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Introduction

Diffusion: process by which a piece of information
is spread and reaches individuals through
interactions
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Why do we care?

Modeling epidemics
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CASCADING BEHAVIOR IN 
NETWORKS
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Innovation Diffusion in Networks

How new behaviors, practices, opinions and
technologies spread from person to person through a
social network as people influence their friends to adopt
new ideas

Why? Two classes of rational reasons:
 Direct-Benefit Effect: there are direct payoffs from

copying the decisions of others (relative advantage)
 E.g., Phone becomes more useful if more people use it

 Informational effect
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Informational Effect

Informational effect:
choices made by others can provide indirect information about
what they know (e.g., choosing restaurants)

Informational social influence (social proof):
a psychological phenomenon where people assume the actions of
others in an attempt to reflect correct behavior for a given
situation

 prominent in ambiguous social situations where people are
unable to determine the appropriate mode of behavior

 driven by the assumption that surrounding people possess
more knowledge about the situation
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Diffusion of innovation
Old studies
(mainly informational effect):

 Adoption of hybrid seed corn among farmers in Iowa

 Adoption of tetracycline by physicians in US

(mainly direct benefit)
 Technology (phone, email, etc)

Basic observations:
 High risk but high benefit
 Characteristics of early adopters
 Decisions made in the context of social structure
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Common principles:
 Complexity of people to understand and implement
 Observability, so that people can become aware that
others are using it
 Trialability, so that people can mitigate its risks by
adopting it gradually and incrementally
 Compatibility with the social system that is entering
(homophily as a barrier?)

Spread of Innovation
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An individual level model of direct-benefit effects in networks due
to S. Morris

The benefits of adopting a new behavior increase as more 
and more of the social network neighbors adopt it

A Coordination Game
Two players (nodes), u and w linked by an edge
Two possible behaviors (strategies): A and B

 If both u and w adapt A, get payoff a > 0
 If both u and w adapt B, get payoff b > 0
 If opposite behaviors, each gets a payoff 0

A Direct-Benefit Model
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Modeling Diffusion through a Network

u plays a copy of the game with each of its neighbors, its payoff is 
the sum of the payoffs in the games played on each edge  

 Say  p of the d neighbors of u neighbors adopt A and the other  
(1- p) adopt B, what should u do to maximize its payoff?

Threshold q for preferring A
(at least q of the neighbors 
follow A)

q = b/(a+b)

Two obvious equilibria, which ones?
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Modeling Diffusion through a Network: Cascading 

Behavior

Suppose that initially everyone is using B as a default behavior
A small set of “initial adopters” decide to use A

 When will this result in everyone eventually switching to A?

 If this does not happen, what causes the spread of A to stop?
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Modeling Diffusion through a Network: Cascading 

Behavior

a = 3, b = 2, q = 2/5

Step 1

Step 2

A
A

Chain reaction of switches to B -> A
cascade of  adoptions of A
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Modeling Diffusion through a Network: Cascading 

Behavior
a = 3, b = 2, q = 2/5

Step 3
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Modeling Diffusion through a Network: Cascading 

Behavior

 Observation: strictly progressive sequence of 
switches from  B to A

 Depends on the choice of the initial adapters and 
threshold q
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Modeling Diffusion through a Network: Cascading 

Behavior

1. A set of initial adopters who start with a new
behavior A, while every other node starts with
behavior B.

2. Nodes repeatedly evaluate the decision to switch
from B to A using a threshold of q.

3. If the resulting cascade of adoptions of A
eventually causes every node to switch from B to
A, then we say that the set of initial adopters
causes a complete cascade at threshold q.
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Modeling Diffusion through a Network: Cascading 

Behavior and “Viral Marketing”

Tightly-knit communities in the network can work to hinder
the spread of an innovation
(examples, age groups and life-styles in social networking sites, Mac users,
political opinions)

Strategies
 Improve the quality of A (increase the payoff a) (in the

example, set a = 4)

 Convince a small number of key people to switch to A

Network-level cascade innovation adoption models vs 
population-level (decisions based on the entire population)
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Cascades and Clusters

A cluster of density p is a set of nodes such that each node in the
set has at least a p fraction of its neighbors in the set

21

 Does not imply that any two nodes in the same cluster necessarily have 
much in common (what is the density of a cluster with all nodes?)

 The union of any two cluster of density p is also a cluster of density at 
least p



Cascades and Clusters
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Cascades and Clusters

Claim: Consider a set of initial adopters of behavior A, with a
threshold q for nodes in the remaining network to adopt behavior
A.

(i) (clusters as obstacles to cascades)
If the remaining network contains a cluster of density > 1 − q =>
the set of initial adopters will not cause a complete cascade.

(ii) (clusters are the only obstacles to cascades)
Whenever a set of initial adopters does not cause a complete

cascade =>
the remaining network contains a cluster of density > 1 − q.
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Cascades and Clusters

Proof of (i) (clusters as obstacles to cascades)

Proof by contradiction
Let v be the first node in the cluster that adopts A
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Cascades and Clusters

Proof of (ii) (clusters are the only obstacles to cascades)

Let S be the set of all nodes using B at the end of the process
Show that S is a cluster of density  > 1 - q
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Innovation Adoption Characteristics
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A crucial difference between learning a new idea and actually deciding to 
accept it (awareness vs adoption of an idea)



Diffusion, Thresholds and the Role of Weak 
Ties

Relation to weak ties and local bridges

q = 1/2

Bridges convey awareness but are weak at
transmitting costly to adopt behaviors
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Extensions of the Basic Cascade Model: 
Heterogeneous Thresholds

Each person values behaviors A and B
differently:

 If both u and w adapt A, u gets a payoff 
au > 0 and w a payoff  aw > 0
 If both u and w adapt B, u gets a payoff 
bu > 0 and w a payoff  bw > 0
 If opposite behaviors, each gets a 
payoff 0

Each node u has its own personal threshold qu ≥ bu /(au+ bu)
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Extensions of the Basic Cascade Model: 
Heterogeneous Thresholds

 Not just the power of influential people, but also the extent to which 
they have access to easily influenceable people

 What about the role of clusters?
A blocking cluster in the network is a set of nodes for which each node u
has more that 1 – qu fraction of its friends also in the set.
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Knowledge, Thresholds and Collective Action: 
Collective Action and Pluralistic Ignorance

A collective action problem: an activity produces
benefits only if enough people participate (population
level effect)

Pluralistic ignorance: a situation in which people have
wildly erroneous estimates about the prevalence of
certain opinions in the population at large (lack of
knowledge)
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Knowledge, Thresholds and Collective Action: 
A model for the effect of knowledge on collective actions

 Each person has a personal threshold which encodes her willingness to
participate
 A threshold of k means that she will participate if at least k people in total
(including herself) will participate
 Each person in the network knows the thresholds of her neighbors in the
network

 w will never join, since
there are only 3 people
 v
 u

 Is it safe for u to join?
 Is it safe for u to join?
(common knowledge)
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Knowledge, Thresholds and Collective Action: 
Common Knowledge and Social Institutions

 Not just transmit a message, but also make the listeners or
readers aware that many others have gotten the message as
well (Apple Macintosh introduced in a Ridley-Scott-directed
commercial during the 1984 Super Bowl)

 Social networks do not simply allow for interaction and flow
of information, but these processes in turn allow individuals to
base decisions on what other knows and on how they expect
others to behave as a result
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Cascade Capacity

Given a network, what is the largest threshold at which any
“small” set of initial adopters can cause a complete cascade?

Called cascade capacity of the network

 Infinite network in which each node has a finite number 
of neighbors

 Small means finite set of nodes
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Cascade Capacity

Same model as before:

 Initially, a finite set S of nodes has behavior A and all others adopt B

 Time runs forwards in steps, t = 1, 2, 3, …

 In each step t, each node other than those in S uses the decision rule
with threshold q to decide whether to adopt behavior A or B

 The set S causes a complete cascade if, starting from S as the early
adopters of A, every node in the network eventually switched permanently
to A.

The cascade capacity of the network is the largest value of
the threshold q for which some finite set of early adopters
can cause a complete cascade.
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An infinite path

An infinite grid

 An intrinsic property of the network
 Even if A better than B, for q strictly between 3/8 and 
1/2, A cannot win

Spreads if ≤ 1/2

Spreads if ≤ 3/8
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How large can a cascade capacity be?

 At least 1/2

 Is there any network with a higher cascade 
capacity?

 This will mean that an inferior technology can displace a 
superior one, even when the inferior technology starts at only 
a small set of initial adopters.
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Claim: There is no network in which the
cascade capacity exceeds 1/2
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Cascade Capacity



Interface: the set of A-B edges

In each step the size of the interface strictly decreases
Why is this enough?
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At some step, a number of nodes decide to switch from B to A

General Remark: In this simple model, a worse technology cannot displace
a better and wide-spread one
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Compatibility and Cascades

Extension: an individual can sometimes choose a combination of
two available behaviors -> three strategies A, B and AB

Coordination game with a
bilingual option

 Two bilingual nodes can
interact using the better of the
two behaviors
 A bilingual and a monolingual
node can only interact using the
behavior of the monolingual
node

AB is a dominant 
strategy?

Cost c associated with 
the AB strategy
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Example (a = 2, b =3, c =1)

B: 0+b = 3
A: 0+a = 2
AB: b+a-c = 4 √

B: b+b = 6 √
A: 0+a = 2
AB: b+b-c = 5

41
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Example (a = 5, b =3, c =1)

B: 0+b = 3
A: 0+a = 5
AB: b+a-c = 7 √

B: 0+b = 3
A: 0+a = 5
AB: b+a-c = 7 √

B: 0+b = 3
A: α+a = 10 √
AB: a+a-c = 9 42

Compatibility and Cascades



Example (a = 5, b =3, c =1)

 Strategy AB spreads, then behind it, nodes switch permanently from AB
to A

 Strategy B becomes vestigial 
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 Given an infinite graph, for which payoff values of a, b and c, is it 
possible for a finite set of nodes to cause a complete cascade of 
A?

Set b = 1 (default technology)

 Given an infinite graph, for which payoff values of a (how much
better the new behavior A) and c (how compatible should it be
with B), is it possible for a finite set of nodes to cause a
complete cascade of A?

A does better when it has a higher payoff, but in general hard
time cascading when the level of compatibility is “intermediate”
(value of c neither too high nor too low)
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 (for two strategies) Spreads when q ≤ 1/2, a ≥ b (a  better technology always spreads)

Example: Infinite path

Assume that the set of initial adopters forms a contiguous interval of nodes on the path
Because of the symmetry, strategy changes to the right of the initial adopters

A: 0+a = a
B: 0+b = 1
AB: a+b-c = a+1-c

Break-even: 
a + 1 – c = 1 => c = a

B better than ABInitially,
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A: 0+a = a
B: 0+b = 1
AB: a+b-c = a+1-c
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a ≥ 1
A: a
B: 2
AB: a+1-c

a < 1, 
A: 0+a = a
B: b+b = 2 √
AB: b+b-c = 2-c
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What does the triangular cut-
out mean?
 If too easy,  infiltration
 If too hard, direct conquest
 In between, “buffer” of AB
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Reference

Networks, Crowds, and Markets (Chapter 19)
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EPIDEMIC SPREAD
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Epidemics

Understanding the spread of viruses 
and epidemics is of great interest to 
• Health officials
• Sociologists
• Mathematicians
• Hollywood 

The underlying contact network clearly affects the 
spread of an epidemic
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Epidemics

• Model epidemic spread as a random process 
on the graph and study its properties

• Questions that we can answer: 

– What is the projected growth of the infected 
population?

– Will the epidemic take over most of the network?

– How can we contain the epidemic spread?

Diffusion of  ideas and the spread of influence 
can also be modeled as epidemics
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A simple model

 Branching process: A person transmits the disease to each 
people she meets independently with a probability p

 An infected person meets k (new) people while she is 
contagious

 Infection proceeds in waves. 

Contact network is a 
tree with branching 
factor k
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Infection Spread

• We are interested in the number of people 
infected (spread) and the duration of the 
infection

• This depends on the infection probability p
and the branching factor k

An aggressive 
epidemic with high 
infection probability

The epidemic survives
after three steps
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Infection Spread

• We are interested in the number of people 
infected (spread) and the duration of the 
infection

• This depends on the infection probability p
and the branching factor k A mild epidemic with 

low infection 
probability

The epidemic dies out
after two steps
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Basic Reproductive Number
• Basic Reproductive Number (𝑅0): the expected number of new 

cases of the disease caused by a single individual
𝑅0 = 𝑘𝑝

• Claim: (a) If R0 < 1, then with probability 1, the disease dies out 
after a finite number of waves. (b) If R0 > 1, then with probability 
greater than 0 the disease persists by infecting at least one person 
in each wave.

1. If 𝑅0 < 1 each person infects less than one person in expectation. 
The infection eventually dies out.

2. If 𝑅0 > 1 each person infects more than one person in expectation. 
The infection persists.

57
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Analysis

• 𝑋𝑛 : random variable indicating the number of 
infected nodes at level n (after n steps)

• 𝑞𝑛 = Pr[𝑋𝑛 ≥ 1] : probability that there exists 
at least 1 infected node after n steps

• 𝑞∗ = lim𝑞𝑛 : the probability of having 
infected nodes as 𝑛 → ∞

We want to show that 

a 𝑅0 < 1 ⇒ 𝑞
∗ = 0

(b) 𝑅0 > 1=> 𝑞∗ > 0.
58



Proof

 At level n, kn nodes

 Ynj: 1 if node j at level n is infected, 0 otherwise 

E[Ynj] = pn

 E[Xn] = R0
n

 E[Xn] ≥ Pr[Xn ≥ 1] => qn ≤ R0
n

This proves (a) but not (b)
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Proof

n-1

p p p

𝑞𝑛−1 𝑞𝑛−1 𝑞𝑛−1

𝑞𝑛

Each child of the root starts a 
branching process of length n-1

𝑞𝑛 = 1 − 1 − 𝑝𝑞𝑛−1
𝑘

if 
𝑓 𝑥 = 1 − 1 − 𝑝𝑥 𝑘

then
𝑞𝑛 = 𝑓(𝑞𝑛−1)

We also have: 𝑞0 = 1.

So we obtain a series of values: 1, 𝑓 1 , 𝑓 𝑓 1 ,…

We want to find where this series converges 60



Proof

• Properties of the function 𝑓(𝑥):

1. 𝑓 0 = 0 and 𝑓 1 = 1 − 1 − 𝑝 𝑘 < 1.

2. 𝑓′ 𝑥 = 𝑝𝑘 1 − 𝑝𝑥 𝑘−1 > 0, in the interval 
[0,1] but decreasing. Our function is increasing 
and concave.

3. 𝑓′ 0 = 𝑝𝑘 = 𝑅0
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Proof

• Case 1: 𝑅0 = 𝑝𝑘 > 1. The function starts with 
above the line 𝑦 = 𝑥 but then drops below 
the line.

𝑓 𝑥 crosses the line 𝑦 = 𝑥 at some point
62



Proof

• Starting from the value 1, repeated 
applications of the function 𝑓 𝑥 will converge 
to the value 𝑞∗ = 𝑞𝑛 = 𝑓(𝑞𝑛)
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Proof

• Case 2: 𝑅0 = 𝑝𝑘 < 1. The function starts with 
below the line 𝑦 = 𝑥. Repeated applications of 
𝑓(𝑥) converge to zero.
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Branching process

• Assumes no network structure, no triangles or 
shared neighbors
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The SIR model

• Each node may be in the following states

– Susceptible: healthy but not immune

– Infected: has the virus and can actively propagate it

– Removed: (Immune or Dead) had the virus but it is no 
longer active

• Parameter p: the probability of an Infected node to 
infect a Susceptible neighbor

66



The SIR process

• Initially all nodes are in state S(usceptible), 
except for a few nodes in state I(nfected).

• An infected node stays infected for 𝑡𝐼 steps.
– Simplest case: 𝑡𝐼 = 1

• At each of the 𝑡𝐼 steps the infected node has 
probability p of infecting any of its susceptible
neighbors
– p: Infection probability

• After 𝑡𝐼 steps the node is Removed
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Example
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Example
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Example
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Example

71



72



SIR and the Branching process

• The branching process is a special case 
where the graph is a tree (and the 
infected node is the root)
– The existence of triangles shared neighbors 

makes a big difference

• The basic reproductive number is not 
necessarily informative in the general 
case

73



SIR and the Branching process

74

Example
R0 the expected number of new cases caused by a single node
assume p = 2/3, R0 = 4/3 > 1
Probability to fail at each level and stop (1/3)4 = 1/81



Percolation

• Percolation: we have a network of “pipes” 
which can carry liquids, and they can be either 
open, or closed

– The pipes can be pathways within a material

• If liquid enters the network from some nodes, 
does it reach most of the network?

– The network percolates
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SIR and Percolation

• There is a connection between SIR model and 
percolation

• When a virus is transmitted from u to v, the edge (u, v) 
is activated with probability p

• We can assume that all edge activations have 
happened in advance, and the input graph has only the 
active edges.

• Which nodes will be infected?
– The nodes reachable from the initial infected nodes

• In this way we transformed the dynamic SIR process 
into a static one.
– This is essentially percolation in the graph.
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Example
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The SIS model

• Susceptible-Infected-Susceptible
– Susceptible: healthy but not immune
– Infected: has the virus and can actively propagate it

• An Infected node infects a Susceptible neighbor 
with probability p

• An Infected node becomes Susceptible again with 
probability q (or after 𝑡𝐼 steps)
– In a simplified version of the model q = 1

• Nodes alternate between Susceptible and 
Infected status
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Example

• When no Infected nodes, virus dies out

• Question: will the virus die out?
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An eigenvalue point of view

• If A is the adjacency matrix of the network, then the 
virus dies out if

𝜆1 𝐴 ≤
𝑞

𝑝

• Where 𝜆1(𝐴) is the first eigenvalue of A

Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos. Epidemic Spreading in Real 
Networks: An Eigenvalue Viewpoint. SRDS 2003
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SIS and SIR
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Including time

• Infection can only happen within the active 
window 
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Concurrency

• Importance of concurrency – enables 
branching
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• Initially, some nodes e in the I state and all others in 
the S state.

• Each node u that enters the I state remains infectious 
for a fixed number of steps tI During each of these tI

steps, u has a probability p of infected each of its 
susceptible neighbors.

• After tI steps, u is no longer infectious. Enters the R
state for a fixed number of steps tR. During each of 
these tR steps, u cannot be infected nor  transmit the 
disease. 

• After tR steps in the R state, node u returns to the S
state.
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INFLUENCE MAXIMIZATION
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Maximizing spread

• Suppose that instead of a virus we have an item
(product, idea, video) that propagates through contact
– Word of mouth propagation.

• An advertiser is interested in maximizing the spread of
the item in the network
– The holy grail of “viral marketing”

• Question: which nodes should we “infect” so that we
maximize the spread? [KKT2003]
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Independent cascade model

88

• Each node may be active (has the item) or 
inactive (does not have the item)

• Time proceeds at discrete time-steps. 

• At time t, every node v that became active in 
time t-1 activates a non-active neighbor w
with probability 𝑝𝑢𝑤. If it fails, it does not try 
again

• The same as the simple SIR model
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Influence maximization

• Influence function: for a set of nodes A (target set) 
the influence s(A) (spread) is the expected number of 
active nodes at the end of the diffusion process if the 
item is originally placed in the nodes in A. 

• Influence maximization problem [KKT03]: Given an 
network, a diffusion model, and a value k, identify a 
set A of k nodes in the network that maximizes s(A).

• The problem is NP-hard
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• What is a simple algorithm for selecting the set A?

• Computing s(A): perform multiple Monte-Carlo simulations of 
the process and take the average.

• How good is the solution of this algorithm compared to the 
optimal solution?

A Greedy algorithm

Greedy algorithm
Start with an empty set A
Proceed in k steps

At each step add the node u to the set A the maximizes the 
increase in function s(A)

• The node that activates the most additional nodes
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Approximation Algorithms

• Suppose we have a (combinatorial) optimization 
problem, and X is an instance of the problem, 
OPT(X) is the value of the optimal solution for X, 
and ALG(X) is the value of the solution of an 
algorithm ALG for X
– In our case: X = (G, k) is the input instance, OPT(X) is 

the spread S(A*) of the optimal solution, GREEDY(X) is 
the spread S(A) of the solution of the Greedy 
algorithm

• ALG is a good approximation algorithm if the ratio 
of OPT and ALG is bounded.
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Approximation Ratio

• For a maximization problem, the algorithm 
ALG is an 𝛼-approximation algorithm, for 𝛼 <
1, if for all input instances X, 

𝐴𝐿𝐺 𝑋 ≥ 𝛼𝑂𝑃𝑇 𝑋

• The solution of ALG(X) has value at least α%
that of the optimal

• α is the approximation ratio of the algorithm
– Ideally we would like α to be a constant close to 1
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Approximation Ratio for Influence 
Maximization

• The GREEDY algorithm has approximation 

ratio 𝛼 = 1 −
1

𝑒

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 𝑋 , for all X
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Proof of approximation ratio

• The spread function s has two properties:

• S is monotone:
𝑆(𝐴) ≤ 𝑆 𝐵 if 𝐴 ⊆ 𝐵

• S is submodular:
𝑆 𝐴 ∪ 𝑥 − 𝑆 𝐴 ≥ 𝑆 𝐵 ∪ 𝑥 − 𝑆 𝐵 𝑖𝑓 𝐴 ⊆ 𝐵

• The addition of node x to a set of nodes has greater
effect (more activations) for a smaller set.
– The diminishing returns property
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Optimizing submodular functions

• Theorem: A greedy algorithm that optimizes a 
monotone and submodular function S, each 
time adding to the solution A, the node x that 
maximizes the gain 𝑆 𝐴 ∪ 𝑥 − 𝑠(𝐴)has 

approximation ratio 𝛼 = 1 −
1

𝑒

• The spread of the Greedy solution is at least 
63% that of the optimal

96



Submodularity of influence

• Why is S(A) submodular?

– How do we deal with the fact that influence is defined 
as an expectation?

• We will use the fact that probabilistic propagation 
on a fixed graph can be viewed as deterministic 
propagation over a randomized graph

– Express S(A) as an expectation over the input graph
rather than the choices of the algorithm
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Independent cascade model

• Each edge (u,v) is considered only once, and it is “activated” 
with probability puv.

• We can assume that all random choices have been made in 
advance 
– generate a sample subgraph of the input graph where edge (u, v) is 

included with probability puv

– propagate the item deterministically on the input graph
– the active nodes at the end of the process are the nodes reachable

from the target set A

• The influence function is obviously(?) submodular when 
propagation is deterministic

• The linear combination of submodular functions is also a 
submodular function
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Linear threshold model 

• Again, each node may be active or inactive 
• Every directed edge (v,u) in the graph has a weight bvu, such 

that

 

𝑣 is a neighbor of 𝑢

𝑏𝑣𝑢 ≤ 1

• Each node u has a randomly generated threshold value Tu

• Time proceeds in discrete time-steps. At time t an inactive
node u becomes active if

 

𝑣 is an active neighbor of 𝑢

𝑏𝑣𝑢 ≥ 𝑇𝑢

• Related to the game-theoretic model of adoption.
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Linear threshold model 



Influence Maximization

• KKT03 showed that in this case the influence 
S(A) is still a submodular function, using a 
similar technique

– Assumes uniform random thresholds

• The Greedy algorithm achieves a (1-1/e) 
approximation 
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Proof idea

• For each node 𝑢, pick one of the edges 
(𝑣, 𝑢) incoming to 𝑢 with probability 𝑏𝑣𝑢and 
make it live. With probability 1 −  𝑏𝑣𝑢 it picks 
no edge to make live

• Claim: Given a set of seed nodes A, the following 
two distributions are the same:
– The distribution over the set of activated nodes using 

the Linear Threshold model and seed set A 

– The distribution over the set of reachable nodes from 
A using live edges.
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Proof idea

• Consider the special case of a DAG (Directed Acyclic Graph)
– There is a topological ordering of the nodes 𝑣0, 𝑣1, … , 𝑣𝑛 such 

that edges go from left to right

• Consider node 𝑣𝑖 in this ordering and assume that 𝑆𝑖 is the 
set of neighbors of 𝑣𝑖 that are active. 

• What is the probability that node 𝑣𝑖 becomes active in 
either of the two models?
– In the Linear Threshold model the random threshold 𝜃𝑖 must be 

greater than  𝑢∈𝑆𝑖 𝑏𝑢𝑖 ≥ 𝜃𝑖
– In the live-edge model we should pick one of the edges in 𝑆𝑖

• This proof idea generalizes to general graphs
– Note: if we know the thresholds in advance submodularity does 

not hold!
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Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Assume that all edge weights incoming to any node sum to 1

104



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

The nodes select a single incoming edge with probability 
equal to the weight (uniformly at random in this case)
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Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Node 𝑣1 is the seed
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Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Node 𝑣3 has a single incoming neighbor, therefore for 
any threshold it will be activated
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Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

The probability that node 𝑣4 gets activated is 2/3 since it has 
incoming edges from two active nodes.
The probability that node 𝑣4 picks one of the two edges to 
these nodes is also 2/3 108



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Similarly the probability that node 𝑣6 gets activated is 2/3 
since it has incoming edges from two active nodes.
The probability that node 𝑣6 picks one of the two edges to 
these nodes is also 2/3 109



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

The set of active nodes is the set of nodes reachable from 𝑣1
with live edges (orange). 
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Improvements

Computation of Expected Spread
– Performing simulations for estimating the spread 

on multiple instances is very slow. Several 
techniques have been developed for speeding up 
the process.
• CELF: exploiting the submodularity property

• Maximum Influence Paths: store paths for computation

• Sketches: compute sketches for each node for 
approximate estimation of spread

(the marginal gain of a node in the current iteration cannot be better than its marginal gain in the previous 
iteration) J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen, N. S. Glance. Cost-effective 
outbreak detection in networks. KDD 2007

W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent viral marketing in large-
scale social networks. KDD 2010.

Edith Cohen, Daniel Delling, Thomas Pajor, Renato F. Werneck. Sketch-based Influence Maximization and 
Computation: Scaling up with Guarantees. CIKM 2014
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Experiments
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One-slide summary

• Influence maximization: Given a graph 𝐺 and a budget 𝑘, 
for some diffusion model, find a subset of 𝑘 nodes 𝐴, such 
that when activating these nodes, the spread of the 
diffusion 𝑠(𝐴) in the network is maximized.

• Diffusion models:
– Independent Cascade model
– Linear Threshold model

• Algorithm: Greedy algorithm that adds to the set each time 
the node with the maximum marginal gain, i.e., the node 
that causes the maximum increase in the diffusion spread.

• The Greedy algorithm gives a 1 −
1

𝑒
approximation of the 

optimal solution 
– Follows from the fact that the spread function 𝑠 𝐴 is 

• Monotone
• Submodular 

𝑠 𝐴 ≤ 𝑠 𝐵 , if 𝐴 ⊆ 𝐵

𝑠 𝐴 ∪ {𝑥} − 𝑠 𝐴 ≥ 𝑠 𝐵 ∪ 𝑥 − 𝑠 𝐵 , ∀𝑥 if 𝐴 ⊆ 𝐵
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Another example

• What is the spread from the red node?

• Inclusion of time changes the problem of 
influence maximization
– N. Gayraud, E. Pitoura, P. Tsaparas, Diffusion Maximization on Evolving 

networks
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Evolving network

• Consider a network that changes over time

– Edges and nodes can appear and disappear at 
discrete time steps

• Model:

– The evolving network is a sequence of graphs 
{𝐺1, 𝐺2, … , 𝐺𝑛} defined over the same set of 
vertices 𝑉, with different edge sets 𝐸1, 𝐸2, … , 𝐸𝑛
• Graph snapshot 𝐺𝑖 is the graph at time-step 𝑖 .

N. Gayraud, E. Pitoura, P. Tsaparas. Maximizing Diffusion in Evolving Networks. COSN 2015
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Example

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟐 𝑮𝟑𝑮𝟏

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑
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Time

• How does the evolution of the network relates to the 
evolution of the diffusion?
– How much physical time does a diffusion step last?

• Assumption: The two processes are in sync. One 
diffusion step happens in on one graph snapshot

• Evolving IC model: at time-step 𝑡, the infectious nodes 
try to infect their neighbors in the graph 𝐺𝑡.

• Evolving LT model: at time-step 𝑡 if the weight of the 
active neighbors of node 𝑣 in graph 𝐺𝑡 is greater than 
the threshold the nodes gets activated.

117



Submodularity

• Will the spread function remain monotone 
and submodular?

• No!
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Monotonicity for the EIC model

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟐 𝑮𝟑𝑮𝟏

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑
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Monotonicity for the EIC model

𝑮𝟏 𝑮𝟐 𝑮𝟑𝑮𝟎

𝑮𝟏 𝑮𝟑𝑮𝟐𝑮𝟎

The spread is not monotone in the case of the Evolving IC model
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Submodularity for the EIC model

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟏

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟐

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟑

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟒

𝒗𝟓

𝒗𝟔
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𝑮𝟏

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟐

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟑

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟒

𝒗𝟓

𝒗𝟔

Submodularity for the EIC model

𝑮𝟎

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝒗𝟓

𝒗𝟔

Activating node 𝑣1 at time 𝑡 = 0 has spread 7
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𝑮𝟏

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟐

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟑

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟒

𝒗𝟓

𝒗𝟔

Submodularity for the EIC model

Activating node 𝑣1 at time 𝑡 = 0 has spread 7

Adding node 𝑣6 at time 𝑡 = 3 does not increase the spread
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𝑮𝟏

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟐

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟑

𝒗𝟓

𝒗𝟔

Submodularity for the EIC model

𝑮𝟎

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝒗𝟓

𝒗𝟔

Activating nodes 𝑣1 and 𝑣5 at time 𝑡 = 0 has spread 4

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟒

𝒗𝟓

𝒗𝟔
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𝑮𝟏

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟐

𝒗𝟓

𝒗𝟔

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒖𝟏
𝒖𝟐

𝒖𝟑

𝑮𝟑

𝒗𝟓

𝒗𝟔

Submodularity for the EIC model

Activating nodes 𝑣1 and 𝑣5 at time 𝑡 = 0 has spread 4

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝑮𝟒

𝒗𝟓

𝒗𝟔

𝒖𝟏
𝒖𝟐

𝒖𝟑

Adding node 𝑣6 at time 𝑡 = 3 increases the spread to 9
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Evolving LT model

• The evolving LT model is monotone but it is not 
submodular

• Expected Spread: the probability that 𝑢 gets infected
– Adding node 𝑣3 has a larger effect if added to the set  
{𝑣1, 𝑣2} than to set {𝑣1}.

𝑮𝑼

𝒗𝟏 𝒗𝟑

𝒗𝟐

𝒖

𝑮𝟏 𝑮𝟐

𝒗𝟏 𝒗𝟑

𝒗𝟐

𝑢

𝒗𝟏 𝒗𝟑

𝒗𝟐

𝒖
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Extensions

• Other models for diffusion
– Deadline model: There is a deadline by which a node can be 

infected

– Time-decay model: The probability of an infected node to infect 
its neighbors decays over time

– Timed influence: Each edge has a speed of infection, and you 
want to maximize the speed by which nodes are infected.

• Competing diffusions
– Maximize the spread while competing with other products that 

are being diffused. 

A. Borodin, Y. Filmus, and J. Oren. Threshold models for competitive influence in social networks. WINE, 2010.
M. Draief and H. Heidari. M. Kearns. New Models for Competitive Contagion. AAAI 2014.

N. Du, L. Song, M. Gomez-Rodriguez, H. Zha. Scalable influence estimation in continuous-time diffusion networks. NIPS 2013.

W. Chen, W. Lu, N. Zhang. Time-critical influence maximization in social networks with time-delayed diffusion process. AAAI, 2012.

B. Liu, G. Cong, D. Xu, and Y. Zeng. Time constrained influence maximization in social networks. ICDM 2012.
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Extensions

• Reverse problems:
– Initiator discovery: Given the state of the 

diffusion, find the nodes most likely to have 
initiated the diffusion

– Diffusion trees: Identify the most likely tree of 
diffusion tree given the output

– Infection probabilities: estimate the true infection 
probabilities
M. Gomez-Rodriguez, D. Balduzzi, B. Scholkopf. Uncovering the temporal dynamics of diffusion 
networks. ICML, 2011.

M. Gomez Rodriguez, J. Leskovec, A. Krause. Inferring networks of diffusion and influence. KDD 
2010

H. Mannila, E. Terzi. Finding Links and Initiators: A Graph-Reconstruction Problem. SDM 2009
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EXTRA SLIDES



Innovation Adoption Characteristics

Category of Adopters in the corn study 
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Multiple copies model

• Each node may have multiple copies of the same 
virus
– 𝒗: state vector : 𝑣𝑖 : number of virus copies at node 𝑖

• At time 𝑡 = 0, the state vector is initialized to 𝒗0

• At time t,
For each node i

For each of the 𝑣𝑖
𝑡 virus copies at node 𝑖

the copy is copied to a neighbor 𝑗 with prob 𝑝

the copy dies with probability 𝑞

G. Giakkoupis, A. Gionis, E. Terzi, P. T. Models and algorithms for network immunization. Technical Report C-2005-75, 
Department of Computer Science, University of Helsinki, 2005 132



Analysis

• The expected state of the system at time t is 
given by

𝒗𝒕 = 𝑝𝑨 + 1 − 𝑞 𝑰 𝒗𝒕−𝟏 = 𝑴𝒗𝒕−𝟏

𝑀 =

1 − 𝑞 𝑝
0 1 − 𝑞

𝑝 0
𝑝 𝑝

0 0
𝑝 0

1 − 𝑞 𝑝
0 1 − 𝑞

𝑣1

𝑣2

𝑣3

𝑣4

Probability that the copy from 
node 𝑣4is copied to node 𝑣1

Probability that the copy from 
node 𝑣4 survives at 𝑣4
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Analysis

• As 𝑡 → ∞

– if 𝜆1 𝑀 < 1 ⇔ 𝜆1 𝐴 < 𝑞/𝑝 then 𝑣𝑡 → 0

• the probability that all copies die converges to 1

– if 𝜆1 𝑀 = 1 ⇔ 𝜆1 𝐴 = 𝑞/𝑝 then 𝑣𝑡 → 𝑐

• the probability that all copies die converges to 1

– if 𝜆1 𝑀 > 1 ⇔ 𝜆1 𝐴 > 𝑞/𝑝 then 𝑣𝑡 → ∞

• the probability that all copies die converges to a constant < 1
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