
DATA MINING 

LECTURE 12 
Community detection in graphs 



Communities 

• Real-life graphs are not random 
• E.g., in a social network people pick their friends based on 

their common interests and activities 

 

• We expect that the nodes in a graph will be 
organized in communities 
• Groups of vertices which probably share common properties 

and/or play similar roles within the graph 

 

• How do we find them? 
• Nodes in communities will be densely connected to each 

other, and sparsely connected with other communities 

• Sounds familiar?  

 



NCAA Football network 
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Nodes: Football 

Teams 

Edges: Games 

played 

Can we identify 

node groups? 

(communities, 

modules, clusters) 
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NCAA conferences 

Nodes: Football 

Teams 

Edges: Games 

played 
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Can we identify 

functional 

modules? 

Nodes: Proteins 

Edges: Physical 

interactions 

Protein-Protein interaction networks 
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Functional modules 

Nodes: Proteins 

Edges: Physical 

interactions 
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Can we identify social 

communities? 

Nodes: Facebook 

Users 

Edges: Friendships 

Stanford Facebook network 
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High school Summer 
internship 

Stanford (Squash) Stanford (Basketball) 

Social communities 

Nodes: Facebook 

Users 

Edges: Friendships 



Community types  

• Overlapping communities vs non-overlapping 

communities 



Non-Overlapping communities 

• Dense connectivity within the community, sparse 

across communities 

Network Adjacency matrix 

Nodes 
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Overlapping communities 



Community detection as clustering 

• In many ways community detection is just 
clustering on graphs. 

• We can apply clustering algorithms on the 
adjacency matrix (e.g., k-means) 

• We can define a distance or similarity measure 
between nodes in the graph and apply other 
algorithms (e.g., hierarchical clustering) 
• Similarity using jaccard similarity on the neighbors sets 

• Distance using shortest paths or random walks. 

• There are also algorithms that are specific to 
graphs 



The Girvan-Newman method 

• Hierarchical divisive method 

• Start with the whole graph 

• Find edges whose removal  “partitions” the graph 

• Repeat with each subgraph until single vertices 

 

Which edge to remove? 



The Girvan-Newman method 

• Select cut-edges (a.k.a. bridge edges): edges 

that when removed they disconnect the graph 

 

 

 

 

 

 

• There may be many of those 
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• Or, more often, there may be none 

 

 

 

 

 

 

 



The Girvan-Newman method 
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• Or, more often, there may be none 

 

 

 

 

 

 

 



Edge importance  

• We need a measure of how important an edge is 

in keeping the graph connected 

• Edge betweenness: Number of shortest paths 

that pass through the edge 



Edge Betweeness 

• Betweeness of edge (𝑎, 𝑏) (𝐵(𝑎, 𝑏)):  
• For each pair of nodes 𝑥, 𝑦 compute the number of shortest paths 

that include (𝑎, 𝑏) 

• There may be multiple shortest paths between 𝑥, 𝑦  (𝑆𝑃(𝑥, 𝑦)). 
Compute the fraction of those that pass through (𝑎, 𝑏) 
• Assumes a unit of traffic flow between (𝑥, 𝑦) 

 

𝐵 𝑎, 𝑏 =  
|𝑆𝑃 𝑥, 𝑦  𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑎, 𝑏 |

|𝑆𝑃 𝑥, 𝑦 |
𝑥,𝑦∈𝑉

 

 

• Betweenness computes the probability of an edge to 
occur on a randomly chosen shortest path between two 
randomly chosen nodes. 

 



Examples 

7x7 = 49 

3x11 = 33 

1 

1x12 = 12 

D 
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b=16 
b=7.5 



The Girvan Newman Algorithm 

• Given an undirected unweighted graph: 

• Repeat until no edges are left: 

• Compute the edge betweeness for all edges 

• Remove the edge with the highest betweeness 

 

• At each step of the algorithm, the connected 

components are the communities 

• Gives a hierarchical decomposition of the graph 

into communities 

 



Girvan Newman method: An example 

Betweenness(7, 8)= 7x7 = 49 

Betweenness(3, 7) = Betweenness(6, 7) = 

Betweenness(8, 9) = Betweenness(8, 12)= 3X11=33 

Betweenness(1, 3) = 1X12=12 
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Girvan-Newman: Example 

23 

Need to re-compute betweenness at every step 

49 
33 

12 
1 



Girvan Newman method: An example 

Betweenness(3,7) = Betweenness(6,7) = 

Betweenness(8,9) = Betweenness(8,12) = 3X4=12 

Betweenness(1, 3) = 1X5=5 
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Girvan Newman method: An example 

Betweenness of every edge = 1 
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Girvan Newman method: An example 
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Girvan-Newman: Example 
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Step 1: Step 2: 

Step 3: Hierarchical network decomposition: 



Another example 

5X5=25 
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Another example 

5X6=30 5X6=30 
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Another example 
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Girvan-Newman: Results 

• Zachary’s Karate club:  

Hierarchical decomposition 
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Girvan-Newman: Results 
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Communities in physics collaborations  



How to Compute Betweenness? 

• Want to compute  betweenness of paths 

starting from node 𝐴 
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Computing Betweenness 

1. Perform a BFS starting from A 

2. Determine the number of shortest path from A to 

each other node 

3. Based on these numbers, determine the amount 

of flow from A to all other nodes that uses each 

edge 
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Initial network 

BFS from A 

Computing Betweenness: step 1 
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Level 1 

Level 3 

Level 2 

Level 4 

Top-down 

Computing Betweenness: step 2 

• Count how many shortest paths from A to a 

specific node 
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Computing Betweeness: Step 3 

• Compute betweenness by working up the tree:  

• For every node there is a unit of flow destined for that 

node that it is divided fractionally to the edges that 

reach that node 

 

Bottom-up 

There is a unit of flow to K that reaches K 

through edges (I,K) and (J,K) 

 

Since there are 3 paths from I to K and 3 

from J, each edge gets ½ of the flow: 

Betweeness ½  



Computing Betweeness: Step 3 

• Compute betweenness by working up the tree:  

• If the node has descendants in the BFS DAG, we also 

need to take into account the flow that passes from that 

node towards the descendants 

Bottom-up 

For node I, there is a unit of flow to I 

from A, but also ½ of flow that passes 

from I towards K (we have computed 

that as the betweeness of edge (I,K)): 

Total flow 3/2  

 

There are 2 paths from F to I and 1 

path from G to I edge (F,I) gets 2/3 of 

the total flow: Betweeness 2/3*3/2 = 1 

 

Edge (G,I) gets 1/3 of the total flow: 

Betweeness 2/3*3/2 = 1 



Computing Betweeness 

• Repeat the process for all nodes and take the 

sum 

 



Example 
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Example 
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Computing Betweenness 

• Issues 

• Scalability 

• Test for connectivity? 

• Re-compute all paths, or only those affected 

• Parallel computation 

• Sampling 

 

42 


