
DATA MINING 

LECTURE 13 
Coverage 

 

Approximation Algorithms 



Example 

• Promotion campaign on a social network 
• We have a social network as a graph.  

• People are more likely to buy a product if they have a friend who 
has the product.  

• We want to offer the product for free to some people such that 
every person in the graph is covered: they have a friend who has 
the product. 

• We want the number of free products to be as small as possible 



Example 

One possible selection 

• Promotion campaign on a social network 
• We have a social network as a graph.  

• People are more likely to buy a product if they have a friend who 
has the product.  

• We want to offer the product for free to some people such that 
every person in the graph is covered: they have a friend who has 
the product. 

• We want the number of free products to be as small as possible 



Example 

A better selection 

• Promotion campaign on a social network 
• We have a social network as a graph.  

• People are more likely to buy a product if they have a friend who 
has the product.  

• We want to offer the product for free to some people such that 
every person in the graph is covered: they have a friend who has 
the product. 

• We want the number of free products to be as small as possible 



Dominating set 

• Our problem is an instance of the dominating set 

problem  

 

• Dominating Set: Given a graph 𝐺 = (𝑉, 𝐸), a set 

of vertices 𝐷 ⊆ 𝑉 is a dominating set if  for each 

node u in V, either u is in D, or u has a neighbor 

in D. 

 

• The Dominating Set Problem: Given a graph 

𝐺 = (𝑉, 𝐸) find a dominating set of minimum size. 

 



Set Cover 

• The dominating set problem is a special case of 

the Set Cover problem 

 

• The Set Cover problem: 

• We have a universe of elements 𝑈 = 𝑥1, … , 𝑥𝑁  

• We have a collection of subsets of U, 𝑺 = {𝑆1, … , 𝑆𝑛}, 
such that  𝑆𝑖𝑖 = 𝑈 

• We want to find the smallest sub-collection 𝑪 ⊆ 𝑺 of 𝑺, 
such that  𝑆𝑖 = 𝑈𝑆𝑖∈𝑪

 

• The sets in 𝑪 cover the elements of U 



An application of Set Cover 

• Suppose that we want to create a catalog (with 

coupons) to give to customers of a store: 

• We want for every customer, the catalog to contain a 

product bought by the customer (this is a small store) 

• How can we model this as a set cover problem? 



Applications 

• The universe U of elements is 

the set of customers of a store. 

• Each set corresponds to a 

product p sold in the store:  
𝑆𝑝 = {𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑝} 

• Set cover: Find the minimum 

number of products (sets) that 

cover all the customers 

(elements of the universe) 
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Applications 

• Dominating Set (or Promotion Campaign) as Set 

Cover: 

• The universe U is the set of nodes V 

• Each node 𝑢 defines a set 𝑆𝑢 consisting of the node 𝑢 
and all of its neighbors 

• We want the minimum number of sets 𝑆𝑢 (nodes) that 

cover all the nodes in the graph. 

• Many more… 



Best selection variant 

• Suppose that we have a budget K of how big our 

set cover can be 

• We only have K products to give out for free. 

• We want to cover as many customers as possible. 

 

• Maximum-Coverage Problem: Given a universe 

of elements 𝑈, a collection 𝑺 of subsets of 𝑈, and 

a budget K, find a sub-collection 𝑪 ⊆ 𝑺 of size at 

most K, such that the number of covered 

elements  𝑆𝑖𝑆𝑖∈𝑪
 is maximized. 



Complexity 

• Both the Set Cover and the Maximum Coverage 

problems are NP-complete 

• What does this mean? 

• Why do we care? 

 

• There is no algorithm that can guarantee finding 

the best solution in polynomial time 

• Can we find an algorithm that can guarantee to find a 

solution that is close to the optimal? 

• Approximation Algorithms. 



Approximation Algorithms 

• For an (combinatorial) optimization problem, where:  
• X is an instance of the problem,  

• OPT(X) is the value of the optimal solution for X,  

• ALG(X) is the value of the solution of an algorithm ALG for X 

ALG is a good approximation algorithm if the ratio of OPT(X) and 
ALG(X) is bounded for all input instances X 

 

• Minimum set cover: input X = (U,S) is the universe of elements 
and the set collection, OPT(X) is the size of minimum set cover, 
ALG(X) is the size of the set cover found by an algorithm ALG. 

 

• Maximum coverage: input X = (U,S,K) is the input instance, 
OPT(X) is the coverage of the optimal algorithm, ALG(X) is the 
coverage of the set found by an algorithm ALG. 

 

 



Approximation Algorithms 

• For a minimization problem, the algorithm ALG is an 𝛼-
approximation algorithm, for 𝛼 > 1, if for all input 
instances X,  

𝐴𝐿𝐺 𝑋 ≤ 𝛼𝑂𝑃𝑇 𝑋  

 

• In simple words: the algorithm ALG is at most 𝛼 times 
worse than the optimal. 

 
• 𝛼 is the approximation ratio of the algorithm – we want 𝛼 

to be as close to 1 as possible 

• Best case: 𝛼 = 1 + 𝜖 and 𝜖 → 0, as 𝑛 → ∞ (e.g., 𝜖 =
1

𝑛
)  

• Good case: 𝛼 = 𝑂(1) is a constant (e.g., 𝛼 = 2) 
• OK case: 𝛼 = O(log 𝑛)  
• Bad case 𝛼 = O(𝑛𝜖) 

 

 



Approximation Algorithms 

• For a maximization problem, the algorithm ALG is an 𝛼-
approximation algorithm, for 𝛼 < 1, if for all input instances X,  

𝐴𝐿𝐺 𝑋 ≥ 𝛼𝑂𝑃𝑇 𝑋  

 

• In simple words: the algorithm ALG achieves at least 𝛼 percent 
of what the optimal achieves. 

 

• 𝛼 is the approximation ratio of the algorithm – we want 𝛼 to be 
as close to 1 as possible 

• Best case: 𝛼 = 1 − 𝜖 and 𝜖 → 0, as 𝑛 → ∞(e.g., 𝜖 =
1

𝑛
)  

• Good case: 𝛼 = 𝑂(1) is a constant (e.g., 𝑎 = 0.5) 

• OK case: 𝛼 = 𝑂(
1

log 𝑛
) 

• Bad case 𝛼 = O( 𝑛−𝜖)  

 

 



A simple approximation ratio for set cover 

• Lemma: Any algorithm for set cover has 

approximation ratio 𝛼 =  |𝑆𝑚𝑎𝑥|, where 𝑆𝑚𝑎𝑥 is the set 

in 𝑺 with the largest cardinality  

• Proof: 

• 𝑂𝑃𝑇(𝑋) ≥ 𝑁/|𝑆𝑚𝑎𝑥|  𝑁 ≤  |𝑆𝑚𝑎𝑥|𝑂𝑃𝑇(𝑋) 

• 𝐴𝐿𝐺(𝑋)  ≤  𝑁 ≤  |𝑆𝑚𝑎𝑥|𝑂𝑃𝑇(𝑋) 

 

• This is true for any algorithm. 

• Not a good bound since it may be that 𝑆𝑚𝑎𝑥 = 𝑂 𝑁  



An algorithm for Set Cover 

• What is a natural algorithm for Set Cover? 

 

 
• Greedy: each time add to the collection 𝑪 the set 

𝑆𝑖 from 𝑺 that covers the most of the remaining 

uncovered elements. 



The GREEDY algorithm 

GREEDY(U,S) 

X= U 

C = {} 

while X is not empty do 

For all 𝑆𝑖 ∈ 𝑺 let gain(𝑆𝑖) = |𝑆𝑖 ∩ 𝑋|  

Let 𝑆∗ be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximum 

C = C U {S*} 

X = X\ S* 

S = S\ S* 

The number of elements 

covered by 𝑆𝑖 not already 

covered by 𝐶. 



Greedy is not always optimal 
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Optimal Greedy 
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Greedy is not always optimal 

• Adding Coke to 

the set is 

useless.  

 

• We need Milk 

(or Coffee) and 

Beer to cover 

all customers 
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Approximation ratio of GREEDY 

• Good news: GREEDY has approximation ratio: 

𝛼 =  𝐻 𝑆max = 1 +  ln 𝑆max , 𝐻 𝑛 =  
1

𝑘

𝑛

𝑘=1

 

 

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≤ 1 +  ln 𝑆max 𝑂𝑃𝑇 𝑋 , for all X 

 



Maximum Coverage 

• Greedy is also applicable here 

GREEDY(U,S,K) 

X = U 

C = {} 

while |C| < K  

For all 𝑆𝑖 ∈ 𝑺 let gain(𝑆𝑖) = |𝑆𝑖 ∩ 𝑋|  

Let 𝑆∗ be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximum 

C = C U {S*} 

X = X\ S* 

S= S\ S* 

 

The number of elements 

covered by 𝑆𝑖 not already 

covered by 𝐶. 



Approximation Ratio for Max-K Coverage 

• Better news! The GREEDY algorithm has 

approximation ratio 𝛼 = 1 −
1

𝑒
 

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 𝑋 , for all X 

• (e is the basis of the natural logarithm) 

 

• The coverage of the Greedy solution is at least 

63% that of the optimal 

 

 



Proof of approximation ratios 

• We will now give a proof of the approximation ratios 

for the SET-COVER and the MAX-COVERAGE 

• We start with MAX-COVERAGE 

 

• Definitions: 

• 𝑂𝑃𝑇: size of the optimal solution 

• 𝑏𝑖: number of covered elements at iteration 𝑖 of Greedy 

• 𝑎𝑖: number of newly covered elements at iteration 𝑖 

• 𝑐𝑖 = 𝑂𝑃𝑇 − 𝑏𝑖: difference between solution size of Optimal 

and Greedy solutions at iteration 𝑖. 



• Lemma: 𝑎𝑖+1 ≥
𝑐𝑖

𝐾
 

• Proof: 

• For 𝑖 = 0, it is simple to see since one of the K sets in the optimal 

solution has size at least 
𝑂𝑃𝑇

𝐾
. 

• For larger 𝑖 

Universe 
Optimal solution for K = 5 

Greedy solution at iteration 𝑖 

𝑥𝑖: intersection of optimal and Greedy 

solutions 

𝑥𝑖 ≤ 𝑏𝑖 

𝑦𝑖: number of optimal subsets fully 

included  in the Greedy solution: 

𝑦𝑖 ≥ 0 

There must be a set with  

𝑎𝑖+1 ≥
𝑂𝑃𝑇 − 𝑥𝑖
𝐾 − 𝑦𝑖

≥
𝑂𝑃𝑇 − 𝑏𝑖
𝐾
=
𝑐𝑖
𝐾

 

𝑏𝑖 

OPT 

𝐾 − 𝑦𝑖 = 3 



• Lemma: 𝑐𝑖+1 ≤ 1 −
1

𝐾

𝑖+1
𝑂𝑃𝑇 

 

• Proof: By induction on 𝑖. 

• Basis of induction: 𝑐0 ≤ 1 −
1

𝐾
𝑂𝑃𝑇 

• Use the fact that 𝑐0 = 𝑂𝑃𝑇, and 𝑏1 = 𝑎1 

• Inductive Hypothesis: 𝑐𝑖 ≤ 1 −
1

𝐾

𝑖
𝑂𝑃𝑇 

• Inductive step: 𝑐𝑖+1 ≤ 1 −
1

𝐾

𝑖+1
𝑂𝑃𝑇 

• Use the inductive hypothesis and that 𝑏𝑖+1 =  𝑎𝑗
𝑖+1
𝑗=1  and 

𝑐𝑖+1 = 𝑐𝑖 − 𝑎𝑖 



• Theorem: The Greedy algorithm has 

approximation ratio 1 −
1

𝑒
 

• Proof: 

𝑐𝐾 ≤ 1 −
1

𝐾

𝐾

𝑂𝑃𝑇 ≤
1

𝑒
𝑂𝑃𝑇 

 

• The size of the Greedy solution is 𝑏𝐾 

 

𝑏𝐾 = 𝑂𝑃𝑇 − 𝑐𝐾 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 



Proof for SET COVER 

• In the case of SET COVER, we have that 
𝑂𝑃𝑇 = 𝑛 

• Let 𝑘∗ be the size of the optimal solution. 

 

• We know that after 𝑖 iterations: 𝑐𝑖 ≤ 1 −
1

𝑘∗

𝑖
𝑛.  

• After 𝑡 = 𝑘∗ ln
𝑛

𝑘∗
 iterations 𝑐𝑡 ≤ 𝑘

∗ elements 

remain to be covered 
• We can cover those in at most 𝑘∗ iterations 

• Total iterations are at most 𝑘∗(ln
𝑛

𝑘∗
+ 1) ≤ 𝑘∗(ln 𝑛 + 1) 

 



Lower bound 

• The approximation ratio is tight up to a constant  

• Tight means that we can find a counter example with 

this ratio 

• 𝑂𝑃𝑇(𝑋)  =  2 
• 𝐺𝑅𝐸𝐸𝐷𝑌(𝑋)  = log𝑁 

• 𝛼 =
1

2
log𝑁 



Another proof of the approximation ratio 

for MAX-K COVERAGE 

• For a collection of subsets 𝐶, let 𝐹 𝐶 =  𝑆𝑖𝑆𝑖∈𝑪
 be the 

number of elements that are covered. 

• The set function F has two properties: 

 

• F is monotone: 

𝐹 𝐴 ≤ 𝐹 𝐵  𝑖𝑓 𝐴 ⊆ 𝐵 

 

• F is submodular: 

𝐹 𝐴 ∪ 𝑆 − 𝐹 𝐴 ≥ 𝐹 𝐵 ∪ 𝑆 − 𝐹 𝐵   𝑖𝑓 𝐴 ⊆ 𝐵 

 

• The addition of set 𝑆 to a set of nodes has greater effect 
(more new covered items) for a smaller set. 
• The diminishing returns property 



Optimizing submodular functions 

• Theorem:  

 

If we want to maximize a monotone and submodular 

function F under cardinality constraints (size of set at 

most K),  
 

Then, the greedy algorithm that each time adds to the 

solution 𝑪, the set 𝑆 that maximizes the gain 

𝐹 𝑪 ∪ 𝑆 − 𝐹(𝑪) has approximation ratio 𝛼 =  1 −
1

𝑒
 

 

 

True for any monotone and submodular set function! 



Other variants of Set Cover 

• Hitting Set: select a set of elements so that you hit all 
the sets (the same as the set cover, reversing the 
roles) 

 

• Vertex Cover: Select a set of vertices from a graph 
such that you cover all edges (for every edge an 
endpoint of the edge is in the set) 
• There is a 2-approximation algorithm 

 

• Edge Cover: Select a set of edges that cover all 
vertices (for every vertex, there is one edge that has 
as endpoint this vertex) 
• There is a polynomial algorithm 



OVERVIEW 



Class Overview 

• In this class you saw a set of tools for analyzing data 
• Frequent Itemsets, Association Rules 

• Sketching 

• Recommendation Systems 

• Clustering 

• Singular Value Decomposition 

• Classification 

• Link Analysis Ranking 

• Random Walks 

• Coverage 

• All these are useful when trying to make sense of the 
data. A lot more tools exist. 

• I hope that you found this interesting, useful and fun. 


