
Λ14 Διαδικτυακά Κοινωνικά
Δίκτυα και Μέσα

Link Prediction

1

Motivation

 Recommending new friends in online social networks.

 Predicting the participation of actors in events

 Suggesting interactions between the members of a
company/organization that are external to the hierarchical
structure of the organization itself.

 Predicting connections between members of terrorist
organizations who have not been directly observed to work
together.

 Suggesting collaborations between researchers based on co-
authorship.
 Overcoming the data-sparsity problem in recommender
systems using collaborative filtering

2

Motivation

In social networks:

 Increases user engagement
 Controls the growth of the network

3

Outline

 Estimating a score for each edge (seminal
work of Liben-Nowell&Kleinberg)

 Classification approach

 The who to follow service at Twitter

4

Problem Definition

Link prediction problem: Given the links in a social
network at time t, predict the edges that will be
added to the network during the time interval from
time t to a given future time t’

 Based solely on the topology of the network (social proximity) (the
more general problem also considers attributes of the nodes and links)

 Different from the problem of inferring missing (hidden) links (there
is a temporal aspect)

To save experimental effort in the laboratory or in the field

5

Problem Formulation (details)

Consider a social network G = (V, E) where each edge e = <u, v> E represents an
interaction between u and v that took place at a particular time t(e)

(multiple interactions between two nodes as parallel edges with different timestamps)

For two times, t < t′, let G[t, t′] denote subgraph of G consisting of all edges with a
timestamp between t and t′

 For four times, t0 < t′0 < t1 < t′1, given G[t0, t′0], we wish to output a list of edges not
in G[t0, t′ 0] that are predicted to appear in G[t1, t′1]

 [t0, t′0] training interval
 [t1, t′1] test interval

6

Problem Formulation (details)

Prediction for a subset of nodes

Two parameters: κtraining and κtest

Core: all nodes that are incident to at least κtraining edges in G[t0,
t′0], and at least κtest edges in G[t1, t′1]

 Predict new edges between the nodes in Core

7

Example Dataset: co-authorship

t0 = 1994, t′0 = 1996: training interval -> [1994, 1996]
t1 = 1997, t′1 = 1999: test interval -> [1997, 1999]

- Gcollab = <V, Eold> = G[1994, 1996]
- Enew: authors in V that co-author a paper during the test interval but not during the
training interval

κtraining = 3, κtest = 3: Core consists of all authors who have written at least 3 papers
during the training period and at least 3 papers during the test period

Predict Enew

8

Methods for Link Prediction (outline)

 Assign a connection weight score(x, y) to
each pair of nodes <x, y> based on the
input graph

 Produce a ranked list of decreasing order
of score

 We can consider all links incident to a specific node x, and
recommend to x the top ones

 If we focus to a specific x, the score can be seen as a
centrality measure for x

9

Methods for Link Prediction (outline)

How to assign the score(x, y) between
two nodes x and y?

 Some form of similarity or node proximity

10

Methods for Link Prediction:
Neighborhood-based

The larger the overlap of the neighbors of two
nodes, the more likely the nodes to be linked in
the future

11

Methods for Link Prediction:
Neighborhood-based

Let Γ(x) denote the set of neighbors of x in Gold

Common neighbors:

Jaccard coefficient:

The probability that both x and y
have a feature for a randomly
selected feature that either x or y
has

A adjacency matrix
 Ax,y

2 :Number of different
paths of length 2

12

Methods for Link Prediction:
Neighborhood-based

Adamic/Adar

 Assigns large weights to common neighbors z of x and y which
themselves have few neighbors (weight rare features more
heavily)

 Neighbors who are linked with 2 nodes are assigned weight = 1/log(2) = 1.4
 Neighbors who are linked with 5 nodes are assigned weight = 1/log(5) = 0.62

13

Methods for Link Prediction:
Neighborhood-based

Preferential attachment

 Researchers found empirical evidence to suggest that co-authorship is
correlated with the product of the neighborhood sizes

Based on the premise that the probability that a new edge has
node x as its endpoint is proportional to |Γ(x)|, i.e., nodes like
to form ties with ‘popular’ nodes

 This depends on the degrees of the nodes not on their neighbors per se

14

Methods for Link Prediction:
Neighborhood-based

1. Overlap
2. Jaccard
3. Adamic/Adar
4. Preferential attachment

15

Methods for Link Prediction:
Shortest Path

For x, y ∈ V × V − Eold,
score(x, y) = (negated) length of shortest path between

x and y

 If there are more than n pairs of nodes tied for the
shortest path length, order them at random.

16

Methods for Link Prediction: based on the

ensemble of all paths

Not just the shortest, but all paths
between two nodes

17

Methods for Link Prediction: based on the

ensemble of all paths

Katzβ measure

Sum over all paths of length l
β > 0 (< 1) is a parameter of the predictor, exponentially damped
to count short paths more heavily

 Small β predictions much like common neighbors
β small, degree, maximal β, eigenvalue

18

Methods for Link Prediction: based on the

ensemble of all paths

 Unweighted version, in which pathx,y
(1) = 1, if x and y have

collaborated, 0 otherwise
 Weighted version, in which pathx,y

(1) = #times x and y have
collaborated

Closed form:

19

Katzβ measure

Methods for Link Prediction: based on the

ensemble of all paths

Consider a random walk on Gold that starts at x and iteratively
moves to a neighbor of x chosen uniformly at random from Γ(x).

The Hitting Time Hx,y from x to y is the expected number of steps it
takes for the random walk starting at x to reach y.

score(x, y) = − Hx,y

The Commute Time Cx,y from x to y is the expected number of
steps to travel from x to y and from y to x

score(x, y) = − (Hx,y + Hy,x)

20

Not symmetric, can be shown

Methods for Link Prediction: based on the

ensemble of all paths

Can also consider stationary-normed versions:
(to counteract the fact that Hx,y is rather small when y is a node
with a large stationary probability)
score(x, y) = − Hx,y πy

score(x, y) = −(Hx,y πy + Hy,x πx)
21

Example: hit time in a line

1 i-1 i i+1 n

Methods for Link Prediction: based on the

ensemble of all paths

The hitting time and commute time measures are sensitive to
parts of the graph far away from x and y -> periodically reset
the walk

score(x, y) = stationary probability of y in a rooted PageRank

Random walk on Gold that starts at x and has a probability α of returning to
x at each step

Rooted Page Rank: Starts from x, with probability (1 – a)
moves to a random neighbor and with probability a returns
to x

22

Methods for Link Prediction: based on the

ensemble of all paths

SimRank
Two objects are similar, if they are related to similar objects

Two objects x and y are similar, if they are related to objects a and
b respectively and a and b are themselves similar

Base case: similarity(x, x) = 1

Average similarity between neighbors of x and neighbors of y

23

score(x, y) = similarity(x, y)

SimRank

Introduced for directed graphs, I(x): in-neighbors of x

24

Average similarity between in-neighbors of a and in-neighbors of b
C a constant between 0 and 1
n2 equations

Iterative computation

s0(x, y) = 1 if x = y and 0 otherwise
sk+1 based on the sk values of its (in-neighbors) computed at iteration k

SimRank
Graph G2:
A node for each pair of nodes
(x, y) (a, b), if x a and y b
Scores flow from a node to its neighbors
C gives the rate of decay as similarity flows across
edges (C = 0.8 in the example)

Symmetric pairs, Self-loops
Prune by considering only nodes within a a radius

25

SimRank

Expected Meeting Distance (EMD): how soon two random
surfers are expected to meet at the same node if they started
at nodes x and y and randomly walked (in lock step) the graph
backwards

26

= 3,
a lower similarity than between v and
w but higher than between u and v
(or u and w).

=
m(u, v) = m(u,w) = , m(v,
w) = 1
v and w are much more
similar than u is to v or w.

SimRank

Let us consider G2

A node (a, b) as a state of the tour in G: if a moves to c, b moves to
d in G, then (a, b) moves to (c, d) in G2

A tour in G2 of length n represents a pair of tours in G where each
has length n

What are the states in G2 that correspond to “meeting” points?

27

SimRank

What are the states in G2 that correspond to “meeting” points?

Singleton nodes (common neighbors)

The EMD m(a, b) is just the expected distance (hitting time) in G2
between (a, b) and any singleton node

The sum is taken over all walks that start from (a, b) and end at a
singleton node

28

29

SimRank for bipartite graphs

 People are similar if they purchase similar items.
 Items are similar if they are purchased by similar people
Useful also for recommendations

30

SimRank for bipartite graphs

31

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

…

…

Conference

Author

Q: What is most related
 conference to ICDM?

SimRank

SimRank

ICDM

KDD

SDM

ECML

PKDD

PAKDD

CIKM

DMKD

SIGMOD

ICML

ICDE

0.009

0.011

0.008
0.007

0.005

0.005

0.005

0.004
0.004

0.004

32

Methods for Link Prediction: based on
paths

1. Shortest paths
2. Katz
3. Hitting and commute time
4. Rooted page rank
5. SimRank

33

Methods for Link Prediction: other

Low rank approximations

M adjacency matrix , represent M with a lower rank
matrix Mk

Apply SVD (singular value decomposition)

The rank-k matrix that best approximates M

34

Singular Value Decomposition

• r : rank of matrix A

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA)

• : left singular vectors (eig-vectors of AAT)

• : right singular vectors (eig-vectors of ATA)

•

r

2

1

r

2

1

r21
T

v

v

v

σ

σ

σ

uuuVΣUA

[n×r] [r×r] [r×n]

r21 u,,u,u

r21 v,,v,v

T
rrr

T
222

T
111 vuσvuσvuσA

Unseen Bigrams
Unseen bigrams: pairs of word that co-occur in a test corpus,
but not in the corresponding training corpus
Not just score(x, y) but score(z, y) for nodes z that are similar to
x --- Sx

(δ) the δ nodes most related to x

36

Methods for Link Prediction: other

Methods for Link Prediction: High-level

approaches

Clustering

 Compute score(x, y) for al edges in Eold

 Delete the (1-p) fraction of the edges whose
score is the lowest, for some parameter p

 Recompute score(x, y) for all pairs in the
subgraph

37

How to Evaluate the Prediction (outline)

Each link predictor p outputs a ranked list Lp of pairs in V × V −
Eold: predicted new collaborations in decreasing order of
confidence

In this paper, focus on Core, thus

E∗new = Enew ∩ (Core × Core) = |E∗new|

Evaluation method: Size of the intersection of

 the first n edge predictions from Lp that are in Core × Core, and
 the set E∗new

 How many of the (relevant) top-n predictions are correct (precision?)

38

Evaluation: baseline

Baseline: random predictor
Randomly select pairs of authors who did not
collaborate in the training interval

Probability that a random prediction is correct:

In the datasets, from 0.15% (cond-mat) to 0.48% (astro-ph)

39

Evaluation: Factor improvement over
random

40

Evaluation: Factor improvement over
random

41

Evaluation: Average relevance performance
(random)

 average ratio over the five
datasets of the given predictor's
performance versus a baseline
predictor's performance.
 the error bars indicate the
minimum and maximum of this
ratio over the five datasets.
 the parameters for the starred
predictors are: (1) for weighted
Katz, β= 0.005; (2) for Katz
clustering, β1 = 0.001; ρ = 0.15;
β2 = 0.1; (3) for low-rank inner
product, rank = 256; (4) for
rooted Pagerank, α = 0.15; (5)
for unseen bigrams,
unweighted, common
neighbors with δ = 8; and (6) for
SimRank, C (γ) = 0.8.

42

Evaluation: Average relevance performance
(distance)

43

Evaluation: Average relevance performance
(neighbors)

44

Evaluation: prediction overlap

correct

 How much similar are the
predictions made by the
different methods?

Why?

45

Evaluation: datasets

 How much does the performance of the different methods
depends on the dataset?

 (rank) On 4 of the 5 datasets best at an intermediate rank
 On qr-qc, best at rank 1, does it have a “simpler” structure”?
 On hep-ph, preferential attachment the best
 Why is astro-ph “difficult”?
The culture of physicists and physics collaboration

46

Evaluation: small world

The shortest path even in unrelated disciplines
is often very short

Basic classifier on graph distances does not work

47

Evaluation: restricting to distance three

Many pairs of authors separated by a
graph distance of 2 will not
collaborate and
Many pairs who collaborate are at
distance greater than 2

Disregard all distance 2 pairs (do not just
“close” triangles)

48

Evaluation: the breadth of data

Three additional datasets
1. Proceedings of STOC and FOCS
2. Papers for Citeseer
3. All five of the arXiv sections

Common neighbors vs Random

 Suggests that is easier to predict links
within communities

49

Extensions

 Improve performance. Even the best (Katz clustering on
gr-qc) correct on only about 16% of its prediction

 Improve efficiency on very large networks (approximation
of distances)

 Treat more recent collaborations as more important

 Additional information (paper titles, author institutions,
etc)
To some extent latently present in the graph

50

Outline

 Estimating a score for each edge (seminal work of Liben-
Nowell&Kleinberg
 Neighbors measures, Distance measures, Other

methods
 Evaluation

 Classification approach
 Twitter

51

Using Supervised Learning

Given a collection of records (training set)

Each record contains
 a set of attributes (features) + the class attribute.

Find a model for the class attribute as a function of the values
of other attributes.

Goal: previously unseen records should be assigned a class as

accurately as possible.

A test set is used to determine the accuracy of the model.

Usually, the given data set is divided into training and test sets, with
training set used to build the model and test set used to validate it.

52

Illustrating the Classification Task

Apply

Model

Induction

Deduction

Learn

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Learning

algorithm

Training Set

53

Classification Techniques

• Decision Tree based Methods

• Rule-based Methods

• Memory based reasoning

• Neural Networks

• Naïve Bayes and Bayesian Belief Networks

• Support Vector Machines

• Logistic Regression

54

Example of a Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model: Decision Tree

55

Classification for Link Prediction

Class?
Features (predictors)?

PropFlow: random walks, stops at l or when cycle
56

Using Supervised Learning: why?

 Even training on a single feature may outperform
ranking (restriction to n-neighborhoods)

 Dependencies between features

57

How to split the graph to get train data

 tx length of computing features – ty length of determining
the class attribute

 Large tx => better quality of features as the network reaches
saturation

 Increasing ty increases positives

58

Imbalance
 Sparse networks: |E| = k |V| for constant k << |V|

The class imbalance ratio for link prediction in a sparse
network is Ω(|V|/1) when at most |V| nodes are added

Missing links is |V|2

Positives V

Treat each neighborhood
as a separate problem

59

Metrics for Performance Evaluation

Confusion Matrix:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes TP FN

Class=No FP TN

FNFPTNTP

TNTP

Accuracy

60

ROC Curve
TPR (sensitivity)=TP/(TP+FN) (percentage of

positive classified as positive)

FPR = FP/(TN+FP) (percentage of negative
classified as positive)

• (0,0): declare everything
 to be negative class

• (1,1): declare everything
 to be positive class

• (0,1): ideal

Diagonal line: Random guessing

Below diagonal line: prediction is

opposite of the true class

AUC: area under the ROC 61

Results

Ensemble of classifiers: Random Forest

62

Random forest: Ensemble classifier that constructs a multitude of decision trees at
training time and output the class that is the mode (most frequent) of the classes
(classification) or mean prediction (regression) of the individual trees.

Results

63

Outline

 Estimating a score for each edge (seminal work of Liben-
Nowell&Kleinberg
 Neighbors measures, distance measures, other methods
 Evaluation

 Classification approach
 Brief background on classification
 Issues

 The who to follow service at Twitter
 Some practical considerations
 Overall architecture of a real social network
 SALSA (yet another link analysis algorithm
 Some evaluation issues

64

Introduction

65

Wtf (“Who to Follow"): the Twitter user recommendation service

 Twitter: 200 million users, 400 million tweets every day (as of early 2013)
http://www.internetlivestats.com/twitter-statistics/
 Twitter needs to help existing and new users to discover connections to

sustain and grow
 Also used for search relevance, discovery, promoted products, etc.

http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/

Introduction

66

Difference between:
 Interested in
 Similar to

Is it a “social” network as Facebook?

The Twitter graph

67

http://blog.ouseful.info/2011/07/07/visualising-twitter-friend-connections-using-gephi-an-example-using-
wireduk-friends-network/

 Node: user (directed) edge: follows

 Statistics (August 2012)

 over 20 billion edges (only active users)
 power law distributions of in-degrees and

out-degrees.
 over 1000 with more than 1 million

followers,
 25 users with more than 10 million

followers.

The Twitter graph: storage

68

 Stored in a graph database called FlockDB which uses MySQL
as the underlying storage engine

 Sharding and replication by a framework called Gizzard

 Both custom solutions developed internally but open sourced

 FlockDB holds the “ground truth" for the state of the graph

 Optimized for low-latency, high-throughput reads and writes,
and efficient intersection of adjacency lists (needed to deliver @-

replies, or messages targeted to a specific user received mutual followers of the

sender and recipient)

 hundreds of thousands of reads per second and tens of thousands of

writes per second.

The Twitter graph: analysis

69

• Instead of simple get/put queries, many graph algorithms
involve large sequential scans over many vertices followed by
self-joins (for example, to materialize egocentric follower
neighborhoods)

• not time sensitive unlike graph manipulations tied directly to
user actions (adding a follower) which have tight latency
bounds.

OLAP (online analytical processing) vs. OLTP (online transaction
processing)
analytical workloads that depend on sequential scans vs. short,
primarily seek-based workloads that provide an interactive
service

The Twitter graph: analysis

70

• Instead of simple get/put queries, many graph algorithms
involve large sequential scans over many vertices followed by
self-joins (for example, to materialize egocentric follower
neighborhoods)

• not time sensitive unlike graph manipulations tied directly to
user actions (adding a follower) which have tight latency
bounds.

OLAP (online analytical processing) vs. OLTP (online transaction
processing)
analytical workloads that depend on sequential scans vs. short,
primarily seek-based workloads that provide a user-facing
service

History of WTF

71

3 engineers, project started in spring 2010, product
delivered in summer 2010

Basic assumption: the whole graph fits into
memory of a single server

Design Decisions: To Hadoop or not?

72

Case study: MapReduce implementation of PageRank

• Each iteration a MapReduce job
• Serialize the graph as adjacency lists for each vertex, along with the current

PageRank value.
• Mappers process all vertices in parallel: for each vertex on the adjacency list,

the mapper emits an intermediate key-value pair: (destination vertex, partial
PageRank)

• Gather all key-value pairs with the same destination vertex, and each
Reducer sums up the partial PageRank contributions

• Convergence requires dozens of iterations. A control program sets up the

MapReduce job, waits for it to complete, and checks for convergence by
reading in the updated PageRank vector and comparing it with the previous.

• This basic structure can be applied to a large class of “message-passing"
graph (e.g., breadth-first search)

Design Decisions: To Hadoop or not?

73

Shortcomings of MapReduce implementation of PageRank

 MapReduce jobs have relatively high startup costs (in Hadoop, on a large,
busy cluster, can be tens of seconds) , this places a lower bound on iteration
time.

 Scale-free graphs, whose edge distributions follow power laws, create
stragglers in the reduce phase. (e.g., the reducer assigned to google.com)
Combiners and other local aggregation techniques help

 Must shuffle the graph structure (i.e., adjacency lists) from the mappers to
the reducers at each iteration. Since in most cases the graph structure is
static, wasted effort (sorting, network traffic, etc.).

 The PageRank vector is serialized to HDFS, along with the graph structure, at
each iteration. Excellent fault tolerance, but at the cost of performance.

Design Decisions: To Hadoop or not?

74

Besides Hadoop:

Improvements: HaLoop Twister, and PrIter

Alternatives:
 Google's Pregel implements the Bulk Synchronous Parallel

model : computations at graph vertices that dispatch
“messages" to other vertices. Processing proceeds in
supersteps with synchronization barriers between each.

 GraphLab and its distributed variant: computations either
through an update function which defines local computations
(on a single vertex) or through a sync mechanism which defines
global aggregation in the context of different consistency
models.

Design Decisions: To Hadoop or not?

75

Decided to build their own system

Hadoop reconsidered:
 new architecture completely on Hadoop
 in Pig a high-level dataflow language for large, semi-structured

datasets compiled into physical plans executed on Hadoop
 Pig Latin primitives for projection, selection, group, join, etc.

Why not some other graph processing system?
For compatibility, e.g., to use existing analytics hooks for job
scheduling, dependency management, etc.

Overall Architecture

76

Overall Architecture: Flow

77

1. Daily snapshots of the Twitter graph imported from FlockDB into the
Hadoop data warehouse

2. The entire graph loaded into memory onto the Cassovary servers,
each holds a complete copy of the graph in memory.

3. Constantly generate recommendations for users consuming from a
distributed queue containing all Twitter users sorted by a “last
refresh" timestamp (~500 ms per thread to generate ~100
recommendations for a user)

4. Output from the Cassovary servers inserted into a sharded MySQL
database, called, WTF DB.

5. Once recommendations have been computed for a user, the user is
enqueued again with an updated timestamp. Active users who
consume (or are estimated to soon exhaust) all their
recommendations are requeued with much higher priority; typically,
these users receive new suggestions within an hour.

Overall Architecture: Flow

78

Graph loaded once a day, what about new users?

Link prediction for new users
 Challenging due to sparsity: their egocentric networks small and not

well connected to the rest of the graph (cold start problem)
 Important for social media services: user retention strongly affected by

ability to find a community with which to engage.
 Any system intervention is only effective within a relatively short time

window. (if users are unable to find value in a service, they are unlikely
to return)

1. new users are given high priority in the Cassovary queue,
2. a completely independent set of algorithms for real-time

recommendations, specifically targeting new users.

Algorithms

79

 Asymmetric nature of the follow relationship
(other social networks e.g., Facebook or LinkedIn
require the consent of both participating
members)

 Directed edge case is similar to the user-item
recommendations problem where the “item” is
also a user.

Algorithms: SALSA

80

SALSA (Stochastic Approach for Link-Structure Analysis)
a variation of HITS

hubs authorities

As in HITS
hubs
authorities

HITS
 Good hubs point to good authorities
 Good authorities are pointed by good hubs

hub weight = sum of the authority weights of the
authorities pointed to by the hub

authority weight = sum of the hub weights that
point to this authority.

jij

ji ah
:

ijj

ji ha
:

Algorithms: SALSA

81

Random walks to rank hubs and authorities

 Two different random walks (Markov chains): a chain of hubs and a

chain of authorities
 Each walk traverses nodes only in one side by traversing two links in

each step h->a-h, a->h->a

Transition matrices of each Markov chain:
H and A

W: the adjacency of the directed graph
Wr: divide each entry by the sum of its row
Wc: divide each entry by the sum of its
column

H = WrWc
T

A = Wc
T Wr

Proportional to the degree

hubs authorities

Algorithms: Circle of trust

82

Circle of trust: the result of an egocentric random walk
(similar to personalized (rooted) PageRank)

 Computed in an online fashion (from scratch each time) given a set

of parameters (# of random walk steps, reset probability, pruning
settings to discard low probability vertices, parameters to control
sampling of outgoing edges at vertices with large out-degrees, etc.)

 Used in a variety of Twitter products, e.g., in search and discovery,
content from users in one's circle of trust upweighted

Algorithms: SALSA

83

Hubs: 500 top-ranked nodes from the user's circle of trust
Authorities: users that the hubs follow

Hub vertices: user similarity (based on homophily, also useful)
Authority vertices : “interested in" user recommendations.

Algorithms: SALSA

84

How it works

SALSA mimics the recursive nature of the problem:
 A user u is likely to follow those who are followed by users that are similar to u.
 A user is similar to u if the user follow the same (or similar) users.

I. SALSA provides similar users to u on the LHS and similar followings of those on

the RHS.
II. The random walk ensures equitable distribution of scores in both directions
III. Similar users are selected from the circle of trust of the user through

personalized PageRank.

Evaluation

85

 Offline experiments on retrospective data
 Online A/B testing on live traffic

Various parameters may interfere:
 How the results are rendered (e.g., explanations)
 Platform (mobile, etc.)
 New vs old users

Evaluation: metrics

86

Follow-through rate (FTR) (precision)

 Does not capture recall
 Does not capture lifecycle effects (newer users more

receptive, etc.)
 Does not measure the quality of the recommendations:

all follow edges are not equal

Engagement per impression (EPI):
After a recommendation is accepted, the amount of
engagement by the user on that recommendation in a
specified time interval called the observation interval.

Extensions

87

 Add metadata to vertices (e.g., user profile information) and

edges (e.g., edge weights, timestamp, etc.)

 Consider interaction graphs (e.g., graphs defined in terms of
retweets, favorites, replies, etc.)

Extensions

88

Two phase algorithm

 Candidate generation: produce a list of promising

recommendations for each user, using any algorithm

 Rescoring: apply a machine-learned model to the candidates,
binary classification problem (logistic regression)

First phase: recall + diversity
Second phase: precision + maintain diversity

References
D. Liben-Nowell, and J. Kleinberg, The link-prediction problem for social
networks. Journal of the American Society for Information Science and
Technology, 58(7) 1019–1031 (2007)

R. Lichtenwalter, J. T. Lussier, N. V. Chawla: New perspectives and
methods in link prediction. KDD 2010: 243-252

G. Jeh, J. Widom: SimRank: a measure of structural-context
similarity. KDD 2002: 538-543

P-N Tan, . Steinbach, V. Kumar. Introduction to Data Mining (Chapter 4)

P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, R.Zadeh. WTF: The Who to
Follow Service at Twitter, WWW 2013

R. Lempel, S. Moran: SALSA: the stochastic approach for link-structure
analysis. ACM Trans. Inf. Syst. 19(2): 131-160 (2001)

89

Extra slides

90

Design Decisions: How much memory?

91

in-memory processing on a single server

Why?
1. The alternative (a partitioned, distributed graph processing

engine) significantly more complex and difficult to build,
2. It was feasible (72GB -> 144GB, 5 bytes per edge (no metadata);

24-36 months lead time)

• In memory – not uncommon (google indexes + Facebook, Twitter many cache
servers

• A single machine
• Graph distribution still hard (hash partitioning, minimize the number of

edges that cross-partition (two stage, over partition #clusters>>#servers,
still skew problems), use replication to provide n-hop guarantee (all n-
neighbors in a singe site)

• Avoids extra protocols (e.g., replication for fault-tolerance)

Overall Architecture: Cassovary

92

In memory graph processing engine, written in Scala

 Once loaded into memory, graph is immutable
 Fault tolerance provided by replication, i.e., running many instances of

Cassovary, each holding a complete copy of the graph in memory.
 Access to the graph via vertex-based queries such as retrieving the set

of outgoing edges for a vertex and sampling a random outgoing edge.
 Multi-threaded: each query is handled by a separate thread.
 Graph stored as optimized adjacency lists: the adjacency lists of all

vertices in large shared arrays plus indexes (start, length) into these
shared arrays

 No compression
 Random walks implemented using the Monte-Carlo method,

 the walk is carried out from a vertex by repeatedly choosing a
random outgoing edge and updating a visit counter.

 Slower than a standard matrix-based implementation, but low
runtime memory overhead

Algorithms: SALSA

93

 Reduces the problem of HITS with tightly knit communities
(TKC effect)

 Better for single-topic communities
 More efficient implementation

HITS and the TKC effect

• The HITS algorithm favors the most dense
community of hubs and authorities

– Tightly Knit Community (TKC) effect

HITS and the TKC effect

• The HITS algorithm favors the most dense
community of hubs and authorities

– Tightly Knit Community (TKC) effect

1

1

1

1

1

1

HITS and the TKC effect

• The HITS algorithm favors the most dense
community of hubs and authorities

– Tightly Knit Community (TKC) effect

3

3

3

3

3

HITS and the TKC effect

• The HITS algorithm favors the most dense
community of hubs and authorities

– Tightly Knit Community (TKC) effect

32

32

32

3∙2

3∙2

3∙2

HITS and the TKC effect

• The HITS algorithm favors the most dense
community of hubs and authorities

– Tightly Knit Community (TKC) effect

33

33

33

32 ∙ 2

32 ∙ 2

HITS and the TKC effect

• The HITS algorithm favors the most dense
community of hubs and authorities

– Tightly Knit Community (TKC) effect

34

34

34

32 ∙ 22

32 ∙ 22

32 ∙ 22

HITS and the TKC effect

• The HITS algorithm favors the most dense
community of hubs and authorities

– Tightly Knit Community (TKC) effect

32n

32n

32n

3n ∙ 2n

3n ∙ 2n

3n ∙ 2n

after n iterations weight of node p is
proportional to the number
of (BF)n paths that leave
node p

HITS and the TKC effect

• The HITS algorithm favors the most dense
community of hubs and authorities

– Tightly Knit Community (TKC) effect

1

1

1

0

0

0

after normalization
with the max
element as n → ∞

