DATA MINING LECTURE 11

Link Analysis Ranking
PageRank -- Random walks
HITS
Absorbing Random Walks and Label Propagation

Network Science

- A number of complex systems can be modeled as networks (graphs).
- The Web
- (Online) Social Networks
- Biological systems
- Communication networks (internet, email)
- The Economy
- We cannot truly understand such complex systems unless we understand the underlying network.
- Everything is connected, studying individual entities gives only a partial view of a system
- Data mining for networks is a very popular area
- Applications to the Web is one of the success stories for network data mining.

How to organize the web

- First try: Manually curated Web Directories

Help us improve the Yahool Directory - Share your ideas
about dmoz \mid dmoz blog \mid suggest URI \mid help \mid link \mid editor login

	Search	advanced
Arts	Business	Computers
Movies. Television Music...	Jobs. Real Estate. Investing...	Intermet. Software, Hardware...
Games	Health	Home
Video Games. RPPs . Gambling	Fitness, Medicine, Alternative...	Family Consumers, Cooking..
Kids and Teens	News	Recreation
Arts, School Time, Teen Life...	Media. Newspapers. Weather..	Travel Food , Outdoors . Humor
Reference	Regional	Science
Maps. Education Libraries...	US. Canada. UK. Europe...	Biology, Psychology. Physics...
Shopping	Society	Sports
Clothing. Food, Gifts...	People. Religion $\frac{\text { Issues... }}{}$	Baseball Soccer Baskerball..
World		

Become an Editor Help build the largest human-edited directory of the web
Copyight © 2012 Netscape
$5,114,642$ sites - 96,895 editors - over $1,014,858$ categories

How to organize the web

- Second try: Web Search
- Information Retrieval investigates:
- Find relevant docs in a small and trusted set e.g., Newspaper articles, Patents, etc. ("needle-in-ahaystack")
- Limitation of keywords (synonyms, polysemy, etc)
- But: Web is huge, full of untrusted documents, random things, web spam, etc.
- Everyone can create a web page of high production value
- Rich diversity of people issuing queries
- Dynamic and constantly-changing nature of web content

How to organize the web

- Third try (the Google era): using the web graph
- Sift from relevance to authoritativeness
- It is not only important that a page is relevant, but that it is also important on the web
- For example, what kind of results would we like to get for the query "greek newspapers"?

Link Analysis

- Not all web pages are equal on the web

What is the simplest way to measure importance of a page on the web?

Link Analysis Ranking

- Use the graph structure in order to determine the relative importance of the nodes
- Applications: Ranking on graphs (Web, Twitter, FB, etc)
- Intuition: An edge from node p to node q denotes endorsement
- Node p endorses/recommends/confirms the authority/centrality/importance of node q
- Use the graph of recommendations to assign an authority value to every node

Rank by Popularity

- Rank pages according to the number of incoming edges (in-degree, degree centrality)

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page

Popularity

- It is not important only how many link to you, but how important are the people that link to you.
- Good authorities are pointed by good authorities
- Recursive definition of importance

PAGERANK

PageRank

- Good authorities should be pointed by

 good authorities- The value of a node is the value of the nodes that point to it.
-How do we implement that?
- Assume that we have a unit of authority to distribute to all nodes.
- Initially each node gets $\frac{1}{n}$ amount of authority
- Each node distributes the authority value they have to their neighbors
- The authority value of each node is the sum of the authority fractions it collects from its neighbors.

The PageRank algorithm

Think of the nodes in the graph as containers of capacity of 1 liter.

We distribute a liter of liquid equally to all containers

The PageRank algorithm

The edges act like pipes that transfer liquid between nodes.

The PageRank algorithm

The edges act like pipes that transfer liquid between nodes.

The contents of each node are distributed to its neighbors.

The PageRank algorithm

The edges act like pipes that transfer liquid between nodes.

The contents of each node are distributed to its neighbors.

The PageRank algorithm

The edges act like pipes that transfer liquid between nodes.

The contents of each node are distributed to its neighbors.

The PageRank algorithm

The system will reach an equilibrium state where the amount of liquid in each node remains constant.

The PageRank algorithm

The amount of liquid in each node determines the importance of the node.

Large quantity means large incoming flow from nodes with large quantity of liquid.

PageRank

- Good authorities should be pointed by good authorities
- The value of a node is the value of the nodes that point to it.
- How do we implement that?
- Assume that we have a unit of authority to distribute to all nodes.
- Initially each node gets $\frac{1}{n}$ amount of authority
- Each node distributes the authority value they have to their neighbors
- The authority value of each node is the sum of the authority fractions it collects from its neighbors.

$$
w_{v}=\sum_{u \rightarrow v} \frac{1}{d_{\text {out }}(u)} w_{u}
$$

Example

$$
\begin{aligned}
& \mathrm{w}_{1}=1 / 3 \mathrm{w}_{4}+1 / 2 \mathrm{w}_{5} \\
& \mathrm{w}_{2}=1 / 2 \mathrm{w}_{1}+\mathrm{w}_{3}+1 / 3 \mathrm{w}_{4} \\
& \mathrm{w}_{3}=1 / 2 \mathrm{w}_{1}+1 / 3 \mathrm{w}_{4} \\
& \mathrm{w}_{4}=1 / 2 \mathrm{w}_{5} \\
& \mathrm{w}_{5}=\mathrm{w}_{2} \\
& \mathrm{w}_{v}=\sum_{u \rightarrow v} \frac{1}{d_{\text {out }}(u)} w_{u}
\end{aligned}
$$

Computing PageRank weights

- A simple way to compute the weights is by iteratively updating the weights
- PageRank Algorithm

Initialize all PageRank weights to $\frac{1}{n}$ Repeat:

$$
w_{v}=\sum_{u \rightarrow v} \frac{1}{d_{\text {out }}(u)} w_{u}
$$

Until the weights do not change

- This process converges

Example

$$
\begin{aligned}
& w_{1}=1 / 3 w_{4}+1 / 2 w_{5} \\
& w_{2}=1 / 2 w_{1}+w_{3}+1 / 3 w_{4} \\
& w_{3}=1 / 2 w_{1}+1 / 3 w_{4} \\
& w_{4}=1 / 2 w_{5} \\
& w_{5}=w_{2}
\end{aligned}
$$

$$
w_{v}=\sum_{u \rightarrow v} \frac{1}{d_{\text {out }}(u)} w_{u}
$$

	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}
$\mathbf{t}=\mathbf{0}$	0.2	0.2	0.2	0.2	0.2
$\mathbf{t}=1$	0.16	0.36	0.16	0.1	0.2
$\mathbf{t}=2$	0.13	0.28	0.11	0.1	0.36
$\mathbf{t}=3$	0.22	0.22	0.1	0.18	0.28
$\mathbf{t}=4$	0.2	0.27	0.17	0.14	0.22

Think of the weight as a fluid: there is constant amount of it in the graph, but it moves around until it stabilizes

Example

$$
w_{v}=\sum_{u \rightarrow v} \frac{1}{d_{\text {out }}(u)} w_{u}
$$

$$
\begin{aligned}
& \mathrm{w}_{1}=1 / 3 \mathrm{w}_{4}+1 / 2 \mathrm{w}_{5} \\
& \mathrm{w}_{2}=1 / 2 \mathrm{w}_{1}+\mathrm{w}_{3}+1 / 3 \mathrm{w}_{4} \\
& \mathrm{w}_{3}=1 / 2 \mathrm{w}_{1}+1 / 3 \mathrm{w}_{4} \\
& \mathrm{w}_{4}=1 / 2 \mathrm{w}_{5} \\
& \mathrm{w}_{5}=\mathrm{w}_{2}
\end{aligned}
$$

	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}
$\mathbf{t}=25$	0.18	0.27	0.13	0.13	0.27

Think of the weight as a fluid: there is constant amount of it in the graph, but it moves around until it stabilizes

Random Walks on Graphs

- The algorithm defines a random walk on the graph
- Random walk:
- Start from a node chosen uniformly at random with probability $\frac{1}{n}$.
- Pick one of the outgoing edges uniformly at random
- Move to the destination of the edge
- Repeat.
- The Random Surfer model
- Users wander on the web, following links.

Example

- Step 0

Example

- Step 0

Example

- Step 1

Example

- Step 1

Example

- Step 2

Example

- Step 2

Example

- Step 3

Example

- Step 3

Example

- Step 4...

Random walk

- Question: what is the probability p_{i}^{t} of being at node i after t steps?
$p_{1}^{0}=\frac{1}{5}$

$$
p_{1}^{t}=\frac{1}{3} p_{4}^{t-1}+\frac{1}{2} p_{5}^{t-1}
$$

$p_{2}^{0}=\frac{1}{5}$
$p_{2}^{t}=\frac{1}{2} p_{1}^{t-1}+p_{3}^{t-1}+\frac{1}{3} p_{4}^{t-1}$
$p_{3}^{0}=\frac{1}{5}$
$p_{3}^{t}=\frac{1}{2} p_{1}^{t-1}+\frac{1}{3} p_{4}^{t-1}$
$p_{4}^{0}=\frac{1}{5}$
$p_{4}^{t}=\frac{1}{2} p_{5}^{t-1}$

$p_{5}^{0}=\frac{1}{5}$
$p_{5}^{t}=p_{2}^{t-1}$
The equations are the same as those for the PageRank computation

Markov chains

- A Markov chain describes a discrete time stochastic process over a set of states

$$
S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}
$$

according to a transition probability matrix $P=\left\{P_{i j}\right\}$

- $P_{i j}=$ probability of moving to state j when at state i
- Matrix P has the property that the entries of all rows sum to 1

$$
\sum_{j} P[i, j]=1
$$

A matrix with this property is called stochastic

- State probability distribution: The vector $p^{t}=\left(p_{i}^{t}, p_{2}^{t}, \ldots, p_{n}^{t}\right)$ that stores the probability of being at state s_{i} after t steps
- Memorylessness property: The next state of the chain depends only at the current state and not on the past of the process (first order MC)
- Higher order MCs are also possible
- Markov Chain Theory: After infinite steps the state probability vector converges to a unique distribution if the chain is irreducible and aperiodic

Random walks

- Random walks on graphs correspond to Markov Chains
- The set of states S is the set of nodes of the graph G
- The transition probability matrix is the probability that we follow an edge from one node to another

$$
P[i, j]=\frac{1}{\mathrm{~d}_{\text {out }}(i)}
$$

- We can compute the vector p^{t} at step t using a vector-matrix multiplication

$$
p^{t+1}=p^{t} P
$$

An example

$$
\begin{aligned}
& A=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & 0 & 0 \\
\hline 1 & 0 & 0 & 1 & 0
\end{array}\right] \\
& P=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
\end{aligned}
$$

An example

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right] \\
& p_{1}^{t}=\frac{1}{3} p_{4}^{t-1}+\frac{1}{2} p_{5}^{t-1} \\
& p_{2}^{t}=\frac{1}{2} p_{1}^{t-1}+p_{3}^{t-1}+\frac{1}{3} p_{4}^{t-1} \\
& p_{3}^{t}=\frac{1}{2} p_{1}^{t-1}+\frac{1}{3} p_{4}^{t-1} \\
& p_{4}^{t}=\frac{1}{2} p_{5}^{t-1} \\
& p_{5}^{t}=p_{2}^{t-1}
\end{aligned}
$$

Stationary distribution

- The stationary distribution of a random walk with transition matrix P, is a probability distribution π, such that $\pi=\pi P$
- The stationary distribution is an eigenvector of matrix P
- the principal left eigenvector of P - stochastic matrices have maximum eigenvalue 1
- Markov Chain Theory: The random walk converges to a unique stationary distribution independent of the initial vector if the graph is strongly connected, and not bipartite.

Computing the stationary distribution

- The Power Method

Initialize p^{0} to some distribution Repeat

$$
p^{t}=p^{t-1} P
$$

Until convergence

- After many iterations $p^{t} \rightarrow \pi$ regardless of the initial vector p^{0}
- Power method because it computes $p^{t}=p^{0} P^{t}$
- Rate of convergence
- determined by the second eigenvalue λ_{2}

The stationary distribution

- What is the meaning of the stationary distribution π of a random walk?
- $\pi(i)$: the fraction of times that we visited state i as $t \rightarrow \infty$
- $\pi(i)$: the probability of being at node i after very large (infinite) number of steps
- π is the left eigenvector of transition matrix P
- $\pi=p_{0} P^{\infty}$, where P is the transition matrix, p_{0} the original vector
- $P(i, j)$: probability of going from ito j in one step
- $P^{2}(i, j)$: probability of going from i to j in two steps (probability of all paths of length 2)
- $P^{\infty}(i, j)=\pi(j)$: probability of going from i to j in infinite steps starting point does not matter.

The PageRank random walk

- Vanilla random walk
- make the adjacency matrix stochastic and run a random walk

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

The PageRank random walk

-What about sink nodes?

- what happens when the random walk moves to a node without any outgoing inks?

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

The PageRank random walk

- Replace these row vectors with a vector v
- typically, the uniform vector

$$
\mathrm{P}^{\prime}=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
\hline 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

$P^{\prime}=P+d v^{\top} \quad d= \begin{cases}1 & \text { if } i \text { is sink } \\ 0 & \text { otherwise }\end{cases}$

The PageRank random walk

-What about loops?

- Spider traps

The PageRank random walk

- Add a random jump to vector v with prob α
- Typically, to a uniform vector
- Guarantees irreducibility, convergence
- You can think of the random jump as a restart of the random walk
$\mathrm{P}^{\prime \prime}=(1-\alpha)\left[\begin{array}{ccccc}0 & 1 / 2 & 1 / 2 & 0 & 0 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 0 & 1 & 0 & 0 & 0 \\ 1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\ 1 / 2 & 0 & 0 & 0 & 1 / 2\end{array}\right]+\alpha\left[\begin{array}{ccccc}1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5\end{array}\right]$
$P^{\prime \prime}=(1-\alpha) P^{\prime}+\alpha u v^{T}$, where u is the vector of all 1 s

PageRank algorithm [BP98]

- Rank according to the stationary distribution

$$
\begin{aligned}
& w_{v}=(1-\alpha) \sum_{u \rightarrow v} \frac{1}{d_{o u t}(u)} w_{u}+\alpha \frac{1}{n} \\
& \cdot \alpha=0.15 \text { in most cases }
\end{aligned}
$$

- The Random Surfer model
- Start with a random page
- With probability α follow one of the links in the page
- With probability $1-\alpha$ restart from a random page

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page

Stationary distribution with random jump

- If v is the jump vector

$$
p^{0}=v
$$

$$
p^{1}=(1-\alpha) p^{0} P+\alpha v=(1-\alpha) v P+\alpha v
$$

$$
p^{2}=(1-\alpha) p^{1} P+\alpha v=(1-\alpha)^{2} v P^{2}+(1-\alpha) \alpha v P+\alpha v
$$

$$
p^{2}=(1-\alpha) p^{2} P+\alpha v=(1-\alpha)^{3} v P^{3}+(1-\alpha)^{2} \alpha v P^{2}++(1-\alpha) \alpha v P+\alpha v
$$

$$
p^{\infty}=\alpha v+(1-\alpha) \alpha v P+(1-\alpha)^{2} \alpha v P^{2}+\cdots=\alpha(I-(1-\alpha) P)^{-1}
$$

- Explanation: When you start a random walk:
- With probability α you will restart immediately
- With probability $(1-\alpha) \alpha$ you will do one step and then restart
- With probability $(1-\alpha)^{2} \alpha$ you will do two steps and then restart
- Etc...
- Conclusion: you are not likely to walk very far
- On average the random walk restarts every $1 / \alpha$ steps

Stationary distribution with random jump

- With the random jump the shorter paths are more important, since the weight decreases exponentially
- This changes the stationary distribution. When starting from some node x, nodes close to x have higher probability
- Jump/Restart vector:
- If v is not uniform, we can bias the random walk towards the nodes that are close to v
- Personalized Pagerank:
- Always restart to some node x
- E.g., the home page of a user
- Topic-Specific Pagerank
- Restart to nodes about a specific topic
- E.g., Greek pages, University home pages
- Anti-spam

Random walks on undirected graphs

- For undirected graphs, the stationary distribution is proportional to the degrees of the nodes
- Thus in this case a random walk is the same as degree popularity
- This is no longer true if we do random jumps
- Now the short paths play a greater role, and the previous distribution does not hold.

Pagerank implementation

- Store the graph in adjacency list, or list of edges
- Keep current pagerank values and new pagerank values
- Go through edges and update the values of the destination nodes.
- Repeat until the difference (L_{1} or L_{∞} difference) is below some small value ε.

A (Matlab-friendly) PageRank algorithm

- Performing vanilla power method is now too expensive - the matrix is not sparse

$$
\begin{aligned}
& q^{0}=v \\
& t=1 \\
& \text { repeat } \\
& \left.q^{t}=\left(P^{\prime}\right)^{\top}\right)^{t-1}-q^{t-1} \\
& \delta=\left\|q^{t}-q^{t-1}\right\| \\
& t=t+1
\end{aligned}
$$

until $\delta<\varepsilon$
Efficient computation of $y=\left(P^{\prime \prime}\right)^{\top} x$

$$
\begin{aligned}
& y=(1-a) P^{\top} x \\
& \beta=\|x\|_{1}-\|y\|_{1} \\
& y=y+\beta v
\end{aligned} \left\lvert\, \begin{aligned}
& P=\text { normalized adjacency matrix } \\
& P^{\prime}=P+d v^{\top}, \text { where } d_{i} \text { is } 1 \text { if } i \text { is sink and } 0 \text { o.w. } \\
& P^{\prime \prime}=(1-\alpha) P^{\prime}+\alpha u v^{\top}, \text { where } u \text { is the vector of all } 1 \mathrm{~s} \\
& \hline
\end{aligned}\right.
$$

Pagerank history

- Huge advantage for Google in the early days
- It gave a way to get an idea for the value of a page, which was useful in many different ways
- Put an order to the web.
- After a while it became clear that the anchor text was probably more important for ranking
- Also, link spam became a new (dark) art
- Flood of research
- Numerical analysis got rejuvenated
- Huge number of variations
- Efficiency became a great issue.
- Huge number of applications in different fields
- Random walk is often referred to as PageRank.

THE HITS ALGORITHM

The HITS algorithm

- Another algorithm proposed around the same time as Pagerank for using the hyperlinks to rank pages
- Kleinberg: then an intern at IBM Almaden
- IBM never made anything out of it

Query dependent input

Root set obtained from a text-only search engine

Root Set

Query dependent input

Query dependent input

Query dependent input

Hubs and Authorities [K98]

- Authority is not necessarily transferred directly between authorities
- Pages have double identity
- hub identity
- authority identity
- Good hubs point to good authorities
- Good authorities are pointed by good hubs

Hubs and Authorities

- Two kind of weights:
- Hub weight
- Authority weight
- The hub weight is the sum of the authority weights of the authorities pointed to by the hub
- The authority weight is the sum of the hub weights that point to this authority.

HITS Algorithm

- Initialize all weights to 1.

Repeat until convergence

- O operation : hubs collect the weight of the authorities

$$
h_{i}=\sum_{j: i \rightarrow j} a_{j}
$$

- I operation: authorities collect the weight of the hubs

$$
a_{i}=\sum_{j: j \rightarrow i} h_{j}
$$

- Normalize weights under some norm

Example

Initialize

Example

Step 1: O operation

Example

Step 1: I operation

Example

Step 1: Normalization (Max norm)

Example

Step 2: O step

Example

Step 2: I step

Example

Step 2: Normalization

Example

Convergence

HITS and eigenvectors

- The HITS algorithm is a power-method eigenvector computation
- In vector terms
- $a^{t}=A^{T} h^{t-1}$ and $h^{t}=A a^{t-1}$
- $a^{t}=A^{T} A a^{t-1}$ and $h^{t}=A A^{T} h^{t-1}$
- Repeated iterations will converge to the eigenvectors
- The authority weight vector a is the eigenvector of $A^{T} A$
- The hub weight vector h is the eigenvector of $A A^{T}$
- The vectors a and h are called the singular vectors of the matrix A

Singular Value Decomposition

$$
\underset{[n \times r][r \times r][r \times n]}{\mathrm{A}}=\mathrm{U} \quad \sum \quad \mathrm{~V}^{\top}=\left[\begin{array}{llll}
\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2} & \cdots & \overrightarrow{\mathrm{u}}_{\mathrm{r}}
\end{array}\right]\left[\begin{array}{lllll}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \ddots & \\
& & & \sigma_{\mathrm{r}}
\end{array}\right]\left[\begin{array}{c}
\overrightarrow{\mathrm{v}}_{1} \\
\overrightarrow{\mathrm{v}}_{2} \\
\vdots \\
\overrightarrow{\mathrm{v}}_{\mathrm{r}}
\end{array}\right]
$$

-r : rank of matrix A

- $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}$: singular values (square roots of eig-vals $A A^{\top}, A^{\top} A$)
- $\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \cdots, \overrightarrow{\mathrm{u}}_{\mathrm{r}}$: left singular vectors (eig-vectors of $A A^{\top}$)
- $\overrightarrow{\mathrm{v}}_{1}, \overrightarrow{\mathrm{v}}_{2}, \cdots, \overrightarrow{\mathrm{v}}_{\mathrm{r}}$: right singular vectors (eig-vectors of $A^{\top} A$)

$$
A=\sigma_{1} \overrightarrow{\mathrm{u}}_{1} \overrightarrow{\mathrm{v}}_{1}^{\top}+\sigma_{2} \overrightarrow{\mathrm{u}}_{2} \overrightarrow{\mathrm{v}}_{2}^{\top}+\cdots+\sigma_{\mathrm{r}} \overrightarrow{\mathrm{u}}_{\mathrm{r}} \overrightarrow{\mathrm{v}}_{\mathrm{r}}^{\top}
$$

Why does the Power Method work?

- If a matrix R is real and symmetric, it has real eigenvalues and eigenvectors: $\left(\lambda_{1}, w_{1}\right),\left(\lambda_{2}, w_{2}\right)$,
$\ldots,\left(\lambda_{r}, w_{r}\right)$
- r is the rank of the matrix
- $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{r}\right|$
- For any matrix R , the eigenvectors $w_{1}, w_{2}, \ldots, w_{r}$ of R define a basis of the vector space
- For any vector $x, R x=\alpha_{1} w_{1}+a_{2} w_{2}+\cdots+a_{r} w_{r}$
- After t multiplications we have:

$$
R^{t} x=\lambda_{1}^{t-1} \alpha_{1} w_{1}+\lambda_{2}^{t-1} a_{2} w_{2}+\cdots+\lambda_{2}^{t-1} a_{r} w_{r}
$$

- Normalizing leaves only the term w_{1}.

OTHER ALGORITHMS

The SALSA algorithm [LMO0]

- Perform a random walk alternating between hubs and authorities
- What does this random walk converge to?

- The graph is essentially undirected, so it will be proportional to the degree.

Social network analysis

- Evaluate the centrality of individuals in social networks
- degree centrality
- the (weighted) degree of a node
- distance centrality
- the average (weighted) distance of a node to the rest in the graph

$$
D_{c}(v)=\frac{1}{\sum_{u \neq v} d(v, u)}
$$

- betweenness centrality
- the average number of (weighted) shortest paths that use node v

$$
\mathrm{B}_{\mathrm{c}}(\mathrm{v})=\sum_{\mathrm{s} \neq \mathrm{v} \neq t} \frac{\sigma_{\mathrm{st}}(\mathrm{v})}{\sigma_{\mathrm{st}}}
$$

Counting paths - Katz 53

- The importance of a node is measured by the weighted sum of paths that lead to this node
- $A^{m}[i, j]=$ number of paths of length m from i to j
- Compute

$$
P=b A+b^{2} A^{2}+\cdots+b^{m} A^{m}+\cdots=(I-b A)^{-1}-I
$$

- converges when $b<\lambda_{1}(A)$
- Rank nodes according to the column sums of the matrix P

Bibliometrics

- Impact factor (E. Garfield 72)
- counts the number of citations received for papers of the journal in the previous two years
- Pinsky-Narin 76
- perform a random walk on the set of journals
- $\mathrm{P}_{\mathrm{ij}}=$ the fraction of citations from journal i that are directed to journal j

ABSORBING RANDOM WALKS

Random walk with absorbing nodes

- What happens if we do a random walk on this graph? What is the stationary distribution?

- All the probability mass on the red sink node:
- The red node is an absorbing node

Random walk with absorbing nodes

-What happens if we do a random walk on this graph? What is the stationary distribution?

- There are two absorbing nodes: the red and the blue.
- The probability mass will be divided between the two

Absorption probability

- If there are more than one absorbing nodes in the graph a random walk that starts from a nonabsorbing node will be absorbed in one of them with some probability
- The probability of absorption gives an estimate of how close the node is to red or blue

Absorption probability

- Computing the probability of being absorbed:
- The absorbing nodes have probability 1 of being absorbed in themselves and zero of being absorbed in another node.
- For the non-absorbing nodes, take the (weighted) average of the absorption probabilities of your neighbors
- if one of the neighbors is the absorbing node, it has probability 1
- Repeat until convergence (= very small change in probs)

$$
\begin{aligned}
& P(\text { Red } \mid \text { Pink })=\frac{2}{3} P(\text { Red } \mid \text { Yellow })+\frac{1}{3} P(\text { Red } \mid \text { Green }) \\
& P(\text { Red } \mid \text { Green })=\frac{1}{4} P(\text { Red } \mid \text { Yellow })+\frac{1}{4} \\
& P(\text { Red } \mid \text { Yellow })=\frac{2}{3} \\
& P(\text { Red } \mid \text { Red })=1, P(\text { Red } \mid \text { Blue })=0
\end{aligned}
$$

Absorption probability

- Computing the probability of being absorbed:
- The absorbing nodes have probability 1 of being absorbed in themselves and zero of being absorbed in another node.
- For the non-absorbing nodes, take the (weighted) average of the absorption probabilities of your neighbors
- if one of the neighbors is the absorbing node, it has probability 1
- Repeat until convergence (= very small change in probs)
$P($ Blue \mid Pink $)=\frac{2}{3} P($ Blue \mid Yellow $)+\frac{1}{3} P($ Blue \mid Green $)$
$P($ Blue \mid Green $)=\frac{1}{4} P($ Blue \mid Yellow $)+\frac{1}{2}$
$P($ Blue \mid Yellow $)=\frac{1}{3}$
$P($ Blue \mid Blue $)=1, P($ Blue \mid Red $)=0$

Why do we care?

- Why do we care to compute the absorption probability to sink nodes?
- Given a graph (directed or undirected) we can choose to make some nodes absorbing.
- Simply direct all edges incident on the chosen nodes towards them and remove outgoing edges.
- The absorbing random walk provides a measure of proximity of non-absorbing nodes to the chosen nodes.
- Useful for understanding proximity in graphs
- Useful for propagation in the graph
- E.g, some nodes have positive opinions for an issue, some have negative, to which opinion is a non-absorbing node closer?

Example

- In this undirected weighted graph we want to learn the proximity of nodes to the red and blue nodes

Example

- Make the nodes absorbing

Absorption probability

- Compute the absorbtion probabilities for red and blue

$$
\begin{aligned}
& P(\text { Red } \mid \text { Pink })=\frac{2}{3} P(\text { Red } \mid \text { Yellow })+\frac{1}{3} P(\text { Red } \mid \text { Green }) \\
& P(\text { Red } \mid \text { Green })=\frac{1}{5} P(\text { Red } \mid \text { Yellow })+\frac{1}{5} P(\text { Red } \mid \text { Pink })+\frac{1}{5} \\
& P(\text { Red } \mid \text { Yellow })=\frac{1}{6} P(\text { Red } \mid \text { Green })+\frac{1}{3} P(\text { Red } \mid \text { Pink })+\frac{1}{3} \\
& P(\text { Blue } \mid \text { Pink })=1-P(\text { Red } \mid \text { Pink }) \\
& P(\text { Blue } \mid \text { Green })=1-P(\text { Red } \mid \text { Green }) \\
& P(\text { Blue } \mid \text { Yellow })=1-P(\text { Red } \mid \text { Yellow })
\end{aligned}
$$

Penalizing long paths

- The orange node has the same probability of reaching red and blue as the yellow one

Penalizing long paths

- Add an universal absorbing node to which each node gets absorbed with probability α.

With probability α the random walk dies
With probability ($1-\alpha$) the random walk continues as before

The longer the path from a node to an absorbing node the more likely the random walk dies along the way, the lower the absorbtion probability

$\begin{aligned} & \text { e.g. } \\ & P(\text { Red } \mid \text { Green })\end{aligned}=(1-\alpha)\left(\frac{1}{5} P(\right.$ Red \mid Yellow $)+\frac{1}{5} P($ Red \mid Pink $\left.)+\frac{1}{5}\right)$

Random walk with restarts

- Adding a jump with probability a to a universal absorbing node seems similar to Pagerank
- Random walk with restart:
- Start a random walk from node u
- At every step with probability α, jump back to u
- The probability of being at node v after large number of steps defines again a similarity between nodes u, v
- The Random Walk With Restarts (RWS) and Absorbing Random Walk (ARW) are similar but not the same
- RWS computes the probability of paths from the starting node u to a node v, while AWR the probability of paths from a node v, to the absorbing node u.
- RWS defines a distribution over all nodes, while AWR defines a probability for each node
- An absorbing node blocks the random walk, while restarts simply bias towards starting nodes
- Makes a difference when having multiple (and possibly competing) absorbing nodes

Propagating values

- Assume that Red has a positive value and Blue a negative value
- Positive/Negative class, Positive/Negative opinion
- We can compute a value for all the other nodes by repeatedly averaging the values of the neighbors
- The value of node u is the expected value at the point of absorption for a random walk that starts from u

$$
\begin{aligned}
& V(\text { Pink })=\frac{2}{3} V(\text { Yellow })+\frac{1}{3} V(\text { Green }) \\
& V(\text { Green })=\frac{1}{5} V(\text { Yellow })+\frac{1}{5} V(\text { Pink })+\frac{1}{5}-\frac{2}{5} \\
& V(\text { Yellow })=\frac{1}{6} V(\text { Green })+\frac{1}{3} V(\text { Pink })+\frac{1}{3}-\frac{1}{6}
\end{aligned}
$$

Electrical networks and random walks

- Our graph corresponds to an electrical network
- There is a positive voltage of +1 at the Red node, and a negative voltage -1 at the Blue node
- There are resistances on the edges inversely proportional to the weights (or conductance proportional to the weights)
- The computed values are the voltages at the nodes

$$
\begin{aligned}
& V(\text { Pink })=\frac{2}{3} V(\text { Yellow })+\frac{1}{3} V(\text { Green }) \\
& V(\text { Green })=\frac{1}{5} V(\text { Yellow })+\frac{1}{5} V(\text { Pink })+\frac{1}{5}-\frac{2}{5} \\
& V(\text { Yellow })=\frac{1}{6} V(\text { Green })+\frac{1}{3} V(\text { Pink })+\frac{1}{3}-\frac{1}{6}
\end{aligned}
$$

Opinion formation

- The value propagation can be used as a model of opinion formation.
- Model:
- Opinions are values in [-1,1]
- Every user u has an internal opinion s_{u}, and expressed opinion z_{u}.
- The expressed opinion minimizes the personal cost of user u :

$$
c\left(z_{u}\right)=\left(s_{u}-z_{u}\right)^{2}+\sum_{v: v \text { is a friend of } u} w_{u}\left(z_{u}-z_{v}\right)^{2}
$$

- Minimize deviation from your beliefs and conflicts with the society
- If every user tries independently (selfishly) to minimize their personal cost then the best thing to do is to set z_{u} to the average of all opinions:

$$
z_{u}=\frac{s_{u}+\sum_{v: v} \text { is a friend of } u w_{u} z_{u}}{1+\sum_{v: v \text { is a friend of } u} w_{u}}
$$

This is the same as the value propagation we described before!

Example

- Social network with internal opinions

Example

One absorbing node per user with value the internal opinion of the user

One non-absorbing node per user that links to the corresponding absorbing node

The external opinion for each node is computed using the value propagation we described before

- Repeated averaging

Intuitive model: my opinion is a combination of what I believe and
 what my social network believes.

Hitting time

- A related quantity: Hitting time $\mathrm{H}(\mathrm{u}, \mathrm{v})$
- The expected number of steps for a random walk starting from node u to end up in v for the first time
- Make node v absorbing and compute the expected number of steps to reach v
- Assumes that the graph is strongly connected, and there are no other absorbing nodes.
- Commute time $\mathrm{H}(\mathrm{u}, \mathrm{v})+\mathrm{H}(\mathrm{v}, \mathrm{u})$: often used as a distance metric
- Proportional to the total resistance between nodes u, and v

Transductive learning

- If we have a graph of relationships and some labels on some nodes we can propagate them to the remaining nodes
- Make the labeled nodes to be absorbing and compute the probability for the rest of the graph
- E.g., a social network where some people are tagged as spammers
- E.g., the movie-actor graph where some movies are tagged as action or comedy.
- This is a form of semi-supervised learning
- We make use of the unlabeled data, and the relationships
- It is also called transductive learning because it does not produce a model, but just labels the unlabeled data that is at hand.
- Contrast to inductive learning that learns a model and can label any new example

Implementation details

- Implementation is in many ways similar to the PageRank implementation
- For an edge (u, v) instead of updating the value of v we update the value of u.
- The value of a node is the average of its neighbors
- We need to check for the case that a node u is absorbing, in which case the value of the node is not updated.
- Repeat the updates until the change in values is very small.

