.16992 bun 186.9621782983 milkshakes 174.996 concretes 165.7861 portabello 163.483 shack's 159.334353 patty 152.22603588 ss 149.66803104461 patties 148.068287 cam 105.9496067806 milkshake 103.9720 lamps 99.011158998

53rd 375.685771863491 gyro 305.809092298788 pita 304.984759446376 cart 235.902194557873 platter 139.45990308004 chicken/lamb 135.852520 carts 120.274374158359 hilton 84.2987473324223 lamb/chicken 82.8930633 yogurt 70.0078652365545 52nd 67.5963923222322
6th 60.79301753456589 4 am 55.45177444479565 yellow 54.4470265206673 tzatziki 52.95945713886 lettuce 51.323016802268 sammy's 50.656872045869 sw 50.56685778168933 platters 49.90659700031 falafel 49.479699521204 sober 49.2211422635451 moma 48.1589121730374
pastrami 1931.942509082986 katz's 1120.62356508209 4 rye $1004.28925735888 \quad 2$ corned 906.1135447003992 pickles 640.4872215800354 reuben 515.7790608306661 matzo 430.5834123898871 sally 428.1104847074712 harry 226.3238107729164 mustard 216.0792388530146 cutter $209.535243462458 \quad 1$ carnegie 198.655512713779 3 katz 194.3878444466097 knish 184.206807439524 1 sandwiches 181.415707218 8 brisket 131.9458653898784 fries 131.6130543133927 salami 127.621117258549 3 knishes $124.339595021678 \quad 1$ delicatessen 117.4889676072 deli's 117.4318397426961 carver 115.129254649702 1 brown's 109.441778045519 2 matzoh 108.22149937072 1

Third cut

- TF-IDF takes care of stop words as well
- We do not need to remove the stopwords since they will get IDF(w) $=0$

Decisions, decisions...

- When mining real data you often need to make some decisions
-What data should we collect? How much? For how long?
- Should we throw out some data that does not seem to be useful?

An actual review

AAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAA AAA

- Too frequent data (stop words), too infrequent (errors?), erroneous data, missing data, outliers
- How should we weight the different pieces of data?
- Most decisions are application dependent. Some information may be lost but we can usually live with it (most of the times)
- We should make our decisions clear since they affect our findings.
- Dealing with real data is hard...

Normalization

- In many cases it is important to normalize the data rather than use the raw values
- In this data, different attributes take very different range of values. For distance/similarity the small values will disappear
- We need to make them comparable

Temperature	Humidity	Pressure
30	0.8	90
32	0.5	80
24	0.3	95

Normalization

- Divide (the values of a column) by the maximum value for each attribute
- Brings everything in the $[0,1]$ range

Temperature	Humidity	Pressure
0.9375	1	0.9473
1	0.625	0.8421
0.75	0.375	1

new value $=$ old value $/$ max value in the column

30	0.8	90
32	0.5	80
24	0.3	95

Normalization

- Subtract the minimum value and divide by the difference of the maximum value and minimum value for each attribute
- Brings everything in the $[0,1]$ range, minimum is zero

Temperature	Humidity	Pressure
0.75	1	0.33
1	0.6	0
0	0	1

new value $=($ old value $-\min$ column value $) /(\max$ col. value $-\min c o l$. value $)$

Temperature	Humidity	Pressure
30	0.8	90
32	0.5	80
24	0.3	95

Normalization

- Are these documents similar?

	Word 1	Word 2	Word 3
Doc 1	28	50	22
Doc 2	12	25	13

Normalization

- Are these documents similar?
- Divide by the sum of values for each document (row in the matrix)
- Transform a vector into a distribution

	Word 1	Word 2	Word 3
Doc 1	0.28	0.5	0.22
Doc 2	0.24	0.5	0.26

new value $=$ old value $/ \Sigma$ old values in the row

	Word 1	Word 2	Word 3
Doc 1	28	50	22
Doc 2	12	25	13

Normalization

- Do these two users rate movies in a similar way?

	Movie 1	Movie 2	Movie 3
User 1	1	2	3
User 2	2	3	4

Normalization

- Do these two users rate movies in a similar way?
- Subtract the mean value for each user (row)
- Captures the deviation from the average behavior

	Movie 1	Movie 2	Movie 3
User 1	-1	0	+1
User 2	-1	0	+1

new value = (old value - mean row value) [/ (max row value -min row value)]

	Movie 1	Movie 2	Movie 3
User 1	1	2	3
User 2	2	3	4

Exploratory analysis of data

- Summary statistics: numbers that summarize properties of the data
- Summarized properties include frequency, location and spread
- Examples: location-mean
spread - standard deviation
- Most summary statistics can be calculated in a single pass through the data

Frequency and Mode

- The frequency of an attribute value is the percentage of time the value occurs in the data set
- For example, given the attribute 'gender' and a representative population of people, the gender 'female' occurs about 50% of the time.
- The mode of a an attribute is the most frequent attribute value
- The notions of frequency and mode are typically used with categorical data

Example

Tid	Refund	Marital Status	Taxable Income	Cheat				
1	Yes	Single	125K	No	Marital Status			
2	No	Married	100K	No	Single	Married	Divorced	NULL
3	No	Single	70K	No	4	3	2	1
4	Yes	Married	120K	No				
5	No	Divorced	10000K	Yes	Mode: Single			
6	No	NULL	60K	No				
7	Yes	Divorced	220K	NULL				
8	No	Single	85K	Yes				
9	No	Married	90K	No				
10	No	Single	90K	No				

Example

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	10000 K	Yes
6	No	NULL	60 K	No
7	Yes	Divorced	220 K	NULL
8	No	Single	85 K	Yes
9	No	Married	90 K	No
10	No	Single	90 K	No

Marital Status

Single	Married	Divorced	NULL
40%	30%	20%	10%

Example

Tid		Refund	Marital Status	Taxable Income
Cheat				

Marital Status

Single	Married	Divorced
44%	33%	22%

Percentiles

- For continuous data, the notion of a percentile is more useful.

Given an ordinal or continuous attribute x and a number p between 0 and 100, the $p^{\text {th }}$ percentile is a value x_{p} of \times such that $p \%$ of the observed values of x are less or equal than x_{p}.

- For instance, the 80th percentile is the value $x_{80 \%}$ that is greater or equal than 80% of all the values of x we have in our data.

Example

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	10000 K	Yes
6	No	NULL	60 K	No
7	Yes	Divorced	220 K	NULL
8	No	Single	85 K	Yes
9	No	Married	90 K	No
10	No	Single	90 K	No

Taxable Income	
10000 K	
220 K	
125 K	
120 K	$x_{80 \%}=125 \mathrm{~K}$
100 K	
90 K	
90 K	
85 K	
70 K	
60 K	

Measures of Location: Mean and Median

- The mean is the most common measure of the location of a set of points.
- However, the mean is very sensitive to outliers.

$$
\operatorname{mean}(x)=\bar{x}=\frac{1}{m} \sum_{i=1}^{m} x_{i}
$$

$$
\operatorname{median}(x)= \begin{cases}x_{(r+1)} & \text { if } m \text { is odd, i.e., } m=2 r+1 \\ \frac{1}{2}\left(x_{(r)}+x_{(r+1)}\right) & \text { if } m \text { is even, i.e., } m=2 r\end{cases}
$$

- Thus, the median or a trimmed mean is also commonly used.

Example

| Tid | Refund | Marital
 Status | Taxable
 Income | Cheat |
| :--- | :--- | :--- | :--- | :--- | :--- |

Measures of Spread: Range and Variance

- Range is the difference between the max and min

The variance or standard deviation is the most common measure of the spread of a set of points.

$$
\begin{gathered}
\operatorname{var}(x)=\frac{1}{m} \sum_{i=1}^{m}(x-\bar{x})^{2} \\
\sigma(x)=\sqrt{\operatorname{var}(x)}
\end{gathered}
$$

Normal Distribution

- $\left.\phi(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{1}{2}} \frac{(x-\mu}{\sigma}\right)^{2}$

- An important distribution that characterizes many quantities and has a central role in probabilities and statistics.
- Appears also in the central limit theorem
- Fully characterized by the mean μ and standard deviation σ

Not everything is normally distributed

- Plot of number of words with x number of occurrences

- If this was a normal distribution we would not have a frequency as large as 28K

Power-law distribution

- We can understand the distribution of words if we take the log-log plot

The slope of the line gives us the exponent α

- Linear relationship in the log-log space

$$
\begin{gathered}
\log p(x=k)=-a \log k \\
p(x=k)=k^{-a}
\end{gathered}
$$

Power-laws are everywhere

- Incoming and outgoing links of web pages, number of friends in social networks, number of occurrences of words, file sizes, city sizes, income distribution, popularity of products and movies
- Signature of human activity?
- A mechanism that explains everything?
- Rich get richer process

Zipf's law

- Power laws can be detected also by a linear relationship in the log-log space for the rank-frequency plot

- $f(r)$: Frequency of the r-th most frequent word

$$
\begin{gathered}
\log f(r)=-\beta \log r \\
f(r)=r^{-\beta}
\end{gathered}
$$

The importance of correct representation

- Consider the following three plots which are histograms of values. What do you observe? What can you tell of the underlying function?

The importance of correct representation

- Putting all three plots together makes it more clear to see the differences

- Green falls more slowly. Blue and Red seem more or less the same

The importance of correct representation

- Making the plot in log-log space makes the differences more clear

- Green and Blue form straight lines. Red drops exponentially.
- $y=\frac{1}{2 x+\epsilon} \quad \log y \approx-\log x+c$
- $y=\frac{1}{x^{2}+\epsilon} \quad \log y \approx-2 \log x+c$
- $y=2^{-x}+\epsilon \log y \approx-x+c=-10^{\log x}+c$

Linear relationship in log-log means polynomial in linear-linear The slope in the log-log is the exponent of the polynomial

Scatter Plot Array of Iris Attributes

What do you see in these plots?
Class Separation

Post-processing

- Visualization
- The human eye is a powerful analytical tool
- If we visualize the data properly, we can discover patterns and demonstrate trends
- Visualization is the way to present the data so that patterns can be seen
- E.g., histograms and plots are a form of visualization
- There are multiple techniques (a field on its own)

Visualization on a map

- John Snow, London 1854

Figure 1.1: Plotting cholera cases on a map of London

Dimensionality Reduction

- The human eye is limited to processing visualizations in two (at most three) dimensions
- One of the great challenges in visualization is to visualize high-dimensional data into a twodimensional space
- Dimensionality reduction
- Distance preserving embeddings

Charles Minard map

$\mathcal{M a p}$ representing the losses over time of French army troops during the Russian campaign, 1812-1813. Constructed by Charles Joseph Minard, Inspector General of Public Works retired.

Paris, 20 №vember 1869
The number of men present at any given time is represented by the width of the grey fine; one mm. indicates ten thousand men. Figures are also written besides the fines. Grey designates men moving into Russia; black, for those leaving. Sources for the data are the works of messrs. Thiers, Segur, Fezensac, Chambray and the unpublished diary of Jacob. who became an Anny Pharmacist on 28 October. In order to visuafize the arny's losses more clearfy, I fave drawn this as if the units under prince Jerome and Marshall Davoust (temporarily seperated from the main body to go to Minsk and Mikilow, which then joined up with the main army again), had stayed with the army throughout.

Six types of data in one plot: size of army, temperature, direction, location, dates etc

Word Clouds

- A fancy way to visualize a document or collection of documents.

Heatmaps

- Plot a point-to-point similarity matrix using a heatmap:
- Deep red = high values (hot)
- Dark blue = low values (cold)

The clustering structure becomes clear in the heatmap

Heatmaps

- Heatmap (grey scale) of the data matrix
- Document-word frequencies

Before clustering

After clustering

Heatmaps

A very popular way to visualize data

Map created by Mark Graves
http://projects.oregonlive.com/ucc-shooting/gun-deaths.php

Statistical Significance

- When we extract knowledge from a large dataset we need to make sure that what we found is not an artifact of randomness
- E.g., we find that many people buy milk and toilet paper together.
- But many (more) people buy milk and toilet paper independently
- Statistical tests compare the results of an experiment with those generated by a null hypothesis
- E.g., a null hypothesis is that people select items independently.
- A result is interesting if it cannot be produced by randomness.
- An important problem is to define the null hypothesis correctly: What is random?

Meaningfulness of Answers

- A big data-mining risk is that you will "discover" patterns that are meaningless.
- Statisticians call it Bonferroni's principle: (roughly) if you look in more places for interesting patterns than your amount of data will support, you are bound to find crap.
- The Rhine Paradox: a great example of how not to conduct scientific research.

Rhine Paradox - (1)

- Joseph Rhine was a parapsychologist in the 1950's who hypothesized that some people had Extra-Sensory Perception.
- He devised (something like) an experiment where subjects were asked to guess 10 hidden cards red or blue.
- He discovered that almost 1 in 1000 had ESP they were able to get all 10 right!

Rhine Paradox - (2)

- He told these people they had ESP and called them in for another test of the same type.
- Alas, he discovered that almost all of them had lost their ESP.
- Why?
- What did he conclude?
- Answer on next slide.

Rhine Paradox - (3)

- He concluded that you shouldn't tell people they have ESP; it causes them to lose it.

