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Link Prediction 
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Motivation 

 Recommending new friends in online social networks. 
 

 Predicting the participation of actors in events 
 

 Suggesting interactions between the members of a 
company/organization that are external to the hierarchical 
structure of the organization itself. 
 

 Predicting connections between members of terrorist 
organizations who have not been directly observed to work 
together. 
 

 Suggesting collaborations between researchers based on co-
authorship. 
 Overcoming the data-sparsity problem in recommender 
systems using collaborative filtering 
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Motivation 

In social networks: 
 
 Increases user engagement 
 Controls the growth of the network 
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Outline 

 Estimating a score for each edge (seminal 
work of Liben-Nowell&Kleinberg)  
 
 Classification approach 

 
 The who to follow service at Twitter  
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Problem Definition 

Link prediction problem: Given the links in a social 
network at time t, predict the edges that will be 
added to the network during the time interval from 
time t to a given future time t’ 

 Based solely on the topology of the network (social proximity) (the 
more general problem also considers attributes of the nodes and links) 

 
 Different from the problem of inferring missing (hidden) links (there 
is a temporal aspect) 

To save experimental effort in the laboratory or in the field 
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Problem Formulation (details) 

Consider a social network G = (V, E)  where each edge e = <u, v>  E represents an 
interaction between u and v that took place at a particular time t(e) 
 
(multiple interactions between two nodes as parallel edges with different timestamps) 

 
For two times, t < t′, let G[t, t′] denote  subgraph of G consisting of all edges with a 
timestamp between t and t′ 
 
 For four times, t0 < t′0 < t1 < t′1, given G[t0, t′0], we wish to output a list of edges not 
in G[t0, t′ 0] that are predicted to appear in G[t1, t′1] 

  [t0, t′0] training interval 
  [t1, t′1] test interval 
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Problem Formulation (details) 

Prediction for a subset of nodes 
 

Two parameters: κtraining and κtest 

 

Core: all nodes that are incident to at least κtraining edges in G[t0, 
t′0], and at least κtest edges in G[t1, t′1] 
 
 Predict new edges between the nodes in Core 
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Example Dataset: co-authorship 

t0 = 1994, t′0 = 1996:  training interval -> [1994, 1996] 
t1 = 1997, t′1 = 1999: test interval -> [1997, 1999] 
 
- Gcollab = <V, Eold> = G[1994, 1996] 
- Enew: authors in V that co-author a paper during the test interval but not during the 
training interval  
 
κtraining = 3, κtest = 3: Core consists of all authors who have written at least 3 papers 
during the training period and at least 3 papers during the test period 
 
Predict Enew 
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Methods for Link Prediction (outline) 

 Assign a connection weight score(x, y) to 
each pair of nodes  <x, y> based on the 
input graph   

 Produce a ranked list of decreasing order 
of score 

 We can consider all links incident to a specific node x, and 
recommend to x the top ones 

 If we focus to a specific x, the score can be seen as a 
centrality measure for x 
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Methods for Link Prediction (outline) 

How to assign the score(x, y) between 
two nodes x and y? 

   Some form of similarity or node proximity 
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Methods for Link Prediction: 
Neighborhood-based 

The larger the overlap of the neighbors of two 
nodes, the more likely the nodes to be linked in 
the future  
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Methods for Link Prediction: 
Neighborhood-based 

Let Γ(x) denote the set of neighbors of x in Gold 

Common neighbors: 

Jaccard coefficient: 

The probability that both x and y 
have a feature for a randomly 
selected feature that either x or y 
has 

A adjacency matrix   
 Ax,y

2 :Number of different 
paths of length 2 
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Methods for Link Prediction: 
Neighborhood-based 

Adamic/Adar 

  Assigns large weights to common neighbors z of x and y which 
themselves have few neighbors (weight rare features more 
heavily)  

 Neighbors who are linked with 2 nodes are assigned weight = 1/log(2) = 1.4 
 Neighbors who are linked with 5 nodes are assigned  weight = 1/log(5) = 0.62 
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Methods for Link Prediction: 
Neighborhood-based 

Preferential attachment 

   Researchers found empirical evidence to suggest that co-authorship is 
correlated with the product of the neighborhood sizes 

Based on the premise that the probability that a new edge has 
node x as its endpoint is proportional to |Γ(x)|, i.e., nodes like 
to form ties with ‘popular’ nodes 

 This depends on the degrees of the nodes not on their neighbors per se 
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Methods for Link Prediction: 
Neighborhood-based 

1. Overlap 
2. Jaccard 
3. Adamic/Adar 
4. Preferential attachment 
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Methods for Link Prediction: 
Shortest Path 

For x, y ∈ V × V − Eold,  
score(x, y) = (negated) length of shortest path between 

x and y 
 
 
  If there are more than n pairs of nodes tied for the 
shortest path length, order them at random. 
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Methods for Link Prediction: based on the 

ensemble of all paths 

Not just the shortest, but all paths 
between two nodes 
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Methods for Link Prediction: based on the 

ensemble of all paths 

Katzβ measure 

Sum over all paths of length l 
β > 0 (< 1) is a parameter of the predictor, exponentially damped 
to count short paths more heavily 
 
  Small β predictions much like common neighbors 
β small, degree, maximal β, eigenvalue 
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Methods for Link Prediction: based on the 

ensemble of all paths 

 Unweighted version, in which pathx,y
(1) = 1, if x and y have 

collaborated, 0 otherwise 
 Weighted version, in which pathx,y

(1) = #times x and y have 
collaborated 

Closed form: 
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Katzβ measure 



Methods for Link Prediction: based on the 

ensemble of all paths 

Consider a random walk on Gold that starts at x and iteratively 
moves to a neighbor of x chosen uniformly at random from Γ(x). 

The Hitting Time Hx,y from x to y is the expected number of steps it 
takes for the random walk starting at x to reach y. 

score(x, y) = − Hx,y 

The Commute Time Cx,y from x to y is the expected number of 
steps to travel from x to y and from y to x 

score(x, y) = − (Hx,y + Hy,x) 
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Not symmetric, can be shown 



Methods for Link Prediction: based on the 

ensemble of all paths 

Can also consider stationary-normed versions: 
(to counteract the fact that Hx,y is rather small when y is a node 
with a large stationary probability) 
score(x, y) = − Hx,y πy  

score(x, y) = −(Hx,y πy + Hy,x πx) 
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Example:  hit time in a line 

1   i-1      i       i+1 n 



Methods for Link Prediction: based on the 

ensemble of all paths 

The hitting time and commute time measures are sensitive to 
parts of the graph far away from x and y -> periodically reset 
the walk 

score(x, y) = stationary probability of y in a rooted PageRank 

Random walk on Gold that starts at x and has a probability  α of returning to 
x at each step 

Rooted Page Rank: Starts from x, with probability (1 – a) 
moves to a random neighbor and with probability a returns 
to x 

22 



Methods for Link Prediction: based on the 

ensemble of all paths 

SimRank 
Two objects are similar, if they are related to similar objects 
 

Two objects x and y are similar, if they are related to objects a and 
b respectively and a and b are themselves similar 
 

Base case: similarity(x, x) = 1  

Average similarity between neighbors of x and neighbors of y 
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score(x, y) = similarity(x, y) 



SimRank 

Introduced for directed graphs, I(x): in-neighbors of x 

24 

Average similarity between in-neighbors of a and in-neighbors of b 
C  a constant between 0 and 1 
n2 equations 

Iterative computation 

s0(x, y) = 1 if x = y and 0 otherwise 
sk+1  based on the sk values of its (in-neighbors) computed at iteration k 



SimRank 
Graph G2: 
A node for each pair of nodes 
(x, y)  (a, b), if x  a and y  b 
Scores flow from a node to its neighbors 
C gives the rate of decay as similarity flows across 
edges (C = 0.8 in the example)  

Symmetric pairs, Self-loops 
Prune by considering only nodes within a a radius  
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SimRank 

Expected Meeting  Distance (EMD): how soon two random 
surfers are expected to meet at the same node if they started 
at nodes x and y and randomly walked (in lock step) the graph 
backwards 
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= 3,  
a lower similarity than between v and 
w but higher than between u and v 
(or u and w). 

=  
m(u, v) = m(u,w) =  , m(v, 
w) = 1  
v and w are much more 
similar than u is to v or w.  



SimRank 

Let us consider G2 

A node (a, b) as a state of the tour in G: if a moves to c, b moves to 
d in G, then (a, b) moves to  (c, d) in G2  

 
A tour in G2 of length n represents a pair of tours in G where each 
has length n 

 

What are the states in G2 that correspond to “meeting” points? 
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SimRank 

What are the states in G2 that correspond to “meeting” points? 
 

Singleton nodes (common neighbors) 
 

 
The EMD m(a, b)  is just the expected distance (hitting time) in G2 
between (a, b) and any singleton node  
 
The sum is taken over all walks that start from (a, b) and end at a 
singleton node 
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SimRank for bipartite graphs 

 People are similar if they purchase similar items. 
 Items are similar if they are purchased by similar people 
Useful also for recommendations 
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SimRank for bipartite graphs 



31 

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…
 

…
 

…
 

…
 

Conference 

Author 

 
Q: What is most related 
 conference to ICDM? 

SimRank 



SimRank 

ICDM

KDD

SDM

ECML

PKDD

PAKDD

CIKM

DMKD

SIGMOD

ICML

ICDE

0.009

0.011

0.008
0.007

0.005

0.005

0.005

0.004
0.004

0.004
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Methods for Link Prediction: based on 
paths 

1. Shortest paths 
2. Katz 
3. Hitting and commute time 
4. Rooted page rank 
5. SimRank 
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Methods for Link Prediction: other 

Low rank approximations 

M adjacency matrix , represent M with a lower rank 
matrix Mk   
 
Apply SVD (singular value decomposition) 
 
The rank-k matrix that best approximates M 
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Singular Value Decomposition 

 
 
 
 
 
 

• r : rank of matrix A 
 

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA) 
                      
•                        : left singular vectors (eig-vectors of AAT) 
                     
•                          : right singular vectors (eig-vectors of ATA) 

 
•    
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Unseen Bigrams 
Unseen bigrams: pairs of word that co-occur in a test corpus, 
but not in the corresponding training corpus 
Not just score(x, y) but score(z, y) for nodes z that are similar to 
x  --- Sx

(δ) the δ nodes most related to x 
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Methods for Link Prediction: other 



Methods for Link Prediction: High-level 

approaches 

Clustering 

 Compute score(x, y) for al edges in Eold 

 

 Delete the (1-p) fraction of the edges whose 
score is the lowest, for some parameter p 

 
 Recompute score(x, y) for all pairs in the 
subgraph 
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How to Evaluate the Prediction (outline) 

Each link predictor p outputs a ranked list Lp of pairs in V × V − 
Eold: predicted new collaborations in decreasing order of 
confidence 

In this paper, focus on Core, thus 
 

E∗new =  Enew ∩ (Core × Core)  = |E∗new| 
 
Evaluation method: Size of the intersection of  

 the first n edge predictions from Lp that are in Core × Core, and  
 the set E∗new 

 How many of the (relevant) top-n predictions are correct (precision?) 
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Evaluation: baseline 

Baseline: random predictor  
Randomly select pairs of authors who did not 
collaborate in the training interval 

Probability that a random prediction is correct: 

In the datasets, from 0.15% (cond-mat) to 0.48% (astro-ph) 
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Evaluation: Factor improvement over 
random 
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Evaluation: Factor improvement over 
random 
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Evaluation: Average relevance performance 
(random) 

 average ratio over the five 
datasets of the given predictor's 
performance versus a baseline 
predictor's performance.  
 the error bars indicate the 
minimum and maximum of this 
ratio over the five datasets.  
 the parameters for the starred 
predictors are: (1) for weighted 
Katz,  β= 0.005; (2) for Katz 
clustering, β1 = 0.001;  ρ = 0.15; 
β2 = 0.1; (3) for low-rank inner 
product, rank = 256; (4) for 
rooted Pagerank, α  = 0.15; (5) 
for unseen bigrams, 
unweighted, common 
neighbors with δ = 8; and (6) for 
SimRank, C ( γ) = 0.8. 
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Evaluation: Average relevance performance 
(distance) 
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Evaluation: Average relevance performance 
(neighbors) 

44 



Evaluation: prediction overlap 

correct 

 How much similar are the 
predictions made by the 
different methods? 
 
Why? 
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Evaluation: datasets 

 How much does the performance of the different methods 
depends on the dataset? 

 (rank) On 4 of the 5 datasets best at an intermediate rank  
      On qr-qc, best at rank 1, does it have a “simpler” structure”? 
 On hep-ph, preferential attachment the best 
 Why is astro-ph “difficult”? 
The culture of physicists and physics collaboration 
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Evaluation: small world 

The shortest path even in unrelated disciplines 
is often very short 
 
Basic classifier on graph distances does not work 
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Evaluation: restricting to distance three 

Many pairs of authors separated by a 
graph distance of 2 will not 
collaborate and  
Many pairs who collaborate are at 
distance greater than 2 

Disregard all distance 2 pairs (do not just  
“close” triangles) 
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Evaluation: the breadth of data 

Three additional datasets 
1. Proceedings of STOC and FOCS 
2. Papers for Citeseer 
3. All five of the arXiv sections 

Common neighbors vs Random 

   Suggests that is easier to predict links 
within communities 
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Extensions 

 Improve performance. Even the best (Katz clustering on 
gr-qc) correct on only about 16% of its prediction 

 Improve efficiency on very large networks (approximation 
of distances)  

 Treat more recent collaborations as more important 

 Additional information (paper titles, author institutions, 
etc) 
To some extent latently  present in the graph 
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Outline 

 Estimating a score for each edge (seminal work of Liben-
Nowell&Kleinberg  
 Neighbors measures, Distance measures, Other 

methods 
 Evaluation 

 Classification approach 
 Twitter  
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Using Supervised Learning 

Given a collection of records (training set ) 
 

Each record contains  
      a set of attributes (features) + the class attribute. 
 

Find a model  for the class attribute as a function of the values 
of other attributes. 

 
Goal: previously unseen records should be assigned a class as 

accurately as possible. 
 
A test set is used to determine the accuracy of the model.  
 

Usually, the given data set is divided into training and test sets, with 
training set used to build the model and test set used to validate it. 
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Illustrating the Classification Task 

Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning

algorithm

Training Set
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Classification Techniques 

• Decision Tree based Methods 

• Rule-based Methods 

• Memory based reasoning 

• Neural Networks 

• Naïve Bayes and Bayesian Belief Networks 

• Support Vector Machines 

• Logistic Regression 
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Example of a Decision Tree 

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund 

MarSt 

TaxInc 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 

Splitting Attributes 

Training Data Model:  Decision Tree 
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Classification for Link Prediction 

Class? 
Features (predictors)? 

PropFlow: random walks, stops at l or when cycle  
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Using Supervised Learning: why? 

 Even training on a single feature may outperform 
ranking  (restriction to n-neighborhoods) 

 Dependencies between features 
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How to split the graph to get train data 

 tx length of computing features – ty length of determining 
the class attribute 

 Large tx => better quality of features as the network reaches 
saturation 

 Increasing ty increases positives 
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Imbalance 
 Sparse networks: |E| = k |V| for constant k << |V| 

 
The class imbalance ratio for link prediction in a sparse 
network is Ω(|V|/1) when at most |V| nodes are added 

Missing links is |V|2 

Positives V 

Treat each neighborhood 
as a separate problem 
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Metrics for Performance Evaluation 

Confusion Matrix: 

PREDICTED CLASS 

 
 

ACTUAL 

CLASS 

Class=Yes Class=No 

Class=Yes TP FN 

Class=No FP TN 

FNFPTNTP

TNTP




Accuracy 
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ROC Curve 
TPR (sensitivity)=TP/(TP+FN) (percentage of 

positive classified as positive) 

FPR = FP/(TN+FP) (percentage of negative 
classified as positive) 

 

• (0,0): declare everything 
          to be negative class 

• (1,1): declare everything 
         to be positive class 

• (0,1): ideal 

 

Diagonal line: Random guessing 

Below diagonal line: prediction is 

opposite of the true class 

AUC: area under the ROC 61 



Results 

Ensemble of classifiers: Random Forest 

62 

Random forest: Ensemble classifier that constructs a multitude of decision trees at 
training time and output the class that is the mode (most frequent) of the classes 
(classification) or mean prediction (regression) of the individual trees. 



Results 
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Outline 

 Estimating a score for each edge (seminal work of Liben-
Nowell&Kleinberg  
 Neighbors measures, distance measures, other methods 
 Evaluation 

 Classification approach 
 Brief background on classification 
 Issues  

 The who to follow service at Twitter  
 Some practical considerations 
 Overall architecture of a real social network 
 SALSA (yet another link analysis algorithm 
 Some evaluation issues 
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Introduction 
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Wtf (“Who to Follow"): the Twitter user recommendation service 
 

 Twitter: 200 million users, 400 million tweets every day (as of early 2013) 
http://www.internetlivestats.com/twitter-statistics/ 
 Twitter needs to help  existing and new users  to discover connections to 

sustain and grow  
 Also used for search relevance, discovery, promoted products, etc. 

http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/


Introduction 
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Difference between: 
 Interested in 
 Similar to 
 
Is it a “social” network as Facebook? 



The  Twitter graph 
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http://blog.ouseful.info/2011/07/07/visualising-twitter-friend-connections-using-gephi-an-example-using-
wireduk-friends-network/ 

 Node: user (directed) edge: follows 
 
 Statistics (August 2012) 

 over 20 billion edges (only active users) 
 power law distributions of in-degrees and 

out-degrees.  
 over 1000 with more than 1 million 

followers,  
 25 users with more than 10 million 

followers. 



The  Twitter graph: storage 
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 Stored in a graph database called FlockDB which uses MySQL 
as the underlying storage engine 
 

 Sharding and replication by a framework called Gizzard 
 

 Both custom solutions developed internally but open sourced 
 

 FlockDB holds the “ground truth" for the state of the graph 
 

 Optimized for low-latency, high-throughput reads and writes, 
and efficient intersection of adjacency lists (needed to deliver @-

replies, or messages targeted to a specific user received mutual followers of the 

sender and recipient) 
 

 hundreds of thousands of reads per second and tens of thousands of 

writes per second. 



The  Twitter graph: analysis 

69 

• Instead of simple get/put queries, many graph algorithms 
involve large sequential scans over many vertices followed by 
self-joins (for example, to materialize egocentric follower 
neighborhoods) 

• not time sensitive unlike graph manipulations tied directly to 
user actions (adding a follower) which have tight latency 
bounds. 
 

OLAP (online analytical processing) vs. OLTP (online transaction 
processing)  
analytical workloads that depend on sequential scans vs. short, 
primarily seek-based workloads that provide an interactive 
service 



The  Twitter graph: analysis 
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• Instead of simple get/put queries, many graph algorithms 
involve large sequential scans over many vertices followed by 
self-joins (for example, to materialize egocentric follower 
neighborhoods) 

• not time sensitive unlike graph manipulations tied directly to 
user actions (adding a follower) which have tight latency 
bounds. 
 

OLAP (online analytical processing) vs. OLTP (online transaction 
processing)  
analytical workloads that depend on sequential scans vs. short, 
primarily seek-based workloads that provide a user-facing 
service 



History of WTF 
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3 engineers, project started in spring 2010, product  
delivered in summer 2010 

Basic assumption: the whole graph fits into 
memory of a single server 



Design Decisions: To Hadoop or not? 
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Case study:  MapReduce implementation of PageRank 
 
• Each iteration a MapReduce job 
• Serialize the graph as adjacency lists for each vertex, along with the current 

PageRank value.  
• Mappers process all vertices in parallel: for each vertex on the adjacency list, 

the mapper emits an intermediate key-value pair: (destination vertex, partial 
PageRank) 

• Gather all key-value pairs with the same destination vertex, and each 
Reducer sums up the partial PageRank contributions 

 
• Convergence requires dozens of iterations.  A control program sets up the 

MapReduce job, waits for it to complete, and checks for convergence by 
reading in the updated PageRank vector and comparing it with the previous.  

• This basic structure can be applied to a large class of “message-passing" 
graph (e.g., breadth-first search) 



Design Decisions: To Hadoop or not? 

73 

Shortcomings of MapReduce implementation of PageRank 
 

 MapReduce jobs have relatively high startup costs (in Hadoop, on a large, 
busy cluster, can be tens of seconds) , this places a lower bound on iteration 
time. 
 

 Scale-free graphs, whose edge distributions follow power laws, create 
stragglers in the reduce phase. (e.g., the reducer assigned to google.com) 
Combiners and other local aggregation techniques help 
 

 Must shuffle the graph structure (i.e., adjacency lists) from the mappers to 
the reducers at each iteration. Since in most cases the graph structure is 
static, wasted effort (sorting, network traffic, etc.). 
 

 The PageRank vector is serialized to HDFS, along with the graph structure, at 
each iteration. Excellent fault tolerance, but at the cost of performance. 



Design Decisions: To Hadoop or not? 
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Besides Hadoop: 
 

Improvements: HaLoop Twister, and PrIter 
 
Alternatives:  
 Google's Pregel implements the Bulk Synchronous Parallel 

model : computations at graph vertices that dispatch 
“messages" to other vertices. Processing proceeds in 
supersteps with synchronization barriers between each.  

 GraphLab and its distributed variant: computations either 
through an update function which defines local computations 
(on a single vertex) or through a sync mechanism which defines 
global aggregation in the context of different consistency 
models. 



Design Decisions: To Hadoop or not? 
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Decided to build their own system 
 

Hadoop reconsidered: 
 new architecture completely on Hadoop 
 in Pig  a high-level dataflow language for large, semi-structured 

datasets compiled into physical plans executed on Hadoop  
 Pig Latin primitives for projection, selection, group, join, etc. 
 

Why not some other graph processing system? 
For compatibility, e.g., to use existing analytics hooks for job 
scheduling, dependency management, etc. 



Overall Architecture 
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Overall Architecture: Flow 
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1. Daily snapshots of the Twitter graph imported from FlockDB into the 
Hadoop data warehouse  

2. The entire graph loaded into memory onto the Cassovary servers, 
each holds a complete copy of the graph in memory.  

3. Constantly generate recommendations for users  consuming from a 
distributed queue containing all Twitter users sorted by a “last 
refresh" timestamp (~500 ms per thread to generate ~100 
recommendations for a user) 

4. Output from the Cassovary servers inserted into a sharded MySQL 
database, called, WTF DB.  

5. Once recommendations have been computed for a user, the user is 
enqueued  again with an updated timestamp. Active users who 
consume (or are estimated to soon exhaust) all their 
recommendations are requeued with much higher priority; typically, 
these users receive new suggestions within an hour. 



Overall Architecture: Flow 
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Graph loaded once a day, what about new users? 
 

Link prediction for new users 
 Challenging due to sparsity:  their egocentric networks small and not 

well connected to the rest of the graph (cold start problem) 
 Important for social media services: user retention strongly affected by 

ability to find a community with which to engage.  
 Any system intervention is only effective within a relatively short time 

window. (if users are unable to find value in a service, they are unlikely 
to return) 

 
1. new users are given high priority in the Cassovary queue,  
2. a completely independent set of algorithms for real-time 

recommendations, specifically targeting new users.  



Algorithms 
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 Asymmetric nature of the follow relationship 
(other  social networks e.g., Facebook or LinkedIn 
require the consent of both participating 
members) 
 

 Directed edge case is similar to the user-item 
recommendations problem where the “item” is 
also a user. 



Algorithms: SALSA 
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SALSA (Stochastic Approach for Link-Structure Analysis) 
a variation of HITS 

hubs authorities 

As in HITS 
hubs  
authorities  

HITS 
 Good hubs point to good authorities 
 Good authorities are pointed by good hubs 

 
hub weight = sum of the authority weights of the 
authorities pointed to by the hub 
 
 
 

authority weight = sum of the hub weights that 
point to this authority. 





jij

ji ah
:





ijj
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:



Algorithms: SALSA 
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Random walks to rank hubs and authorities 
 
 Two different random walks (Markov chains): a chain of hubs and a 

chain of authorities 
 Each walk traverses nodes  only in one side by traversing two links in 

each step h->a-h, a->h->a  

Transition matrices of each Markov chain: 
H and A 
 

W: the adjacency of the directed graph 
Wr: divide each entry by the sum of its row 
Wc: divide each entry by the sum of its 
column 
 

H = WrWc
T  

A = Wc
T Wr 

 

Proportional to the degree 

hubs authorities 



Algorithms: Circle of trust 
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Circle of trust:  the result of an egocentric random walk 
(similar to personalized (rooted) PageRank) 
  
 
 Computed in an online fashion (from scratch each time) given a set 

of parameters (# of random walk steps, reset probability, pruning 
settings to discard low probability vertices, parameters to control 
sampling of outgoing edges at vertices with large out-degrees, etc.) 
 

 Used in a variety of Twitter products, e.g., in search and discovery, 
content from users in one's circle of trust upweighted 

 



Algorithms: SALSA 
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Hubs: 500 top-ranked nodes from the user's circle of trust 
Authorities: users that the hubs follow 
 

Hub vertices:  user similarity (based on homophily, also useful) 
Authority vertices : “interested in" user recommendations.  



Algorithms: SALSA 

84 

How it works 
 
SALSA mimics the recursive nature of the problem: 
 A user u is likely to follow those who are followed by users that are similar to u.  
 A user  is similar to u if  the user follow the same (or similar) users.  
 
 
I. SALSA provides similar users to u on the LHS and similar followings of those on 

the RHS.  
II. The random walk ensures equitable distribution of scores in both directions 
III. Similar users are selected from the circle of trust of the user through 

personalized PageRank. 
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 Offline experiments on retrospective data 
 Online A/B testing on live traffic 
 
Various parameters may interfere: 
 How the results are rendered (e.g., explanations) 
 Platform (mobile, etc.) 
 New vs old users 
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Follow-through rate (FTR) (precision) 
 
 Does not capture recall  
 Does not capture lifecycle effects (newer users more 

receptive, etc. )  
 Does not measure the quality of the recommendations: 

all follow edges are not equal 

Engagement per impression  (EPI): 
After a recommendation is accepted, the amount of 
engagement by the user on that recommendation in a 
specified time interval called the observation interval.  
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 Add metadata to vertices (e.g., user profile information) and 

edges (e.g., edge weights, timestamp, etc.) 
 

 Consider interaction graphs (e.g., graphs defined in terms of 
retweets, favorites, replies, etc.) 
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Two phase algorithm 
 
 Candidate generation: produce  a list of promising 

recommendations for each user, using any algorithm  
 

 Rescoring: apply a machine-learned model to the candidates, 
binary classification problem (logistic regression) 

First phase: recall + diversity 
Second phase: precision + maintain diversity 
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in-memory processing on a single server 
 

Why? 
1. The alternative (a partitioned, distributed graph processing 

engine) significantly more complex and difficult to build,  
2. It was feasible (72GB -> 144GB, 5 bytes per edge (no metadata); 

24-36 months lead time) 
 

• In memory – not uncommon (google indexes + Facebook, Twitter many cache 
servers 

•  A single machine  
• Graph distribution still hard (hash partitioning, minimize the number of 

edges that cross-partition (two stage, over partition #clusters>>#servers, 
still skew problems), use replication to provide n-hop guarantee (all n-
neighbors in a singe site) 

• Avoids extra protocols (e.g., replication for fault-tolerance) 
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In memory graph processing engine, written in Scala 
 

 Once loaded into memory, graph is immutable  
 Fault tolerance provided by replication, i.e., running many instances of 

Cassovary, each holding a complete copy of the graph in memory. 
 Access to the graph via vertex-based queries such as retrieving the set 

of outgoing edges for a vertex and sampling a random outgoing edge.  
 Multi-threaded: each query is handled by a separate thread. 
 Graph stored as optimized adjacency lists:  the adjacency lists of all 

vertices in large shared arrays  plus indexes  (start, length) into these 
shared arrays  

 No compression  
 Random walks implemented using  the Monte-Carlo method,  

 the walk is carried out from a vertex by repeatedly choosing a 
random outgoing edge and updating a visit counter.   

 Slower than a standard matrix-based implementation, but low 
runtime memory overhead 
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 Reduces the problem of HITS with tightly knit communities 
(TKC effect) 

 Better for single-topic communities 
 More efficient implementation 



HITS and the TKC effect 

• The HITS algorithm favors the most dense 
community of hubs and authorities 

– Tightly Knit Community (TKC) effect 
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