DATA MINING LECTURE 12

Community detection in graphs

Communities

- Real-life graphs are not random
- E.g., in a social network people pick their friends based on their common interests and activities
- We expect that the nodes in a graph will be organized in communities
- Groups of vertices which probably share common properties and/or play similar roles within the graph
- How do we find them?
- Nodes in communities will be densely connected to each other, and sparsely connected with other communities
- Sounds familiar?

NCAA Football network

Nodes: Football Teams
 Edges: Games played

Protein-Protein interaction networks

Can we identify functional modules?

Stanford Facebook network

Can we identify social communities?

Nodes: Facebook Users
Edges: Friendships

Nodes: Facebook Users
Fdnes: Fripndchins

Community types

- Overlapping communities vs non-overlapping communities

Non-Overlapping communities

- Dense connectivity within the community, sparse across communities

Network

Nodes

Overlapping communities

Community detection as clustering

- In many ways community detection is just clustering on graphs.
- We can apply clustering algorithms on the adjacency matrix (e.g., k-means)
- We can define a distance or similarity measure between nodes in the graph and apply other algorithms (e.g., hierarchical clustering)
- Similarity using jaccard similarity on the neighbors sets
- Distance using shortest paths or random walks.
- There are also algorithms that are specific to graphs

The Girvan-Newman method

- Hierarchical divisive method
- Start with the whole graph
- Find edges whose removal "partitions" the graph
- Repeat with each subgraph until single vertices

Which edge to remove?

The Girvan-Newman method

- Select cut-edges (a.k.a. bridge edges): edges that when removed they disconnect the graph

- There may be many of those

The Girvan-Newman method

- Select cut-edges (a.k.a. bridge edges): edges that when removed they disconnect the graph

- Or, more often, there may be none

The Girvan-Newman method

- Select cut-edges (a.k.a. bridge edges): edges that when removed they disconnect the graph

- Or, more often, there may be none

Edge importance

- We need a measure of how important an edge is in keeping the graph connected
- Edge betweenness: Number of shortest paths that pass through the edge

Edge Betweeness

- Betweeness of edge $(a, b)(B(a, b))$:
- For each pair of nodes x, y compute the number of shortest paths that include (a, b)
- There may be multiple shortest paths between $(x, y)(S P(x, y))$. Compute the fraction of those that pass through (a, b)
- Assumes a unit of traffic flow between (x, y)

$$
B(a, b)=\sum_{x, y \in V} \frac{\mid S P(x, y) \text { that include }(a, b) \mid}{|S P(x, y)|}
$$

- Betweenness computes the probability of an edge to occur on a randomly chosen shortest path between two randomly chosen nodes.

Examples

The Girvan Newman Algorithm

- Given an undirected unweighted graph:
- Repeat until no edges are left:
- Compute the edge betweeness for all edges
- Remove the edge with the highest betweeness
- At each step of the algorithm, the connected components are the communities
- Gives a hierarchical decomposition of the graph into communities

Girvan Newman method: An example

Betweenness(7, 8)=7x7=49
Betweenness $(1,3)=1 \mathrm{X} 12=12$
Betweenness $(3,7)=\operatorname{Betweenness}(6,7)=$
Betweenness $(8,9)=\operatorname{Betweenness}(8,12)=3 \times 11=33$

Girvan-Newman: Example

Need to re-compute betweenness at every step

Girvan Newman method: An example

(a) Step 1

Betweenness(1, 3) $=1 \mathrm{X} 5=5$
Betweenness(3,7) $=$ Betweenness $(6,7)=$
Betweenness $(8,9)=\operatorname{Betweenness}(8,12)=3 X 4=12$

Girvan Newman method: An example

(b) Step 2

Betweenness of every edge $=1$

Girvan Newman method: An example

Girvan-Newman: Example

Step 1:

Step 3:

Step 2:

Hierarchical network decomposition:

Another example

Another example

(a) Step 1

Another example

(b) Step 2

Girvan-Newman: Results

- Zachary's Karate club:

 Hierarchical decomposition

Girvan-Newman: Results

How to Compute Betweenness?

- Want to compute betweenness of paths starting from node A

Computing Betweenness

1. Perform a $B F S$ starting from A
2. Determine the number of shortest path from A to each other node
3. Based on these numbers, determine the amount of flow from A to all other nodes that uses each edge

Computing Betweenness: step 1

Initial network

BFS from A

Computing Betweenness: step 2

- Count how many shortest paths from A to a specific node

Level 1

Level 2

Level 3

Level 4

Top-down

Computing Betweeness: Step 3

- Compute betweenness by working up the tree:
- For every node there is a unit of flow destined for that node that it is divided fractionally to the edges that reach that node

There is a unit of flow to K that reaches K through edges (I, K) and (J, K)

Since there are 3 paths from I to K and 3 from J , each edge gets $1 / 2$ of the flow: Betweeness $1 / 2$

Computing Betweeness: Step 3

- Compute betweenness by working up the tree:
- If the node has descendants in the BFS DAG, we also need to take into account the flow that passes from that node towards the descendants

For node I, there is a unit of flow to I from A, but also $1 / 2$ of flow that passes from I towards K (we have computed that as the betweeness of edge $(1, K))$: Total flow 3/2

There are 2 paths from F to I and 1 path from G to I edge (F,I) gets 2/3 of the total flow: Betweeness $2 / 3^{*} 3 / 2=1$

Edge (G,I) gets $1 / 3$ of the total flow: Betweeness $2 / 3^{*} 3 / 2=1$

Computing Betweeness

- Repeat the process for all nodes and take the sum

Example

Level 1

Level 2

Level 3

Example

Computing Betweenness

- Issues
- Scalability
- Test for connectivity?
- Re-compute all paths, or only those affected
- Parallel computation
- Sampling

