DATA MINING
LECTURE 12

Community detection in graphs




Communities

Real-life graphs are not random

- E.g., In a social network people pick their friends based on
their common interests and activities

We expect that the nodes in a graph will be
organized in communities

- Groups of vertices which probably share common properties
and/or play similar roles within the graph

How do we find them?

- Nodes in communities will be densely connected to each
other, and sparsely connected with other communities

- Sounds familiar?



NCAA Football network
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Protein-Protein interaction networks
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Nodes: Proteins
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Stanford Facebook network
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-
Community types

- OQverlapping communities vs non-overlapping
communities




Non-Overlapping communities

Dense connectivity within the community, sparse

across communities
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Overlapping communities




Community detection as clustering

In many ways community detection is just
clustering on graphs.

We can apply clustering algorithms on the
adjacency matrix (e.d., k-means)

We can define a distance or similarity measure
between nodes in the graph and apply other
algorithms (e.g., hierarchical clustering)

- Similarity using jaccard similarity on the neighbors sets
- Distance using shortest paths or random walks.

There are also algorithms that are specific to
graphs



The Girvan-Newman method

- Hierarchical divisive method
- Start with the whole graph
- Find edges whose removal “partitions” the graph
- Repeat with each subgraph until single vertices

Which edge to remove?




The Girvan-Newman method

- Select cut-edges (a.k.a. bridge edges): edges
that when removed they disconnect the graph

- There may be many of those



The Girvan-Newman method

- Select cut-edges (a.k.a. bridge edges): edges
that when removed they disconnect the graph

- Or, more often, there may be none



The Girvan-Newman method

- Select cut-edges (a.k.a. bridge edges): edges
that when removed they disconnect the graph

- Or, more often, there may be none



Edge importance

We need a measure of how important an edge is
In keeping the graph connected

Edge betweenness: Number of shortest paths
that pass through the edge
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-
Edge Betweeness

Betweeness of edge (a, b) (B(a, b)):
- For each pair of nodes x, y compute the number of shortest paths
that include (a, b)

- There may be multiple shortest paths between (x,y) (SP(x, y)).
Compute the fraction of those that pass through (a, b)

Assumes a unit of traffic flow between (x, y)

|ISP(x,y) that include (a, b)|
|SP(x,y)

B(a,b) =
xX,yeV

Betweenness computes the probability of an edge to
occur on a randomly chosen shortest path between two

randomly chosen nodes.



Examples

1x12 =12




The Girvan Newman Algorithm

Given an undirected unweighted graph:

Repeat until no edges are left:

- Compute the edge betweeness for all edges
- Remove the edge with the highest betweeness

At each step of the algorithm, the connected
components are the communities

Gives a hierarchical decomposition of the graph
INto communities



Girvan Newman method: An example

Betweenness(7, 8)= 7x7 = 49
Betweenness(1, 3) = 1X12=12

Betweenness(3, 7) = Betweenness(6, 7) =
Betweenness(8, 9) = Betweenness(8, 12)= 3X11=33



Girvan-Newman: Example

Need to re-compute betweenness at every step



Girvan Newman method: An example

(a) Step 1

Betweenness(1, 3) = 1X5=5

Betweenness(3,7) = Betweenness(6,7) =
Betweenness(8,9) = Betweenness(8,12) = 3X4=12
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Girvan Newman method: A
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Girvan Newman method: An example
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Girvan-Newman: Example

Step 1:




Another example




Another example

(a) Step 1



Another example

(b) Step 2



Girvan-Newman: Results

Zachary’s Karate club:
Hierarchical decomposition
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Girvan-Newman: Results
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Communities in physics collaborations



How to Compute Betweenness?

-Want to compute betweenness of paths
starting from node 4




Computing Betweenness

Perform a BFS starting from A

Determine the number of shortest path from A to
each other node

Based on these numbers, determine the amount
of flow from A to all other nodes that uses each

edge



Computing Betweenness: step 1

Initial network

BFS from A



Computing Betweenness: step 2

- Count how many shortest paths from Ato a
specific node

Level 1

Level 2

Level 3

Level 4

# shortest A-l paths =
# shortest A-F paths +
# shortest A-G paths

.3
{ #shortest A-J paths =
# shortest A-G paths +
# shortest A-H paths

# shortest A-K paths
= # shortest A-| paths
+ # shortest A-J paths

\

Top-down



Computing Betweeness: Step 3

Compute betweenness by working up the tree:

- For every node there is a unit of flow destined for that
node that it is divided fractionally to the edges that

reach that node ﬂ\ A
1 | @ 1\® |

GHNNGIR Y
There is a unit of flow to K that reaches K

through edges (1,K) and (J,K) E. S' ‘E S

3 3
Since there are 3 paths from | to K and 3 1”2 12
from J, each edge gets %2 of the flow: \é ]
Betweeness %2

Bottom-up
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Computing Betweeness: Step 3

Compute betweenness by working up the tree:

- |f the node has descendants in the BFS DAG, we also
need to take into account the flow that passes from that
node towards the descendants

For node I, there is a unit of flow to | ﬂ\

from A, but also ¥z of flow that passes 2 2

from | towards K (we have computed | ; @ 1\® 1
that as the betweeness of edge (I,K)):

Total flow 3/2 N

GHNGINRGE
There are 2 paths from Ftoland 1

path from G to | edge (F,I) gets 2/3 of

the total flow: Betweeness 2/3*3/2 = 1 3 Ej b 3

Edge (G,l) gets 1/3 of the total flow:
Betweeness 2/3*3/2 = 1 6

Bottom-up



Computing Betweeness

- Repeat the process for all nodes and take the
sum
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Computing Betweenness

- Issues
- Scalability
- Test for connectivity?
- Re-compute all paths, or only those affected
- Parallel computation
- Sampling



