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Media 

Network Measurements



Measuring Networks

• Degree distributions and power-laws

• Clustering Coefficient

• Small world phenomena

• Components

• Motifs

• Homophily



The basic random graph model

• The measurements on real networks are usually 
compared against those on “random networks”

• The basic Gn,p (Erdös-Renyi) random graph model:

– n : the number of vertices

– 0 ≤ p ≤ 1

– for each pair (i,j), generate the edge (i,j) independently
with probability p

– Expected degree of a node: z = np



Degree distributions

• Problem: find the probability distribution that best fits the 
observed data

degree

frequency

k

fk

fk = fraction of nodes with degree k
= probability of a randomly

selected node to have degree k



Power-law distributions

• The degree distributions of most real-life networks follow a power law

• Right-skewed/Heavy-tail distribution
– there is a non-negligible fraction of nodes that has very high degree (hubs)
– scale-free: no characteristic scale, average is not informative

• In stark contrast with the random graph model!
– Poisson degree distribution, z=np

𝑝 𝑘 =
𝑧𝑘

𝑘!
𝑒−z

– Concentrated around the mean
– the probability of very high degree nodes is exponentially small

𝑝(𝑘) = 𝐶𝑘−𝛼



Power-law signature

• Power-law distribution gives a line in the log-log plot

• α : power-law exponent (typically 2 ≤ α ≤ 3)

degree

frequency

log degree

log frequency α

log p(k) = -α logk + logC



Examples

Taken from [Newman 2003]



A random graph example



Exponential distribution

• Observed in some technological or collaboration 
networks

• Identified by a line in the log-linear plot

p(k) = λe-λk

log p(k) = - λk + log λ

degree

log frequency λ



Measuring power-laws

• How do we create these plots? How do we measure the power-law 
exponent?

• Collect a set of measurements:
– E.g., the degree of each page, the number of appearances of each word in a 

document, the size of solar flares(continuous)

• Create a value histogram
– For discrete values, number of times each value appears
– For continuous values (but also for discrete):

• Break the range of values into bins of equal width 
• Sum the count of values in the bin 
• Represent the bin by the mean (median) value

• Plot the histogram in log-log scale
– Bin representatives vs Value in the bin
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Measuring power laws

Simple binning  produces a noisy plot



Logarithmic binning

• Exponential binning
– Create bins that grow exponentially in size

– In each bin divide the sum of counts by the bin length 
(number of observations per bin unit)

Still some noise at the tail



Cumulative distribution

• Compute the cumulative distribution
– P[X≥x]: fraction (or number) of observations that 

have value at least x

– It also follows a power-law with exponent α-1
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Pareto distribution

• A random variable follows a Pareto
distribution if

• Power law distribution with exponent α=1+β

  βxC'xXP  minxx 



Zipf plot

• There is another easy way to see the power-
law, by doing the Zipf plot

– Order the values in decreasing order

– Plot the values against their rank in log-log scale

• i.e., for the r-th value xr, plot the point (log(r),log(xr))

– If there is a power-law you should see something 
like a straight line



Zipf’s Law

• A random variable X follows Zipf’s law if the r-th largest 
value xr satisfies

• Same as Pareto distribution

• X follows a power-law distribution with α=1+1/γ

• Named after Zipf, who studied the distribution of 
words in English language and found Zipf law with 
exponent 1

γ
r rx 

  γ1xxXP 



Zipf vs Pareto
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Computing the exponent

• Maximum likelihood estimation

– Assume that the set of data observations x are 
produced by a power-law distribution with some 
exponent α

• Exact law: 𝑝 𝑥 =
𝛼−1

𝑥𝑚𝑖𝑛

𝑥

𝑥𝑚𝑖𝑛

−𝛼

– Find the exponent that maximizes the probability 
P(α|x) 1

n
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Proof in M. E. J. Newman, Power laws, Pareto distributions and Zipf's law, Contemporary Physics.



Collective Statistics (M. Newman 2003)



Power Laws - Recap

• A (continuous) random variable X follows a power-
law distribution if it has density function 

• A (continuous) random variable X follows a Pareto
distribution if it has cumulative function

• A (discrete) random variable X follows Zipf’s law if 
the the r-th largest value satisfies

αCxp(x) 

  βCxxXP 

γ
r Crx 

power-law with α=1+β

power-law with α=1+1/γ



Average/Expected degree

• For power-law distributed degree
– if α ≥ 2, it is a constant 

𝐸 𝑋 =
𝛼 − 1

𝛼 − 2
𝑥𝑚𝑖𝑛

– if α < 2, it diverges 
• The expected value goes to infinity as the size of the 

network grows

• The fact that α ≥ 2 for most real networks 
guarantees a constant average degree as the 
graph grows



The 80/20 rule

• Top-heavy: Small fraction of values collect 
most of distribution mass

• This phenomenon becomes 
more extreme when 𝛼 < 2

• 1% of values has 99% of mass

• E.g. name distribution



The effect of exponent

𝜶 = 𝟏. 𝟗

𝜶 = 𝟑. 𝟏 𝜶 = 𝟐. 𝟓

As the exponent 
increases the probability 
of observing an extreme 
value decreases



Generating power-law values

• A simple trick to generate values that follow a 
power-law distribution:

– Generate values 𝑟 uniformly at random within the 
interval [0,1]

– Transform the values using the equation

𝑥 = 𝑥𝑚𝑖𝑛 1 − 𝑟 −1/(𝛼−1)

– Generates values distributed according to power-
law with exponent 𝛼



Clustering (Transitivity) coefficient

• Measures the density of triangles (local 
clusters) in the graph

• Two different ways to measure it:

• The ratio of the means


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Clustering (Transitivity) coefficient

• Clustering coefficient for node i

• The mean of the ratios

i nodeat  centered triples

i nodeat  centered triangles
Ci 

i
(2) C

n

1
C 



Example

• The two clustering coefficients give different 
measures 

• C(2) increases with nodes with low degree
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Clustering coefficient for random graphs

• The probability of two of your neighbors also being neighbors 
is p, independent of local structure
– clustering coefficient C = p

– when the average degree z=np is constant C =O(1/n)



Small worlds

• Millgram’s experiment: Letters were handed out to people in 
Nebraska to be sent to a target in Boston

• People were instructed to pass on the letters to someone they 
knew on first-name basis

• The letters that reached the destination followed paths of 
length around 6

• Six degrees of separation: (play of John Guare)

• Also: 
– The Kevin Bacon game
– The Erdös number



Measuring the small world phenomenon

• dij = shortest path between i and j

• Diameter:

• Characteristic path length:

• Harmonic mean

• Also, distribution of all shortest paths
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Problem if no path between two nodes



Effective Diameter

• Computation:
– 𝑓 𝑑 : for integer 𝑑, the fraction of pairs in the graph that 

have distance less or equal to D

– 𝑓 𝑥 : for real 𝑥: 𝑑 − 1 < 𝑥 < 𝑑, 𝑓 𝑥 =
𝑓 𝑑 −𝑓(𝑑−1)

𝑥−𝑑

– Effective Diameter: the real value 𝑥 such that 𝑓 𝑥 = 0.9

hops
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• Disconnected components or isolated long 
paths can throw off the computation of the 
diameter.

• Effective diameter: the interpolated value 
where 90% of node pairs are reachable



Collective Statistics (M. Newman 2003)



Small worlds in real networks

• For all real networks there are (on average) short paths 
between nodes of the network.
– Largest path found in the IMDB actor network: 7

• Is this interesting?
– Random graphs also have small diameter 

(d=logn/loglogn when z=ω(logn))

• Short paths are not surprising and should be combined 
with other properties
– ease of navigation
– high clustering coefficient



Connected components

• For undirected graphs, the size and 
distribution of the connected components

– is there a giant component?

– Most known real undirected networks have a 
giant component

• For directed graphs, the size and distribution 
of strongly and weakly connected components



Connected components – definitions 

• Weakly connected components (WCC)
– Set of nodes such that from any node can go to any node via an undirected path

• Strongly connected components (SCC)
– Set of nodes such that from any node can go to any node via a directed path.
– IN: Nodes that can reach the SCC (but not in the SCC)
– OUT: Nodes reachable by the SCC (but not in the SCC)

SCC

WCC



The bow-tie structure of the Web

The largest weakly connected component contains  90% of the nodes



SCC and WCC distribution

• The SCC and WCC sizes follows a power law 
distribution

– the second largest SCC is significantly smaller



Another bow-tie

Who lends to whom



Web Cores

• Cores: Small complete bipartite 
graphs (of size 3x3, 4x3, 4x4)
– Similar to the triangles for  

undirected graphs

• Found more frequently than 
expected on the Web graph

• Correspond to communities of 
enthusiasts (e.g., fans of japanese
rock bands)



Motifs

• Most networks have the same characteristics 
with respect to global measurements

– can we say something about the local structure of 
the networks?

• Motifs: Find small subgraphs that over-
represented in the network



Example

• Motifs of size 3 in a directed graph



Finding interesting motifs

• Sample a part of the graph of size S

• Count the frequency of the motifs of interest

• Compare against the frequency of the motif in 
a random graph with the same number of 
nodes and the same degree distribution



Generating a random graph

• Find edges (i,j) and (x,y) such that edges (i,y)
and (x,j) do not exist, and swap them

– repeat for a large enough number of times

i j

x
y

G

i j

x
y

G-swapped
degrees of i,j,x,y
are preserved



The feed-forward loop

• Over-represented in gene-regulation networks

– a signal delay mechanism X

Y Z

Milo et al. 2002



Homophily
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• Love of the same: People tend to have friends with common interests
– Students separated by race and age



Measuring Homophily

If the fraction of cross-gender edges is
significantly less than expected, then there is
evidence for homophily

gender male with probability p
gender female with probability q

Probability of cross-gender edge? 

pq
edges

edgesgendercross
2

#

__#
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Measuring Homophily

 “significantly” less than
 Inverse homophily
 Characteristics with more than two values:

 Number of heterogeneous edges (edge between
two nodes that are different)



Mechanisms Underlying Homophily: 

Selection and Social Influence

Selection: tendency of people to form friendships with
others who are like then

Socialization or Social Influence: the existing social
connections in a network are influencing the individual
characteristics of the individuals

Social Influence as the inverse of Selection

Mutable & immutable characteristics



The Interplay of Selection and Social 
Influence

Longitudinal studies in which the social connections and
the behaviors within a group are tracked over a period of
time

Why?
- Study teenagers, scholastic achievements/drug use
(peer pressure and selection)
- Relative impact?
- Effect of possible interventions (example, drug use)



Christakis and Fowler on obesity, 12,000 people over a period of 32-years

People more similar on obesity status to the network neighbors than if
assigned randomly

Why?
(i) Because of selection effects, choose friends of similar obesity status,
(ii) Because of confounding effects of homophily according to other
characteristics that correlate with obesity
(iii) Because changes in the obesity status of person’s friends was exerting
an influence that affected her

(iii) As well -> “contagion” in a social sense

The Interplay of Selection and Social 
Influence



Tracking Link Formation in Online Data: interplay 
between selection and social influence

 Underlying social network
 Measure for behavioral similarity

Wikipedia
Node: Wikipedia editor who maintains a user account and user talk page
Link: if they have communicated with one writing on the user talk page of the other

Editor’s behavior: set of articles she has edited

||

||

BA

BA

NN

NN



Neighborhood overlap in the bipartite affiliation network
of editors and articles consisting only of edges between
editors and the articles they have edited

FACT: Wikipedia editors who have communicated are significantly more similar in their
behavior than pairs of Wikipedia editors who have not (homomphily), why?
Selection (editors form connections with those have edited the same articles) vs Social
Influence (editors are led to the articles of people they talk to)



Tracking Link Formation in Online Data: interplay 
between selection and social influence

Actions in Wikipedia are time-stamped
For each pair of editors A and B who have ever communicated,

o Record their similarity over time
o Time 0 when they first communicated -- Time moves in discrete units, advancing by one “tick”
whenever either A or B performs an action on Wikipedia
o Plot one curve for each pair of editors

Average, single plot: average level of similarity relative to the time of first interaction

Similarity is clearly increasing both before
and after the moment of first interaction
(both selection and social influence)
Not symmetric around time 0 (particular
role on similarity): Significant increase
before they meet
Blue line shows similarity of a random
pair (non-interacting)
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