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Introduction



Instructors:
Ευαγγελία Πιτουρά
http://www.cs.uoi.gr/~pitoura
Παναγιώτης Τσαπάρας
http://www.cs.uoi.gr/~tsap

Goal
Understand the importance of networks in life, technology and applications
Study the theory underlying social networks
Learn about algorithms that make use of network structure
Learn about the tools to analyze them

Today:
A taste of the topics to be covered
Some logistics
Some basic graph theory

http://www.cs.uoi.gr/~pitoura
http://www.cs.uoi.gr/~tsap


Logistics

20% Presentations and class participation
30% Assignments
50% Term Project (in 2 Phases)
No Final Exam

Web page:
www.cs.uoi.gr/~tsap/teaching/cs-l14

Textbooks:
Easley and Kleinberg free text-book on Networks, Crowds and Markets
M. E. J. Newman, The structure and function of complex networks, SIAM Reviews, 
45(2): 167-256, 2003
Reza Zafarani, Mohammad Ali Abbasi, Huan Liu, free text-book on Social Media Mining

http://www.cs.cornell.edu/home/kleinber/networks-book/
http://aps.arxiv.org/PS_cache/cond-mat/pdf/0303/0303516.pdf
http://dmml.asu.edu/smm/


WHAT DO THE FOLLOWING 
COMPLEX SYSTEMS HAVE IN 

COMMON?



The Economy



The Human Cell



Traffic and roads



Internet



Society



Media and Information 



THE NETWORK!

All of these systems can be modeled as 
networks



What is a network?

• Network: a collection of entities that are 
interconnected with links.



Social networks

• Entities: People

• Links: Friendships



Communication networks

• Entities: People

• Links: email exchange



Communication networks

 Entities: Internet nodes

 Links: communication between nodes



Financial Networks

 Entities: Companies

 Links: relationships (financial, collaboration)



Biological networks

 Entities: Proteins

 Links: interactions

 Entities: metabolites, enzymes

 Links: chemical reactions



Information networks

 Entities: Web Pages

 Links: Links



Information/Media networks

 Entities: Twitter users

 Links: Follows/conversations



Many more

• Wikipedia

• Brain

• Highways

• Software

• Etc…



Why networks are important?

• We cannot truly understand a complex system 
unless we understand the underlying network.
– Everything is connected, studying individual 

entities gives only a partial view of a system

• Two main themes:
– What are the structural properties of the 

network?

– How do processes happen in the network?



Graphs

• In mathematics, networks are called graphs, the 
entities are nodes, and the links are edges

• Graph theory starts in the 18th century, with 
Leonhard Euler
– The problem of Königsberg bridges

– Since then graphs have been studied extensively.



Networks in the past

• Graphs have been used in the past to model 
existing networks (e.g., networks of highways, 
social networks)

– usually these networks were small

– network can be studied visual inspection can 
reveal a lot of information



Networks now

• More and larger networks appear
– Products of technology

• e.g., Internet, Web, Facebook, Twitter

– Result of our ability to collect more, better, and more 
complex data
• e.g., gene regulatory networks

– Result of the willingness of users to contribute data
• e.g., users making their relationships public online

• Networks of thousands, millions, or billions of nodes
– Impossible to process visually
– Problems become harder
– Processes are more complex 



Topics

• Measuring Real Networks
• Modeling the evolution and creation of networks
• Identifying important nodes in the graph
• Understanding information cascades and virus 

contagions
• Finding communities in graphs
• Link Prediction
• Storing and processing huge networks
• Other special topics



Understanding large graphs

• What does a network look like?

– Measure different properties to understand the 
structure

degree of nodes Triangles in the graph



Real network properties

• Most nodes have only a small number of neighbors (degree), 
but there are some nodes with very high degree (power-law 
degree distribution)
– scale-free networks

• If a node x is connected to y and z, then y and z are likely to be 
connected
– high clustering coefficient

• Most nodes are just a few edges away on average.
– small world networks

• Networks from very diverse areas (from internet to biological 
networks) have similar properties
– Is it possible that there is a unifying underlying generative process?



Generating random graphs

• Classic graph theory model (Erdös-Renyi)

– each edge is generated independently with probability p

• Very well studied model but:

– most vertices have about the same degree

– the probability of two nodes being linked is independent 
of whether they share a neighbor

– the average paths are short



Modeling real networks

• Real life networks are not “random”

• Can we define a model that generates graphs 
with statistical properties similar to those in 
real life?

• The rich-get-richer model

We need to accurately model the mechanisms that govern 
the evolution of networks (for prediction, simulations, 
understanding)



Ranking of nodes on the Web

• Is my home page as important as the facebook page?

• We need algorithms to compute the importance of 
nodes in a graph

• The PageRank Algorithm
– A success story of network use

It is impossible to create a web search engine without 
understanding the web graph



Information/Virus Cascade

• How do viruses spread between individuals? How can 
we stop them?

• How does information propagates in social and 
information networks? What items become viral? Who 
are the influencers and trend-setters?

• We need models and algorithms to answer these 
questions

Online advertising relies heavily on online social networks 
and word-of-mouth marketing. There is currently need for 
models for understanding the spread of Ebola virus.



Clustering and Finding Communities

• What is community?

– “Cohesive subgroups are subsets of actors among 
whom there are relatively strong, direct, intense, 
frequent, or positive ties.” [Wasserman & Faust 
‘97]

Karate club example [W. Zachary, 1970]



Clustering and Finding Communities

• Input: a graph G=(V,E)
 edge (u, v) denotes similarity between u and v

 weighted graphs: weight of edge captures the 
degree of similarity

• Clustering: Partition the nodes in the graph 
such that nodes within clusters are well 
interconnected (high edge weights), and 
nodes across clusters are sparsely 
interconnected (low edge weights)



Community Evolution
• Homophily:“Birds of a feather flock together”
• Caused by two related social forces [Friedkin98, Lazarsfeld54]

 Social influence: People become similar to those they interact with
 Selection: People seek out similar people to interact with

• Both processes contribute to homophily, but
 Social influence leads to community-wide homogeneity
 Selection leads to fragmentation of the community

• Applications in online marketing
– viral marketing relies upon social influence affecting behavior
– recommender systems predict behavior based on similarity

How do we define and discover communities in large 
graphs? How do communities evolve?



Link Prediction

• Given a snapshot of a social network at time t, we 
seek to accurately predict the edges that will be 
added to the network during the interval from time t
to a given future time t'. 

• Applications:

– Accelerate the growth of a social 
network (e.g., Facebook, 
LinkedIn, Twitter) that would 
otherwise take longer to form.

– Identify suspect relationships

How do we predict future links?



Network content

• Users on online social networks generate 
content.

• Mining the content in conjunction with the 
network can be useful
– Do friends post similar content on Facebook? 

– Can we understand a user’s interests by looking at 
those of their friends? 
• The importance of homophily

– Social recommendations: Can we predict a movie 
rating using the social network?



Social Media

• Today Social Media (Twitter, Facebook, Instagram) have 
supplanted the traditional media sources
– Information is generated and disseminated mostly online by 

users
• E.g., the assassination of Bin Laden appeared first on Twitter

– Twitter has become a global “sensor” detecting and reporting 
everything

• Interesting problems:
– Automatically detect events using Twitter

• Earthquake prediction
• Crisis detection and management

– Sentiment mining
– Track the evolution of events: socially, geographically, over time.



Tools
R: free software environment for statistical computing and 

graphics. http://www.r-project.org/

Gephi: interactive visualization and exploration 

platform for all kinds of networks and complex 
systems, dynamic and hierarchical graphs
http://gephi.org/

Stanford Network Analysis Platform (SNAP): general 

purpose, high performance system for analysis and manipulation of large 
networks written in C++ http://snap.stanford.edu/snap/index.html

NetworkX: a Python language software package for the creation, manipulation, 

and study of the structure, dynamics, and functions of complex networks. 
http://networkx.lanl.gov/



Frameworks for Processing Large Graphs

Large scale (in some cases billions of vertices, trillions of edges)

How to process graphs in parallel?

 Write your own code
 Use MapReduce (general parallel processing) *
 Pregel (bulk synchronous parallel model) introduced by Google in 2010*
 Giraph http://incubator.apache.org/giraph/ (part of Hadoop software)

*J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150 
** G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser: Pregel: a system for large-scale graph processing. 
SIGMOD Conference 2010: 135-146

Storage?

http://incubator.apache.org/giraph/


Data
Collected using available APIs (Twitter, Facebook, etc)

Using existing collections, e.g., from SNAP (more in the webpage), permission 
may be required

Stanford Large Network Dataset Collection
60 large social and information network datasets
Coauthorship and Citation Networks
DBLP: Collaboration network of computer scientists
KDD Cup Dataset
Internet Topology
AS Graphs: AS-level connectivities inferred from Oregon route-views, Looking glass data and Routing registry data
Yelp Data
Yelp Review Data: reviews of the 250 closest businesses for 30 universities for students and academics to explore and research
Youtube dataset
Youtube data: YouTube videos as nodes. Edge a->b means video b is in the related video list (first 20 only) of a video a.
Amazon product copurchasing networks and metadata
Amazon Data: The data was collected by crawling Amazon website and contains product metadata and review information about 
548,552 different products (Books, music CDs, DVDs and VHS video tapes).
Wikipedia
Wikipedia page to page link data: A list of all page-to-page links in Wikipedia
DBPedia: The DBpedia data set uses a large multi-domain ontology which has been derived from Wikipedia.
Edits and talks: Complete edit history (all revisions, all pages) of Wikipedia since its inception till January 2008.
Movie Ratings
IMDB database: Movie ratings from IMDB
User rating data: Movie ratings from MovieLens

http://snap.stanford.edu/data
http://dblp.uni-trier.de/xml/
http://www.cs.cornell.edu/projects/kddcup/datasets.html
http://topology.eecs.umich.edu/data.html
http://www.yelp.com/academic_dataset
http://netsg.cs.sfu.ca/youtubedata/
http://snap.stanford.edu/data/amazon-meta.html
http://users.on.net/~henry/home/wikipedia.htm
http://wiki.dbpedia.org/Downloads33
http://snap.stanford.edu/data/wiki-meta.html
http://www.imdb.com/interfaces
http://www.grouplens.org/taxonomy/term/14
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Graph Theory Reminder



Undirected Graph

• Graph G=(V,E)

– V = set of vertices (nodes)

– E = set of edges

1

2

3

45
undirected graph
V = {1, 2, 3, 4, 5}
E={(1,2),(1,3),(2,3),(3,4),(4,5)}



Directed Graph

1

2

3

45
directed graph
V = {1, 2, 3, 4, 5}
E={‹1,2›, ‹2,1› ‹1,3›, ‹3,2›, ‹3,4›, ‹4,5›}

 Graph G=(V,E)

 V = set of vertices (nodes)

 E = set of edges



Weighted Graph

• Graph G=(V,E)
– V = set of vertices (nodes)

– E = set of edges and their 
weights
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3

45

Weighted graph
V = {1, 2, 3, 4, 5}

E={(1,2,𝑤12),(1,3, 𝑤12),(2,3, 𝑤12),(3,4, 𝑤12),(4,5, 𝑤12)}

𝑤12

𝑤23

𝑤13

𝑤34

𝑤45

Weights can be either distances or similarities



Undirected graph

1

2

3

45

 degree d(i) of node i

 Size of N(i)

 number of edges incident on i

 Neighborhood N(i) of node i

 Set of nodes adjacent to i



Undirected graph
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 degree sequence

 [d(1),d(2),d(3),d(4),d(5)]

 [2,2,3,2,1]

 degree histogram

 [(1:1),(2:3),(3,1)]
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degree

 degree distribution

 [(1:0.2),(2:0.6),(3,0.2)] 0
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0.8

1 2 3

degree



Directed Graph

1
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3

45

 in-degree 𝑑𝑖𝑛(𝑖) of node 𝑖
 number of edges incoming to node 𝑖

 out-degree 𝑑𝑜𝑢𝑡(𝑖) of node 𝑖
 number of edges leaving node 𝑖

 in-degree sequence

 [1,2,1,1,1]

 out-degree sequence 

 [2,1,2,1,0]

 in-degree histogram

 [(1:3),(2:1)]

 out-degree histogram

 [(0:1),(1:2),(2:2)]



Graph Traversals

• A traversal is a procedure for visiting (going 
through) all the nodes in a graph



Depth First Search Traversal

• Depth-First Search (DFS) starts from a node i, 
selects one of its neighbors j from N(i) and 
performs Depth-First Search on j before 
visiting other neighbors in N(i).

– The algorithm can be implemented using a stack 
structure



Example for a tree graph



Breadth First Search Traversal

• Breadth-First-Search (BFS) starts from a node, 
visits all its immediate neighbors first, and 
then moves to the second level by traversing 
their neighbors.

– The algorithm can be implemented using a queue 
structure



Example of BFS on a tree



Paths

• Path from node i to node j: a sequence of edges (directed or 
undirected) from node i to node j
– path length: number of edges on the path
– nodes i and j are connected
– cycle: a path that starts and ends at the same node
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1

2

3

45



Shortest Paths

• Shortest Path from node i to node j

– also known as BFS path, or geodesic path

– We can find all shortest paths from a node using BFS

1

2

3

45

1

2

3

45



Shortest paths on weighted graphs

• Shortest paths on weighted graphs are harder 
to construct

– There are several well known algorithms for 
finding single-source, or all-pairs shortest paths

– For example: Dijkstra’s Algorithm



Diameter

• The longest shortest path in the graph
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1

2

3

45



Undirected graph

1

2

3

45

 Connected graph: a graph 
where there every pair of 
nodes is connected

 Disconnected graph: a graph 
that is not connected

 Connected Components: 
subsets of vertices that are 
connected



Fully Connected Graph

• Clique Kn

• A graph that has all possible n(n-1)/2 edges
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2

3

45



Directed Graph

1

2

3

45

 Strongly connected graph:
there exists a path from 
every i to every j

 Weakly connected graph: If 
edges are made to be 
undirected the graph is 
connected



Subgraphs
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 Subgraph: Given V’  V, and 
E’  E, the graph G’=(V’,E’) is 
a subgraph of G.

 Induced subgraph: Given    
V’  V, let E’  E is the set of 
all edges between the nodes 
in V’. The graph G’=(V’,E’), is 
an induced subgraph of G



Trees

• Connected Undirected graphs without cycles
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Bipartite graphs

• Graphs where the set of nodes V can be partitioned 
into two sets L and R, such that there are edges only 
between nodes in L and R, and there is no edge 
within L or R



Spanning Tree

• For any connected graph, the spanning tree is a 
subgraph and a tree that includes all the nodes of the 
graph

• There may exist multiple spanning trees for a graph. 
• For a weighted graph and one of its spanning tree, the 

weight of that spanning tree is the summation of the 
edge weights in the tree. 

• Among the many spanning trees found for a weighted 
graph, the one with the minimum weight 
is called the 

minimum spanning tree (MST)



Graph Representation

• Adjacency Matrix

– symmetric matrix for undirected graphs
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























01000

10100

01011

00101

00110

A



Graph Representation

• Adjacency Matrix

– unsymmetric matrix for undirected graphs

























00000

10000

01010

00001

00110

A 1
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Graph Representation

• Adjacency List

– For each node keep a list with neighboring nodes
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1: [2, 3]
2: [1, 3]
3: [1, 2, 4]
4: [3, 5]
5: [4]



Graph Representation

• Adjacency List

– For each node keep a list of the nodes it points to
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1: [2, 3]
2: [1]
3: [2, 4]
4: [5]
5: [null]



Graph Representation

• List of edges

– Keep a list of all the edges in the graph
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(1,2)
(2,3)
(1,3)
(3,4)
(4,5)



Graph Representation

• List of Edges

– Keep a list of all the directed edges in the graph
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(1,2)
(2,1)
(1,3)
(3,2)
(3,4)
(4,5)



P and NP

• P: the class of problems that can be solved in 
polynomial time

• NP: the class of problems that can be verified 
in polynomial time, but there is no known 
solution in polynomial time

• NP-hard: problems that are at least as hard as 
any problem in NP


