
DATA MINING

LECTURE 13
Coverage

Approximation Algorithms

Example

• Promotion campaign on a social network
• We have a social network as a graph.

• People are more likely to buy a product if they have a friend who
has the product.

• We want to offer the product for free to some people such that
every person in the graph is covered: they have a friend who has
the product.

• We want the number of free products to be as small as possible

Example

One possible selection

• Promotion campaign on a social network
• We have a social network as a graph.

• People are more likely to buy a product if they have a friend who
has the product.

• We want to offer the product for free to some people such that
every person in the graph is covered: they have a friend who has
the product.

• We want the number of free products to be as small as possible

Example

A better selection

• Promotion campaign on a social network
• We have a social network as a graph.

• People are more likely to buy a product if they have a friend who
has the product.

• We want to offer the product for free to some people such that
every person in the graph is covered: they have a friend who has
the product.

• We want the number of free products to be as small as possible

Dominating set

• Our problem is an instance of the dominating set

problem

• Dominating Set: Given a graph 𝐺 = (𝑉, 𝐸), a set

of vertices 𝐷 ⊆ 𝑉 is a dominating set if for each

node u in V, either u is in D, or u has a neighbor

in D.

• The Dominating Set Problem: Given a graph

𝐺 = (𝑉, 𝐸) find a dominating set of minimum size.

Set Cover

• The dominating set problem is a special case of

the Set Cover problem

• The Set Cover problem:

• We have a universe of elements 𝑈 = 𝑥1, … , 𝑥𝑁

• We have a collection of subsets of U, 𝑺 = {𝑆1, … , 𝑆𝑛},
such that 𝑆𝑖𝑖 = 𝑈

• We want to find the smallest sub-collection 𝑪 ⊆ 𝑺 of 𝑺,
such that 𝑆𝑖 = 𝑈𝑆𝑖∈𝑪

• The sets in 𝑪 cover the elements of U

An application of Set Cover

• Suppose that we want to create a catalog (with

coupons) to give to customers of a store:

• We want for every customer, the catalog to contain a

product bought by the customer (this is a small store)

• How can we model this as a set cover problem?

Applications

• The universe U of elements is

the set of customers of a store.

• Each set corresponds to a

product p sold in the store:
𝑆𝑝 = {𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑝}

• Set cover: Find the minimum

number of products (sets) that

cover all the customers

(elements of the universe)

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

Applications

• The universe U of elements is

the set of customers of a store.

• Each set corresponds to a

product p sold in the store:
𝑆𝑝 = {𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑝}

• Set cover: Find the minimum

number of products (sets) that

cover all the customers

(elements of the universe)

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

Applications

• The universe U of elements is

the set of customers of a store.

• Each set corresponds to a

product p sold in the store:
𝑆𝑝 = {𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑏𝑜𝑢𝑔ℎ𝑡 𝑝}

• Set cover: Find the minimum

number of products (sets) that

cover all the customers

(elements of the universe)

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

Applications

• Dominating Set (or Promotion Campaign) as Set

Cover:

• The universe U is the set of nodes V

• Each node 𝑢 defines a set 𝑆𝑢 consisting of the node 𝑢
and all of its neighbors

• We want the minimum number of sets 𝑆𝑢 (nodes) that

cover all the nodes in the graph.

• Many more…

Best selection variant

• Suppose that we have a budget K of how big our

set cover can be

• We only have K products to give out for free.

• We want to cover as many customers as possible.

• Maximum-Coverage Problem: Given a universe

of elements 𝑈, a collection 𝑺 of subsets of 𝑈, and

a budget K, find a sub-collection 𝑪 ⊆ 𝑺 of size at

most K, such that the number of covered

elements 𝑆𝑖𝑆𝑖∈𝑪
 is maximized.

Complexity

• Both the Set Cover and the Maximum Coverage

problems are NP-complete

• What does this mean?

• Why do we care?

• There is no algorithm that can guarantee finding

the best solution in polynomial time

• Can we find an algorithm that can guarantee to find a

solution that is close to the optimal?

• Approximation Algorithms.

Approximation Algorithms

• For an (combinatorial) optimization problem, where:
• X is an instance of the problem,

• OPT(X) is the value of the optimal solution for X,

• ALG(X) is the value of the solution of an algorithm ALG for X

ALG is a good approximation algorithm if the ratio of OPT(X) and
ALG(X) is bounded for all input instances X

• Minimum set cover: input X = (U,S) is the universe of elements
and the set collection, OPT(X) is the size of minimum set cover,
ALG(X) is the size of the set cover found by an algorithm ALG.

• Maximum coverage: input X = (U,S,K) is the input instance,
OPT(X) is the coverage of the optimal algorithm, ALG(X) is the
coverage of the set found by an algorithm ALG.

Approximation Algorithms

• For a minimization problem, the algorithm ALG is an 𝛼-
approximation algorithm, for 𝛼 > 1, if for all input
instances X,

𝐴𝐿𝐺 𝑋 ≤ 𝛼𝑂𝑃𝑇 𝑋

• In simple words: the algorithm ALG is at most 𝛼 times
worse than the optimal.

• 𝛼 is the approximation ratio of the algorithm – we want 𝛼

to be as close to 1 as possible

• Best case: 𝛼 = 1 + 𝜖 and 𝜖 → 0, as 𝑛 → ∞ (e.g., 𝜖 =
1

𝑛
)

• Good case: 𝛼 = 𝑂(1) is a constant (e.g., 𝛼 = 2)
• OK case: 𝛼 = O(log 𝑛)
• Bad case 𝛼 = O(𝑛𝜖)

Approximation Algorithms

• For a maximization problem, the algorithm ALG is an 𝛼-
approximation algorithm, for 𝛼 < 1, if for all input instances X,

𝐴𝐿𝐺 𝑋 ≥ 𝛼𝑂𝑃𝑇 𝑋

• In simple words: the algorithm ALG achieves at least 𝛼 percent
of what the optimal achieves.

• 𝛼 is the approximation ratio of the algorithm – we want 𝛼 to be
as close to 1 as possible

• Best case: 𝛼 = 1 − 𝜖 and 𝜖 → 0, as 𝑛 → ∞(e.g., 𝜖 =
1

𝑛
)

• Good case: 𝛼 = 𝑂(1) is a constant (e.g., 𝑎 = 0.5)

• OK case: 𝛼 = 𝑂(
1

log 𝑛
)

• Bad case 𝛼 = O(𝑛−𝜖)

A simple approximation ratio for set cover

• Lemma: Any algorithm for set cover has

approximation ratio 𝛼 = |𝑆𝑚𝑎𝑥|, where 𝑆𝑚𝑎𝑥 is the set

in 𝑺 with the largest cardinality

• Proof:

• 𝑂𝑃𝑇(𝑋) ≥ 𝑁/|𝑆𝑚𝑎𝑥| 𝑁 ≤ |𝑆𝑚𝑎𝑥|𝑂𝑃𝑇(𝑋)

• 𝐴𝐿𝐺(𝑋) ≤ 𝑁 ≤ |𝑆𝑚𝑎𝑥|𝑂𝑃𝑇(𝑋)

• This is true for any algorithm.

• Not a good bound since it may be that 𝑆𝑚𝑎𝑥 = 𝑂 𝑁

An algorithm for Set Cover

• What is a natural algorithm for Set Cover?

• Greedy: each time add to the collection 𝑪 the set

𝑆𝑖 from 𝑺 that covers the most of the remaining

uncovered elements.

The GREEDY algorithm

GREEDY(U,S)

X= U

C = {}

while X is not empty do

For all 𝑆𝑖 ∈ 𝑺 let gain(𝑆𝑖) = |𝑆𝑖 ∩ 𝑋|

Let 𝑆∗ be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximum

C = C U {S*}

X = X\ S*

S = S\ S*

The number of elements

covered by 𝑆𝑖 not already

covered by 𝐶.

Greedy is not always optimal

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

Optimal Greedy

Greedy is not always optimal

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

Optimal Greedy

Greedy is not always optimal

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

Optimal Greedy

Greedy is not always optimal

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

Optimal Greedy

Greedy is not always optimal

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

Optimal Greedy

Greedy is not always optimal

• Adding Coke to

the set is

useless.

• We need Milk

(or Coffee) and

Beer to cover

all customers

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

1

2

3

4
coke

7

6

5
beer

milk

coffee

tea

Approximation ratio of GREEDY

• Good news: GREEDY has approximation ratio:

𝛼 = 𝐻 𝑆max = 1 + ln 𝑆max , 𝐻 𝑛 =
1

𝑘

𝑛

𝑘=1

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≤ 1 + ln 𝑆max 𝑂𝑃𝑇 𝑋 , for all X

Maximum Coverage

• Greedy is also applicable here

GREEDY(U,S,K)

X = U

C = {}

while |C| < K

For all 𝑆𝑖 ∈ 𝑺 let gain(𝑆𝑖) = |𝑆𝑖 ∩ 𝑋|

Let 𝑆∗ be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximum

C = C U {S*}

X = X\ S*

S= S\ S*

The number of elements

covered by 𝑆𝑖 not already

covered by 𝐶.

Approximation Ratio for Max-K Coverage

• Better news! The GREEDY algorithm has

approximation ratio 𝛼 = 1 −
1

𝑒

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 𝑋 , for all X

• (e is the basis of the natural logarithm)

• The coverage of the Greedy solution is at least

63% that of the optimal

Proof of approximation ratios

• We will now give a proof of the approximation ratios

for the SET-COVER and the MAX-COVERAGE

• We start with MAX-COVERAGE

• Definitions:

• 𝑂𝑃𝑇: size of the optimal solution

• 𝑏𝑖: number of covered elements at iteration 𝑖 of Greedy

• 𝑎𝑖: number of newly covered elements at iteration 𝑖

• 𝑐𝑖 = 𝑂𝑃𝑇 − 𝑏𝑖: difference between solution size of Optimal

and Greedy solutions at iteration 𝑖.

• Lemma: 𝑎𝑖+1 ≥
𝑐𝑖

𝐾

• Proof:

• For 𝑖 = 0, it is simple to see since one of the K sets in the optimal

solution has size at least
𝑂𝑃𝑇

𝐾
.

• For larger 𝑖

Universe
Optimal solution for K = 5

Greedy solution at iteration 𝑖

𝑥𝑖: intersection of optimal and Greedy

solutions

𝑥𝑖 ≤ 𝑏𝑖

𝑦𝑖: number of optimal subsets fully

included in the Greedy solution:

𝑦𝑖 ≥ 0

There must be a set with

𝑎𝑖+1 ≥
𝑂𝑃𝑇 − 𝑥𝑖
𝐾 − 𝑦𝑖

≥
𝑂𝑃𝑇 − 𝑏𝑖
𝐾
=
𝑐𝑖
𝐾

𝑏𝑖

OPT

𝐾 − 𝑦𝑖 = 3

• Lemma: 𝑐𝑖+1 ≤ 1 −
1

𝐾

𝑖+1
𝑂𝑃𝑇

• Proof: By induction on 𝑖.

• Basis of induction: 𝑐0 ≤ 1 −
1

𝐾
𝑂𝑃𝑇

• Use the fact that 𝑐0 = 𝑂𝑃𝑇, and 𝑏1 = 𝑎1

• Inductive Hypothesis: 𝑐𝑖 ≤ 1 −
1

𝐾

𝑖
𝑂𝑃𝑇

• Inductive step: 𝑐𝑖+1 ≤ 1 −
1

𝐾

𝑖+1
𝑂𝑃𝑇

• Use the inductive hypothesis and that 𝑏𝑖+1 = 𝑎𝑗
𝑖+1
𝑗=1 and

𝑐𝑖+1 = 𝑐𝑖 − 𝑎𝑖

• Theorem: The Greedy algorithm has

approximation ratio 1 −
1

𝑒

• Proof:

𝑐𝐾 ≤ 1 −
1

𝐾

𝐾

𝑂𝑃𝑇 ≤
1

𝑒
𝑂𝑃𝑇

• The size of the Greedy solution is 𝑏𝐾

𝑏𝐾 = 𝑂𝑃𝑇 − 𝑐𝐾 ≥ 1 −
1

𝑒
𝑂𝑃𝑇

Proof for SET COVER

• In the case of SET COVER, we have that
𝑂𝑃𝑇 = 𝑛

• Let 𝑘∗ be the size of the optimal solution.

• We know that after 𝑖 iterations: 𝑐𝑖 ≤ 1 −
1

𝑘∗

𝑖
𝑛.

• After 𝑡 = 𝑘∗ ln
𝑛

𝑘∗
 iterations 𝑐𝑡 ≤ 𝑘

∗ elements

remain to be covered
• We can cover those in at most 𝑘∗ iterations

• Total iterations are at most 𝑘∗(ln
𝑛

𝑘∗
+ 1) ≤ 𝑘∗(ln 𝑛 + 1)

Lower bound

• The approximation ratio is tight up to a constant

• Tight means that we can find a counter example with

this ratio

• 𝑂𝑃𝑇(𝑋) = 2
• 𝐺𝑅𝐸𝐸𝐷𝑌(𝑋) = log𝑁

• 𝛼 =
1

2
log𝑁

Another proof of the approximation ratio

for MAX-K COVERAGE

• For a collection of subsets 𝐶, let 𝐹 𝐶 = 𝑆𝑖𝑆𝑖∈𝑪
 be the

number of elements that are covered.

• The set function F has two properties:

• F is monotone:

𝐹 𝐴 ≤ 𝐹 𝐵 𝑖𝑓 𝐴 ⊆ 𝐵

• F is submodular:

𝐹 𝐴 ∪ 𝑆 − 𝐹 𝐴 ≥ 𝐹 𝐵 ∪ 𝑆 − 𝐹 𝐵 𝑖𝑓 𝐴 ⊆ 𝐵

• The addition of set 𝑆 to a set of nodes has greater effect
(more new covered items) for a smaller set.
• The diminishing returns property

Optimizing submodular functions

• Theorem:

If we want to maximize a monotone and submodular

function F under cardinality constraints (size of set at

most K),

Then, the greedy algorithm that each time adds to the

solution 𝑪, the set 𝑆 that maximizes the gain

𝐹 𝑪 ∪ 𝑆 − 𝐹(𝑪) has approximation ratio 𝛼 = 1 −
1

𝑒

True for any monotone and submodular set function!

Other variants of Set Cover

• Hitting Set: select a set of elements so that you hit all
the sets (the same as the set cover, reversing the
roles)

• Vertex Cover: Select a set of vertices from a graph
such that you cover all edges (for every edge an
endpoint of the edge is in the set)
• There is a 2-approximation algorithm

• Edge Cover: Select a set of edges that cover all
vertices (for every vertex, there is one edge that has
as endpoint this vertex)
• There is a polynomial algorithm

OVERVIEW

Class Overview

• In this class you saw a set of tools for analyzing data
• Frequent Itemsets, Association Rules

• Sketching

• Recommendation Systems

• Clustering

• Singular Value Decomposition

• Classification

• Link Analysis Ranking

• Random Walks

• Coverage

• All these are useful when trying to make sense of the
data. A lot more tools exist.

• I hope that you found this interesting, useful and fun.

