
DATA MINING

LECTURE 12
Community detection in graphs

Communities

• Real-life graphs are not random
• E.g., in a social network people pick their friends based on

their common interests and activities

• We expect that the nodes in a graph will be
organized in communities
• Groups of vertices which probably share common properties

and/or play similar roles within the graph

• How do we find them?
• Nodes in communities will be densely connected to each

other, and sparsely connected with other communities

• Sounds familiar?

NCAA Football network

3

Nodes: Football

Teams

Edges: Games

played

Can we identify

node groups?

(communities,

modules, clusters)

4

NCAA conferences

Nodes: Football

Teams

Edges: Games

played

5

Can we identify

functional

modules?

Nodes: Proteins

Edges: Physical

interactions

Protein-Protein interaction networks

6

Functional modules

Nodes: Proteins

Edges: Physical

interactions

7

8

Can we identify social

communities?

Nodes: Facebook

Users

Edges: Friendships

Stanford Facebook network

9

High school Summer
internship

Stanford (Squash) Stanford (Basketball)

Social communities

Nodes: Facebook

Users

Edges: Friendships

Community types

• Overlapping communities vs non-overlapping

communities

Non-Overlapping communities

• Dense connectivity within the community, sparse

across communities

Network Adjacency matrix

Nodes

N
o
d
e
s

Overlapping communities

Community detection as clustering

• In many ways community detection is just
clustering on graphs.

• We can apply clustering algorithms on the
adjacency matrix (e.g., k-means)

• We can define a distance or similarity measure
between nodes in the graph and apply other
algorithms (e.g., hierarchical clustering)
• Similarity using jaccard similarity on the neighbors sets

• Distance using shortest paths or random walks.

• There are also algorithms that are specific to
graphs

The Girvan-Newman method

• Hierarchical divisive method

• Start with the whole graph

• Find edges whose removal “partitions” the graph

• Repeat with each subgraph until single vertices

Which edge to remove?

The Girvan-Newman method

• Select cut-edges (a.k.a. bridge edges): edges

that when removed they disconnect the graph

• There may be many of those

The Girvan-Newman method

• Select cut-edges (a.k.a. bridge edges): edges

that when removed they disconnect the graph

• Or, more often, there may be none

The Girvan-Newman method

• Select cut-edges (a.k.a. bridge edges): edges

that when removed they disconnect the graph

• Or, more often, there may be none

Edge importance

• We need a measure of how important an edge is

in keeping the graph connected

• Edge betweenness: Number of shortest paths

that pass through the edge

Edge Betweeness

• Betweeness of edge (𝑎, 𝑏) (𝐵(𝑎, 𝑏)):
• For each pair of nodes 𝑥, 𝑦 compute the number of shortest paths

that include (𝑎, 𝑏)

• There may be multiple shortest paths between 𝑥, 𝑦 (𝑆𝑃(𝑥, 𝑦)).
Compute the fraction of those that pass through (𝑎, 𝑏)
• Assumes a unit of traffic flow between (𝑥, 𝑦)

𝐵 𝑎, 𝑏 =
|𝑆𝑃 𝑥, 𝑦 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑎, 𝑏 |

|𝑆𝑃 𝑥, 𝑦 |
𝑥,𝑦∈𝑉

• Betweenness computes the probability of an edge to
occur on a randomly chosen shortest path between two
randomly chosen nodes.

Examples

7x7 = 49

3x11 = 33

1

1x12 = 12

D
A

F

E

H

G

B

C

b=16
b=7.5

The Girvan Newman Algorithm

• Given an undirected unweighted graph:

• Repeat until no edges are left:

• Compute the edge betweeness for all edges

• Remove the edge with the highest betweeness

• At each step of the algorithm, the connected

components are the communities

• Gives a hierarchical decomposition of the graph

into communities

Girvan Newman method: An example

Betweenness(7, 8)= 7x7 = 49

Betweenness(3, 7) = Betweenness(6, 7) =

Betweenness(8, 9) = Betweenness(8, 12)= 3X11=33

Betweenness(1, 3) = 1X12=12

22

Girvan-Newman: Example

23

Need to re-compute betweenness at every step

49
33

12
1

Girvan Newman method: An example

Betweenness(3,7) = Betweenness(6,7) =

Betweenness(8,9) = Betweenness(8,12) = 3X4=12

Betweenness(1, 3) = 1X5=5

24

Girvan Newman method: An example

Betweenness of every edge = 1

25

Girvan Newman method: An example

26

Girvan-Newman: Example

27

Step 1: Step 2:

Step 3: Hierarchical network decomposition:

Another example

5X5=25

28

Another example

5X6=30 5X6=30

29

Another example

30

Girvan-Newman: Results

• Zachary’s Karate club:

Hierarchical decomposition

31

Girvan-Newman: Results

32

Communities in physics collaborations

How to Compute Betweenness?

• Want to compute betweenness of paths

starting from node 𝐴

33

Computing Betweenness

1. Perform a BFS starting from A

2. Determine the number of shortest path from A to

each other node

3. Based on these numbers, determine the amount

of flow from A to all other nodes that uses each

edge

34

Initial network

BFS from A

Computing Betweenness: step 1

35

Level 1

Level 3

Level 2

Level 4

Top-down

Computing Betweenness: step 2

• Count how many shortest paths from A to a

specific node

36

Computing Betweeness: Step 3

• Compute betweenness by working up the tree:

• For every node there is a unit of flow destined for that

node that it is divided fractionally to the edges that

reach that node

Bottom-up

There is a unit of flow to K that reaches K

through edges (I,K) and (J,K)

Since there are 3 paths from I to K and 3

from J, each edge gets ½ of the flow:

Betweeness ½

Computing Betweeness: Step 3

• Compute betweenness by working up the tree:

• If the node has descendants in the BFS DAG, we also

need to take into account the flow that passes from that

node towards the descendants

Bottom-up

For node I, there is a unit of flow to I

from A, but also ½ of flow that passes

from I towards K (we have computed

that as the betweeness of edge (I,K)):

Total flow 3/2

There are 2 paths from F to I and 1

path from G to I edge (F,I) gets 2/3 of

the total flow: Betweeness 2/3*3/2 = 1

Edge (G,I) gets 1/3 of the total flow:

Betweeness 2/3*3/2 = 1

Computing Betweeness

• Repeat the process for all nodes and take the

sum

Example

40

Example

41

Computing Betweenness

• Issues

• Scalability

• Test for connectivity?

• Re-compute all paths, or only those affected

• Parallel computation

• Sampling

42

