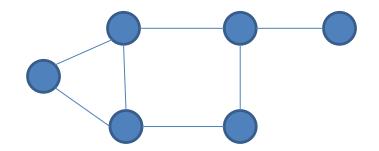
DATA MINING LECTURE 13

Coverage

Approximation Algorithms

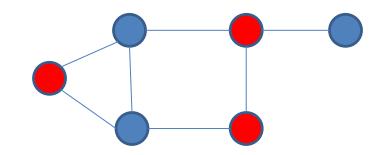
Example

- Promotion campaign on a social network
 - We have a social network as a graph.
 - People are more likely to buy a product if they have a friend who has the product.
 - We want to offer the product for free to some people such that every person in the graph is covered: they have a friend who has the product.
 - We want the number of free products to be as small as possible



Example

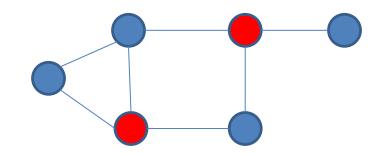
- Promotion campaign on a social network
 - We have a social network as a graph.
 - People are more likely to buy a product if they have a friend who has the product.
 - We want to offer the product for free to some people such that every person in the graph is covered: they have a friend who has the product.
 - We want the number of free products to be as small as possible



One possible selection

Example

- Promotion campaign on a social network
 - We have a social network as a graph.
 - People are more likely to buy a product if they have a friend who has the product.
 - We want to offer the product for free to some people such that every person in the graph is covered: they have a friend who has the product.
 - We want the number of free products to be as small as possible



A better selection

Dominating set

- Our problem is an instance of the dominating set problem
- Dominating Set: Given a graph G = (V, E), a set of vertices D ⊆ V is a dominating set if for each node u in V, either u is in D, or u has a neighbor in D.
- The Dominating Set Problem: Given a graph G = (V, E) find a dominating set of minimum size.

Set Cover

 The dominating set problem is a special case of the Set Cover problem

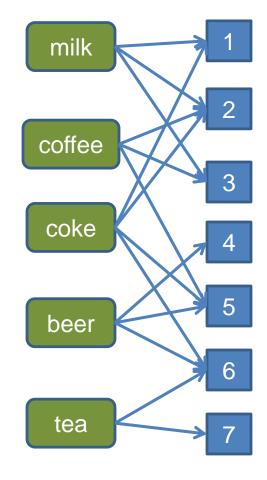
• The Set Cover problem:

- We have a universe of elements $U = \{x_1, ..., x_N\}$
- We have a collection of subsets of U, $S = \{S_1, ..., S_n\}$, such that $\bigcup_i S_i = U$
- We want to find the smallest sub-collection $C \subseteq S$ of S, such that $\bigcup_{S_i \in C} S_i = U$
 - The sets in *C* cover the elements of U

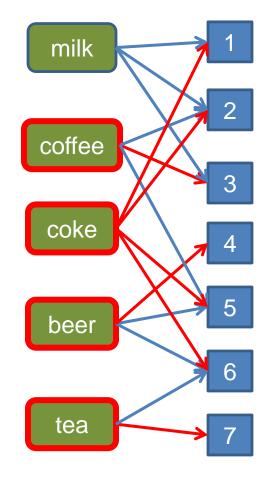
An application of Set Cover

- Suppose that we want to create a catalog (with coupons) to give to customers of a store:
 - We want for every customer, the catalog to contain a product bought by the customer (this is a small store)
- How can we model this as a set cover problem?

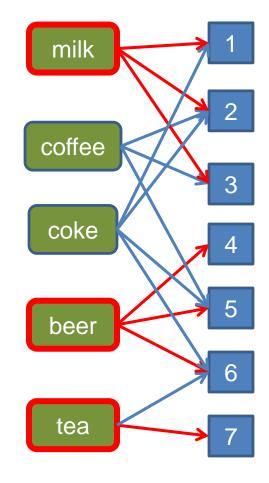
- The universe U of elements is the set of customers of a store.
- Each set corresponds to a
 product p sold in the store:
 S_p = {customers that bought p}
- Set cover: Find the minimum number of products (sets) that cover all the customers (elements of the universe)



- The universe U of elements is the set of customers of a store.
- Each set corresponds to a
 product p sold in the store:
 S_p = {customers that bought p}
- Set cover: Find the minimum number of products (sets) that cover all the customers (elements of the universe)



- The universe U of elements is the set of customers of a store.
- Each set corresponds to a
 product p sold in the store:
 S_p = {customers that bought p}
- Set cover: Find the minimum number of products (sets) that cover all the customers (elements of the universe)



- Dominating Set (or Promotion Campaign) as Set Cover:
 - The universe U is the set of nodes V
 - Each node u defines a set S_u consisting of the node u and all of its neighbors
 - We want the minimum number of sets S_u (nodes) that cover all the nodes in the graph.
- Many more...

Best selection variant

- Suppose that we have a budget K of how big our set cover can be
 - We only have K products to give out for free.
 - We want to cover as many customers as possible.
- Maximum-Coverage Problem: Given a universe of elements *U*, a collection *S* of subsets of *U*, and a budget K, find a sub-collection *C* ⊆ *S* of size at most K, such that the number of covered elements U_{Si∈C} S_i is maximized.

Complexity

- Both the Set Cover and the Maximum Coverage problems are NP-complete
 - What does this mean?
 - Why do we care?
- There is no algorithm that can guarantee finding the best solution in polynomial time
 - Can we find an algorithm that can guarantee to find a solution that is close to the optimal?
 - Approximation Algorithms.

Approximation Algorithms

- For an (combinatorial) optimization problem, where:
 - X is an instance of the problem,
 - OPT(X) is the value of the optimal solution for X,
 - ALG(X) is the value of the solution of an algorithm ALG for X

ALG is a good approximation algorithm if the ratio of OPT(X) and ALG(X) is bounded for all input instances X

- Minimum set cover: input X = (U,S) is the universe of elements and the set collection, OPT(X) is the size of minimum set cover, ALG(X) is the size of the set cover found by an algorithm ALG.
- Maximum coverage: input X = (U,S,K) is the input instance, OPT(X) is the coverage of the optimal algorithm, ALG(X) is the coverage of the set found by an algorithm ALG.

Approximation Algorithms

• For a minimization problem, the algorithm ALG is an α -approximation algorithm, for $\alpha > 1$, if for all input instances X,

 $ALG(X) \leq \alpha OPT(X)$

- In simple words: the algorithm ALG is at most α times worse than the optimal.
- α is the approximation ratio of the algorithm we want α to be as close to 1 as possible
 - Best case: $\alpha = 1 + \epsilon$ and $\epsilon \to 0$, as $n \to \infty$ (e.g., $\epsilon = \frac{1}{n}$)
 - Good case: $\alpha = O(1)$ is a constant (e.g., $\alpha = 2$)
 - OK case: $\alpha = O(\log n)$
 - Bad case $\alpha = 0(n^{\epsilon})$

Approximation Algorithms

- For a maximization problem, the algorithm ALG is an α approximation algorithm, for $\alpha < 1$, if for all input instances X, $ALG(X) \ge \alpha OPT(X)$
- In simple words: the algorithm ALG achieves at least α percent of what the optimal achieves.
- α is the approximation ratio of the algorithm we want α to be as close to 1 as possible
 - Best case: $\alpha = 1 \epsilon$ and $\epsilon \to 0$, as $n \to \infty$ (e.g., $\epsilon = \frac{1}{n}$)
 - Good case: $\alpha = O(1)$ is a constant (e.g., a = 0.5)
 - OK case: $\alpha = O(\frac{1}{\log n})$
 - Bad case $\alpha = 0(n^{-\epsilon})$

A simple approximation ratio for set cover

• Lemma: Any algorithm for set cover has approximation ratio $\alpha = |S_{max}|$, where S_{max} is the set in *S* with the largest cardinality

• Proof:

- $OPT(X) \ge N/|S_{max}| \Rightarrow N \le |S_{max}|OPT(X)$
- $ALG(X) \leq N \leq |S_{max}|OPT(X)$
- This is true for any algorithm.
- Not a good bound since it may be that $|S_{max}| = O(N)$

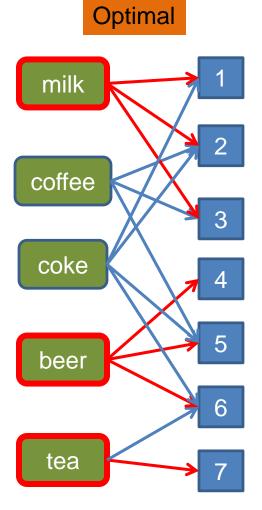
An algorithm for Set Cover

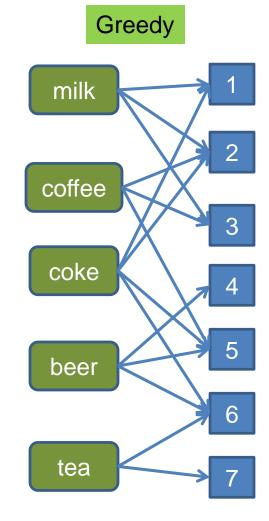
What is a natural algorithm for Set Cover?

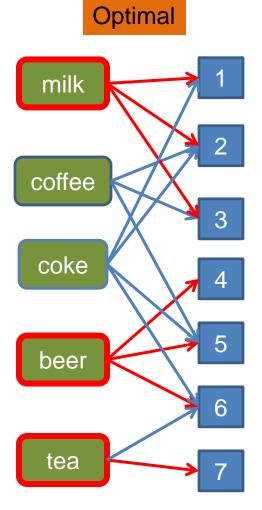
Greedy: each time add to the collection *C* the set
 S_i from *S* that covers the most of the remaining uncovered elements.

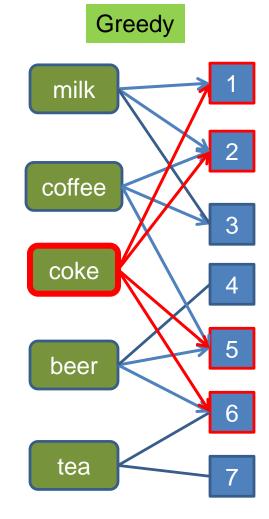
The GREEDY algorithm

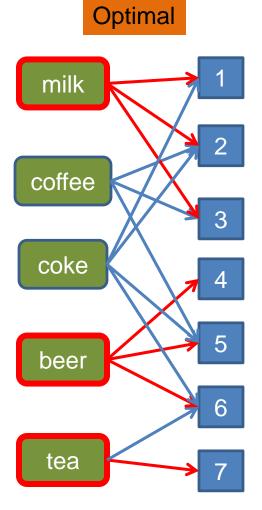
GREEDY(U,S) X = U**C** = {} The number of elements covered by S_i not already while X is not empty do covered by C. For all $S_i \in S$ let $gain(S_i) = |S_i \cap X|$ Let S_* be such that $gain(S_*)$ is maximum $C = C U \{S_*\}$ $X = X \setminus S_*$ $S = S \setminus S_*$

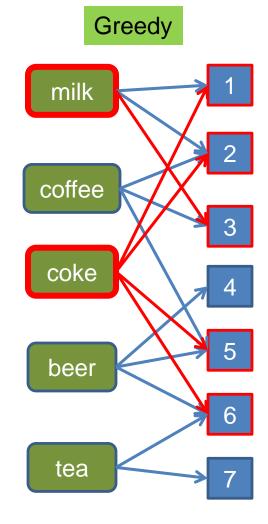


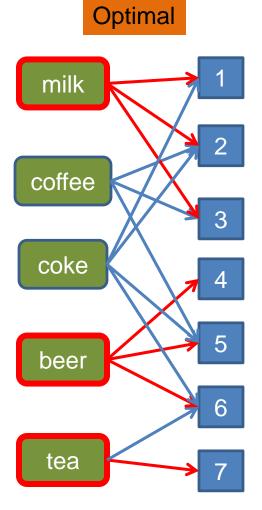


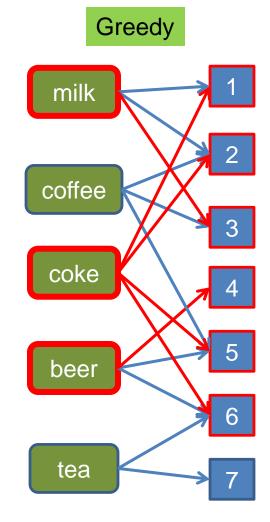


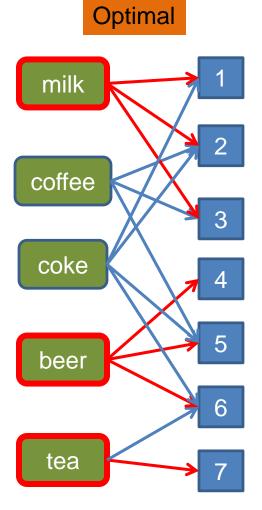


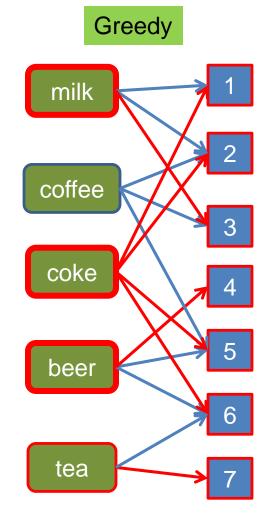


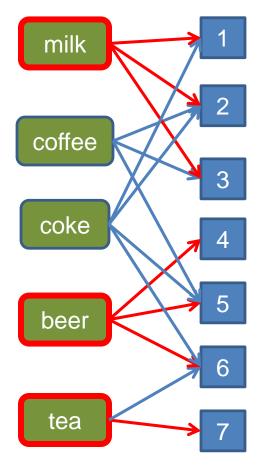




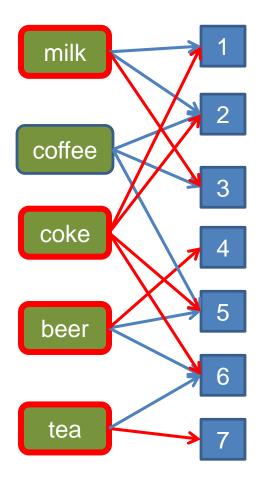








- Adding Coke to the set is useless.
- We need Milk (or Coffee) and Beer to cover all customers



Approximation ratio of GREEDY

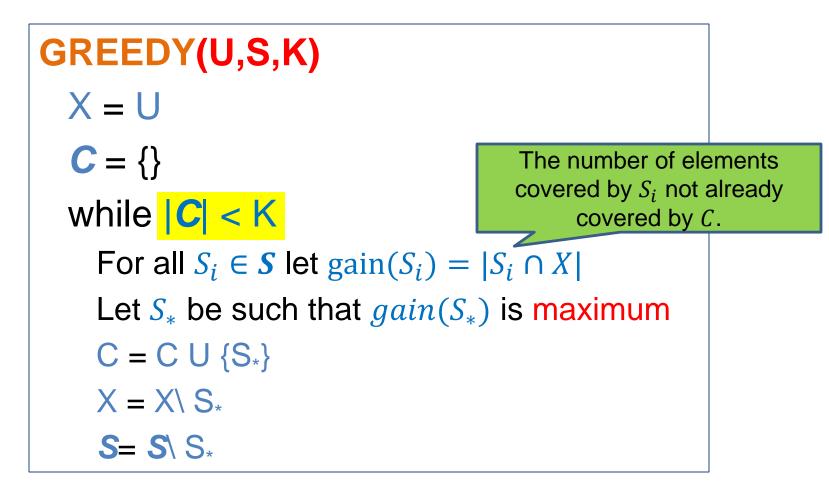
Good news: GREEDY has approximation ratio:

 $\alpha = H(|S_{\max}|) = 1 + \ln|S_{\max}|, \qquad H(n) = \sum_{k=1}^{n} \frac{1}{k}$

 $GREEDY(X) \le (1 + \ln|S_{\max}|)OPT(X)$, for all X

Maximum Coverage

Greedy is also applicable here



Approximation Ratio for Max-K Coverage

• Better news! The GREEDY algorithm has approximation ratio $\alpha = 1 - \frac{1}{e}$

 $GREEDY(X) \ge \left(1 - \frac{1}{e}\right)OPT(X)$, for all X

- (e is the basis of the natural logarithm)
- The coverage of the Greedy solution is at least 63% that of the optimal

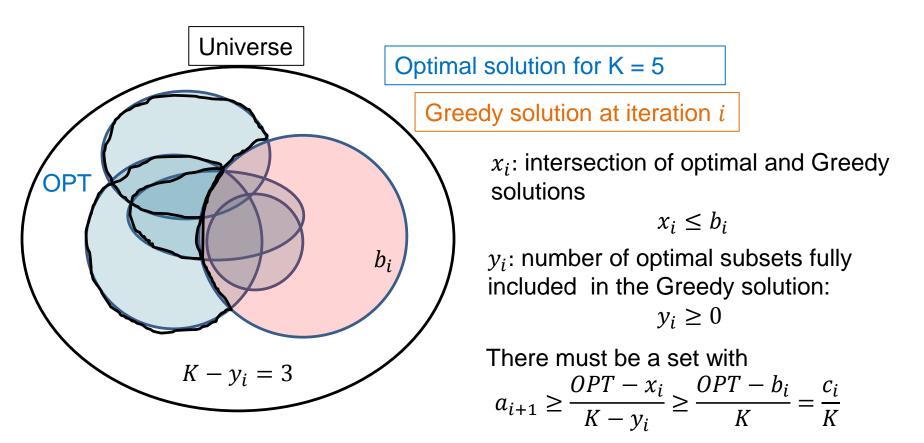
Proof of approximation ratios

- We will now give a proof of the approximation ratios for the SET-COVER and the MAX-COVERAGE
 - We start with MAX-COVERAGE
- Definitions:
 - **OPT**: size of the optimal solution
 - b_i: number of covered elements at iteration i of Greedy
 - a_i : number of newly covered elements at iteration *i*
 - $c_i = OPT b_i$: difference between solution size of Optimal and Greedy solutions at iteration *i*.

• Lemma: $a_{i+1} \ge \frac{c_i}{\kappa}$

• Proof:

- For i = 0, it is simple to see since one of the K sets in the optimal solution has size at least $\frac{OPT}{K}$.
- For larger *i*



• Lemma:
$$c_{i+1} \le \left(1 - \frac{1}{K}\right)^{i+1} OPT$$

- Proof: By induction on *i*.
- Basis of induction: $c_0 \le \left(1 \frac{1}{K}\right) OPT$
 - Use the fact that $c_0 = OPT$, and $b_1 = a_1$
- Inductive Hypothesis: $c_i \leq \left(1 \frac{1}{K}\right)^l OPT$
- Inductive step: $c_{i+1} \le \left(1 \frac{1}{K}\right)^{i+1} OPT$
 - Use the inductive hypothesis and that $b_{i+1} = \sum_{j=1}^{i+1} a_j$ and $c_{i+1} = c_i a_i$

- Theorem: The Greedy algorithm has approximation ratio $\left(1 \frac{1}{e}\right)$
- Proof:

$$c_K \le \left(1 - \frac{1}{K}\right)^K OPT \le \frac{1}{e} OPT$$

• The size of the Greedy solution is b_K

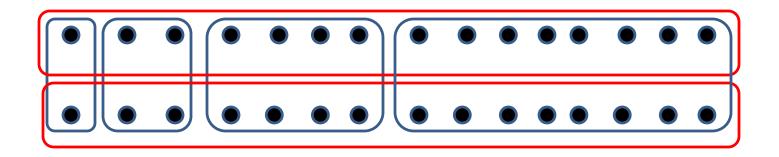
$$b_K = OPT - c_K \ge \left(1 - \frac{1}{e}\right)OPT$$

Proof for SET COVER

- In the case of SET COVER, we have that OPT = n
- Let k* be the size of the optimal solution.
- We know that after *i* iterations: $c_i \leq \left(1 \frac{1}{k^*}\right)^l n$.
- After $t = k^* \ln \frac{n}{k^*}$ iterations $c_t \le k^*$ elements remain to be covered
 - We can cover those in at most k^* iterations
 - Total iterations are at most $k^*(\ln \frac{n}{k^*} + 1) \le k^*(\ln n + 1)$

Lower bound

- The approximation ratio is tight up to a constant
 - Tight means that we can find a counter example with this ratio



- OPT(X) = 2
- $GREEDY(X) = \log N$

•
$$\alpha = \frac{1}{2} \log N$$

Another proof of the approximation ratio for MAX-K COVERAGE

- For a collection of subsets *C*, let $F(C) = |\bigcup_{S_i \in C} S_i|$ be the number of elements that are covered.
- The set function F has two properties:
- F is monotone:

 $F(A) \leq F(B)$ if $A \subseteq B$

- F is submodular: $F(A \cup \{S\}) - F(A) \ge F(B \cup \{S\}) - F(B) \text{ if } A \subseteq B$
- The addition of set *S* to a set of nodes has greater effect (more new covered items) for a smaller set.

• The diminishing returns property

Optimizing submodular functions

• Theorem:

If we want to maximize a monotone and submodular function F under cardinality constraints (size of set at most K),

Then, the greedy algorithm that each time adds to the solution C, the set S that maximizes the gain $F(C \cup \{S\}) - F(C)$ has approximation ratio $\alpha = \left(1 - \frac{1}{\rho}\right)$

True for any monotone and submodular set function!

Other variants of Set Cover

- Hitting Set: select a set of elements so that you hit all the sets (the same as the set cover, reversing the roles)
- Vertex Cover: Select a set of vertices from a graph such that you cover all edges (for every edge an endpoint of the edge is in the set)
 - There is a 2-approximation algorithm
- Edge Cover: Select a set of edges that cover all vertices (for every vertex, there is one edge that has as endpoint this vertex)
 - There is a polynomial algorithm

OVERVIEW

Class Overview

- In this class you saw a set of tools for analyzing data
 - Frequent Itemsets, Association Rules
 - Sketching
 - Recommendation Systems
 - Clustering
 - Singular Value Decomposition
 - Classification
 - Link Analysis Ranking
 - Random Walks
 - Coverage
- All these are useful when trying to make sense of the data. A lot more tools exist.
- I hope that you found this interesting, useful and fun.