DATA MINING LECTURE 6

Similarity and Distance Sketching, Locality Sensitive Hashing

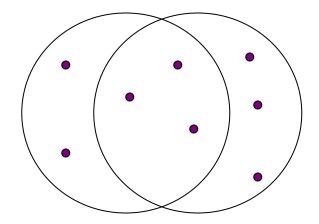
SIMILARITY AND DISTANCE

Thanks to:

Tan, Steinbach, and Kumar, "Introduction to Data Mining" Rajaraman and Ullman, "Mining Massive Datasets"

Jaccard Similarity

- The Jaccard similarity (Jaccard coefficient) of two sets S₁,
 S₂ is the size of their intersection divided by the size of their union.
 - JSim $(S_1, S_2) = |S_1 \cap S_2| / |S_1 \cup S_2|$.



3 in intersection. 8 in union. Jaccard similarity = 3/8

- Extreme behavior:
 - Jsim(X,Y) = 1, iff X = Y
 - Jsim(X,Y) = 0 iff X,Y have no elements in common
- JSim is symmetric

Cosine Similarity



Figure 2.16. Geometric illustration of the cosine measure.

- Sim(X,Y) = cos(X,Y)
 - The cosine of the angle between X and Y
- If the vectors are aligned (correlated) angle is zero degrees and cos(X,Y)=1
- If the vectors are orthogonal (no common coordinates) angle is 90 degrees and cos(X,Y) = 0
- Cosine is commonly used for comparing documents, where we assume that the vectors are normalized by the document length.

Application: Recommendations

- Recommendation systems
 - When a user buys an item (initially books) we want to recommend other items that the user may like
 - When a user rates a movie, we want to recommend movies that the user may like
 - When a user likes a song, we want to recommend other songs that they may like
- A big success of data mining
- Exploits the long tail
 - How Into Thin Air made Touching the Void popular

Another important problem

- Find duplicate and near-duplicate documents from a web crawl.
- Why is it important:
 - Identify mirrored web pages, and avoid indexing them, or serving them multiple times
 - Find replicated news stories and cluster them under a single story.
 - Identify plagiarism
- What if we wanted exact duplicates?

SKETCHING AND LOCALITY SENSITIVE HASHING

Thanks to:

Rajaraman and Ullman, "Mining Massive Datasets" Evimaria Terzi, slides for Data Mining Course.

Finding similar items

- Both the problems we described have a common component
 - We need a quick way to find highly similar items to a query item
 - OR, we need a method for finding all pairs of items that are highly similar.
- Also known as the Nearest Neighbor problem, or the All Nearest Neighbors problem
- We will examine it for the case of near-duplicate web documents.

Main issues

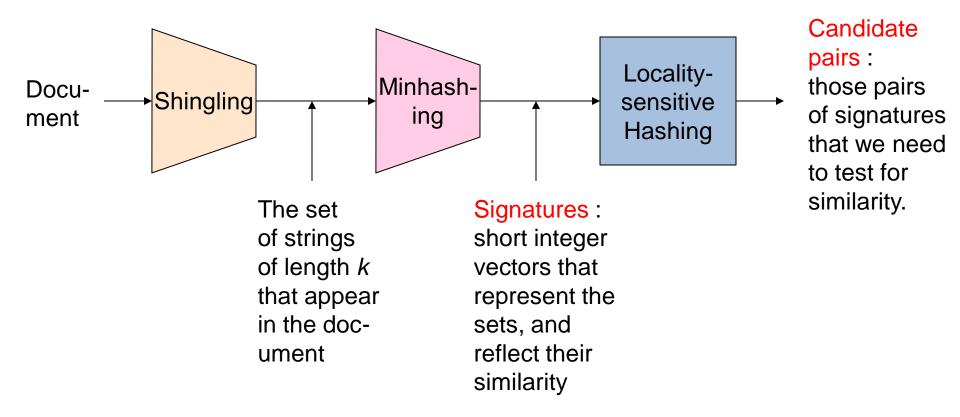
- What is the right representation of the document when we check for similarity?
 - E.g., representing a document as a set of characters will not do (why?)
- When we have billions of documents, keeping the full text in memory is not an option.
 - We need to find a shorter representation
- How do we do pairwise comparisons of billions of documents?
 - If we wanted exact match it would be ok, can we replicate this idea?

Three Essential Techniques for Similar Documents

 Shingling: convert documents, emails, etc., to sets.

- Minhashing: convert large sets to short signatures, while preserving similarity.
- Locality-Sensitive Hashing (LSH): focus on pairs of signatures likely to be similar.

The Big Picture



Shingles

- A k -shingle (or k -gram) for a document is a sequence of k characters that appears in the document.
- Example: document = abcab. k=2
 - Set of 2-shingles = {ab, bc, ca}.
 - Option: regard shingles as a bag, and count ab twice.

Represent a document by its set of k-shingles.

Shingling

Shingle: a sequence of k contiguous characters

```
rose is a rose is a rose
a rose is
  rose is a
  rose is a
   ose is a r
    se is a ro
       is a rose
            rose
          a rose 1
          a rose is
          a rose is
```

Shingling

Shingle: a sequence of k contiguous characters

a rose is a rose is a rose

```
a rose is
  rose is a
  rose is a
   ose is a r
    se is a ro
          a rose
            rose
            rose i
            rose is
          a rose is
```

```
a rose is
 rose is a
rose is a
ose is a r
se is a ro
 is a rose
   rose 1
  rose is
```

Working Assumption

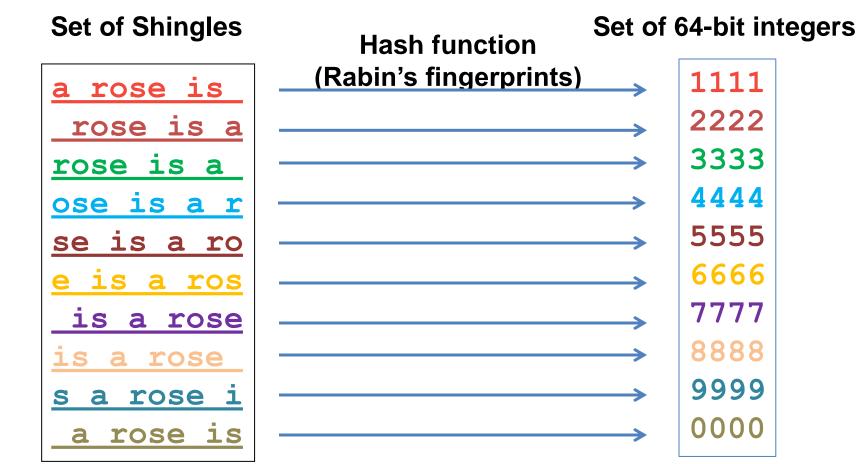
- Documents that have lots of shingles in common have similar text, even if the text appears in different order.
- Careful: you must pick k large enough, or most documents will have most shingles.
 - Extreme case k = 1: all documents are the same
 - k = 5 is OK for short documents; k = 10 is better for long documents.
- Alternative ways to define shingles:
 - Use words instead of characters
 - Anchor on stop words (to avoid templates)

Shingles: Compression Option

- To compress long shingles, we can hash them to (say) 4 bytes.
- Represent a doc by the set of hash values of its k-shingles.
- From now on we will assume that shingles are integers
 - Collisions are possible, but very rare

Fingerprinting

Hash shingles to 64-bit integers



Basic Data Model: Sets

- Document: A document is represented as a set shingles (more accurately, hashes of shingles)
- Document similarity: Jaccard similarity of the sets of shingles.
 - Common shingles over the union of shingles
 - $Sim(C_1, C_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$.
- Although we use the documents as our driving example the techniques we will describe apply to any kind of sets.
 - E.g., similar customers or items.

Signatures

- Problem: shingle sets are still too large to be kept in memory.
- Key idea: "hash" each set S to a small signature Sig (S), such that:
 - 1. Sig (S) is small enough that we can fit a signature in main memory for each set.
 - 2. $Sim(S_1, S_2)$ is (almost) the same as the "similarity" of $Sig(S_1)$ and $Sig(S_2)$. (signature preserves similarity).
- Warning: This method can produce false negatives, and false positives (if an additional check is not made).
 - False negatives: Similar items deemed as non-similar
 - False positives: Non-similar items deemed as similar

From Sets to Boolean Matrices

- Represent the data as a boolean matrix M
 - Rows = the universe of all possible set elements
 - In our case, shingle fingerprints take values in [0...2⁶⁴-1]
 - Columns = the sets
 - In our case, documents, sets of shingle fingerprints
 - M(r,S) = 1 in row r and column S if and only if r is a member of S.

- Typical matrix is sparse.
 - We do not really materialize the matrix

Universe: U = {A,B,C,D,E,F,G}

•
$$X = \{A, B, F, G\}$$

•
$$Y = \{A, E, F, G\}$$

• Sim(X,Y) =
$$\frac{3}{5}$$

	Χ	Υ
Α	1	1
В	1	0
С	0	0
D	0	0
E	0	1
F	1	1
G	1	1

Universe: U = {A,B,C,D,E,F,G}

•
$$X = \{A, B, F, G\}$$

•
$$Y = \{A, E, F, G\}$$

• Sim(X,Y) =
$$\frac{3}{5}$$

	X	Υ
Α	1	1
В	1	0
С	0	0
D	0	0
E	0	1
F	1	1
G	1	1

At least one of the columns has value 1

Universe: U = {A,B,C,D,E,F,G}

•
$$X = \{A, B, F, G\}$$

•
$$Y = \{A, E, F, G\}$$

• Sim(X,Y) =
$$\frac{3}{5}$$

	X	Υ
A	1	1
В	1	0
С	0	0
D	0	0
Е	0	1
F	1	1
G	1	1

Both columns have value 1

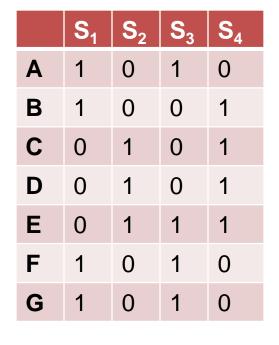
Minhashing

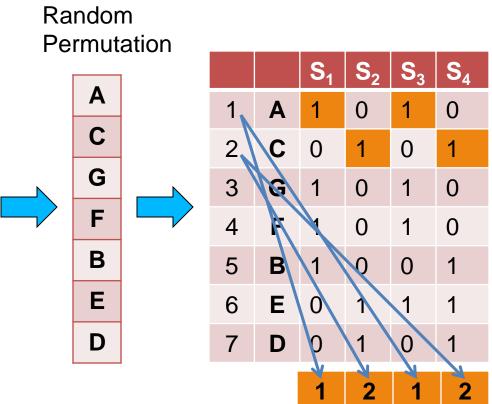
- Pick a random permutation of the rows (the universe U).
- Define "hash" function for set S
 - h(S) = the index of the first row (in the permuted order) in which column S has 1.

same as:

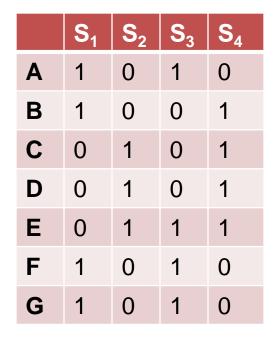
- h(S) = the index of the first element of S in the permuted order.
- Use k (e.g., k = 100) independent random permutations to create a signature.

Input matrix

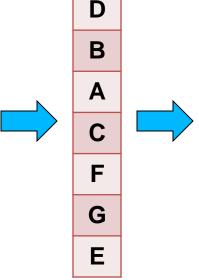




Input matrix



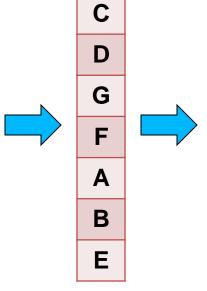
Random Permutation



		S ₁	S ₂	S ₃	S ₄
1	D	0	1	0	1
2	В	1	0	0	1
3	Α	1	0	1	0
4	С	0	1	0	1
5	F	1	0	1	0
6	G	1	0	1	0
7	E	0	1	1	1
		2	4	2	4

Input matrix

Random Permutation



		S ₁	S ₂	S ₃	S ₄
1	С	0	1	0	1
2	D	0	1	0	1
3	G	1	0	1	0
4	F	1	0	1	0
5	Α	1	0	1	0
6	В	1	0	0	1
7	E	0	1	1	1

Input matrix

	S ₁	S ₂	S ₃	S ₄
Α	1	0	1	0
В	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	1	1
F	1	0	1	0
G	1	0	1	0

	S ₁	S ₂	S ₃	S ₄
h ₁	1	2	1	2
h ₂	2	1	3	1
h ₃	3	1	3	1

- Sig(S) = vector of hash values
 - e.g., $Sig(S_2) = [2,1,1]$
- Sig(S,i) = value of the i-th hash function for set S
 - E.g., $Sig(S_2,3) = 1$

Hash function Property

$$Pr(h(S_1) = h(S_2)) = Sim(S_1, S_2)$$

 where the probability is over all choices of permutations.

• Why?

- The first row where one of the two sets has value 1 belongs to the union.
 - Recall that union contains rows with at least one 1.
- We have equality if both sets have value 1, and this row belongs to the intersection

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

Rows C,D could be anywhere they do not affect the probability

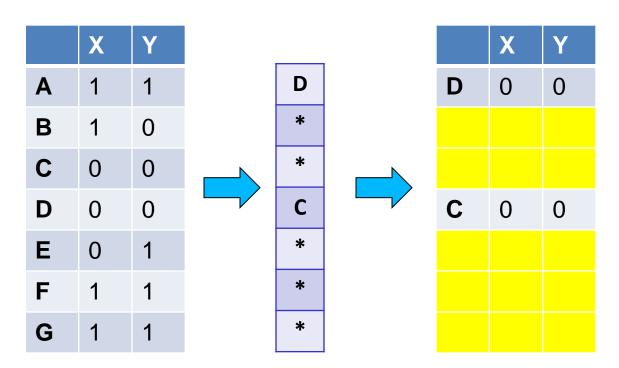
- Union = {A,B,E,F,G}
- Intersection = {A,F,G}

	X	Υ			X	Υ
Α	1	1	D	D	0	0
В	1	0	*			
С	0	0	*			
D	0	0	С	C	0	0
Ε	0	1	*			
F	1	1	*			
G	1	1	*			

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

The * rows belong to the union

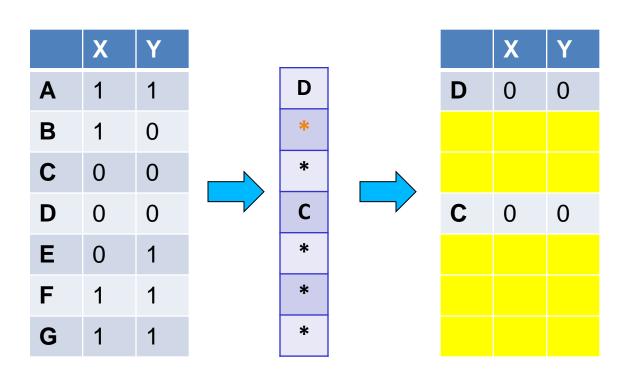
- Union = {A,B,E,F,G}
- Intersection = {A,F,G}



- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

The question is what is the value of the first * element

- Union = {A,B,E,F,G}
- Intersection = {A,F,G}



- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

If it belongs to the intersection then h(X) = h(Y)

- Union = {A,B,E,F,G}
- Intersection = {A,F,G}

	X	Υ			X	Υ
Α	1	1	D	D	0	0
В	1	0	*			
С	0	0	*			
D	0	0	С	С	0	0
Ε	0	1	*			
F	1	1	*			
G	1	1	*			

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

Every element of the union is equally likely to be the * element

$$Pr(h(X) = h(Y)) = \frac{|\{A,F,G\}|}{|\{A,B,E,F,G\}|} = \frac{3}{5} = Sim(X,Y)$$

- Union = {A,B,E,F,G}
- Intersection = {A,F,G}

	X	Υ			X	Υ
Α	1	1	D	D	0	0
В	1	0	*			
C	0	0	*			
D	0	0	С	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Similarity for Signatures

 The similarity of signatures is the fraction of the hash functions in which they agree.

	S ₁	S ₂	S ₃	S ₄
Α	1	0	1	0
В	1	0	0	1
С	0	1	0	1
D	0	1	0	1
E	0	1	1	1
F	1	0	1	0
G	1	0	1	0

S ₁	S ₂	S ₃	S ₄
1	2	1	2
2	1	3	1
3	1	3	1

	Actual	Sig
(S_1, S_2)	0	0
(S_1, S_3)	3/5	2/3
(S_1, S_4)	1/7	0
(S_2, S_3)	0	0
(S_2, S_4)	3/4	1
(S_3, S_4)	0	0

Zero similarity is preserved High similarity is well approximated

With multiple signatures we get a good approximation

Is it now feasible?

- Assume a billion rows
- Hard to pick a random permutation of 1...billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order?
- 😁

Being more practical

```
Approximating row permutations: pick k=100 hash
```

functions (h₁,...,h_k)

for each row r

for each hash function h

compute h_i (r)

In practice this means selecting the function parameters

In practice only the rows (shingles) that appear in the data

h_i (r) = index of shingle r in permutation

for each column S that has 1 in row r S contains shingle r

if h; (r) is a smaller value than Sig(S,i) then

 $Sig(S,i) = h_i(r);$

Find the shingle r with minimum index

Sig(S,i) will become the smallest value of **h**_i(**r**) among all rows (shingles) for which column **S** has value **1** (shingle belongs in S); i.e., **h**_i (**r**) gives the min index for the **i**-th permutation

Example

$$h(x) = x+1 \mod 5$$
 $g(x) = 2x+1 \mod 5$

Sig1 Sig2

h(0) = 1 $g(0) = 3$	1 3	-
h(1) = 2 $g(1) = 0$	1 3	2
h(2) = 3 g(2) = 2	1 2	2

$$h(3) = 4$$
 1 2 $g(3) = 4$ 2 0

$$h(4) = 0$$
 1 0
 $g(4) = 1$ 2 0

Implementation – (4)

- Often, data is given by column, not row.
 - E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- And always compute $h_i(r)$ only once for each row.

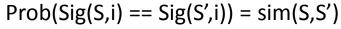
Finding similar pairs

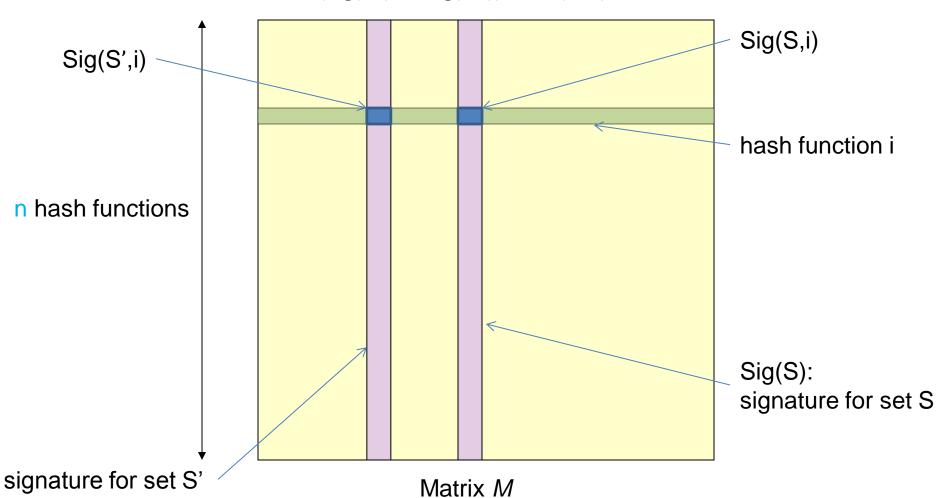
- Problem: Find all pairs of documents with similarity at least t = 0.8
- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- Example: 10⁶ columns implies 5*10¹¹ column-comparisons.
- At 1 microsecond/comparison: 6 days.

Locality-Sensitive Hashing

- What we want: a function f(X,Y) that tells whether or not X and Y is a candidate pair: a pair of elements whose similarity must be evaluated.
- A simple idea: X and Y are a candidate pair if they have the same min-hash signature.
 ! Multiple levels of Hashing!
 - Easy to test by hashing the signatures.
 - Similar sets are more likely to have the same signature.
 - Likely to produce many false negatives.
 - Requiring full match of signature is strict, some similar sets will be lost.
- Improvement: Compute multiple signatures; candidate pairs should have at least one common signature.
 - Reduce the probability for false negatives.

Signature matrix reminder

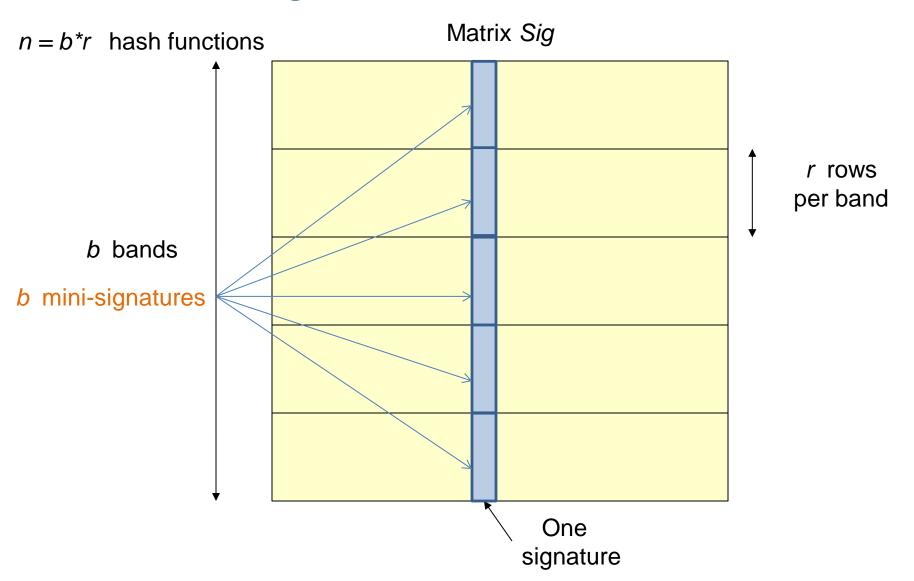




Partition into Bands – (1)

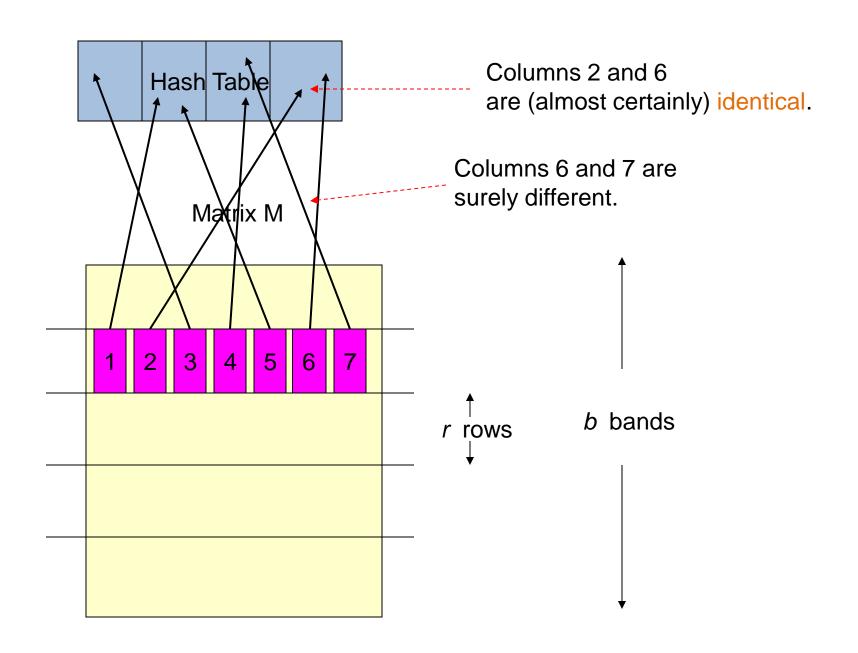
- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.

Partitioning into bands



Partition into Bands – (2)

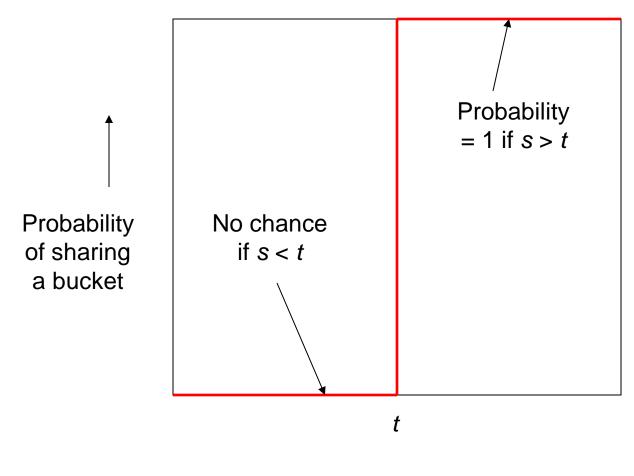
- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
 - Make k as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.



Partition into Bands – (2)

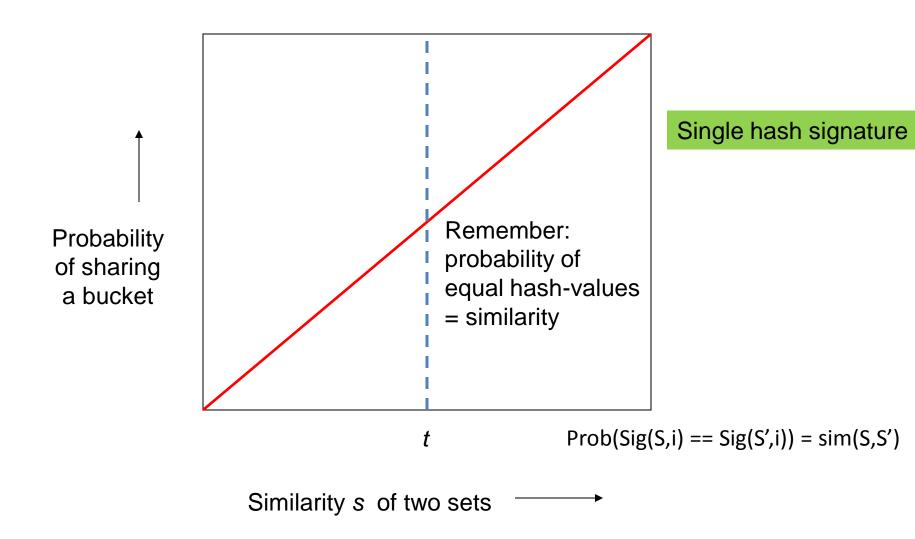
- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
 - Make k as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.
- Candidate column pairs are those that hash to the same bucket for at least 1 band.
- Tune b and r to catch most similar pairs, but few non-similar pairs.

Analysis of LSH – What We Want



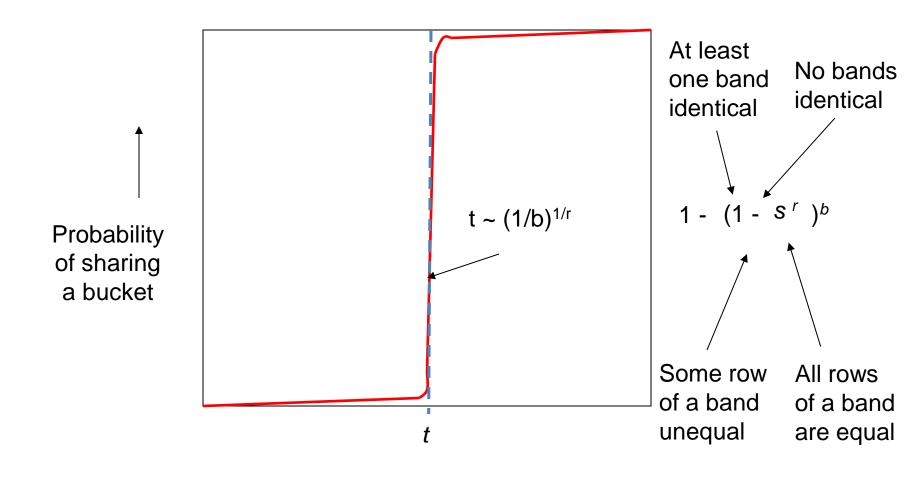
Similarity s of two sets

What One Band of One Row Gives You



What b Bands of r Rows Gives You

Similarity s of two sets



Example: b = 20; r = 5

5	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

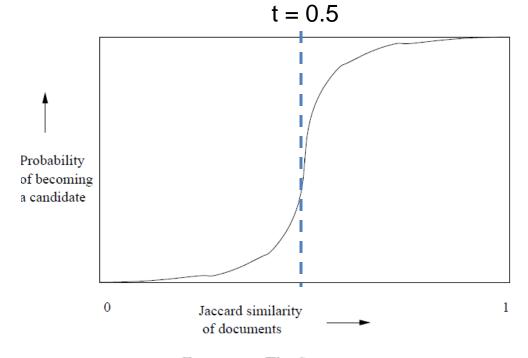


Figure 3.7: The S-curve

Suppose S₁, S₂ are 80% Similar

- We want all 80%-similar pairs. Choose 20 bands of 5 integers/band.
- Probability S_1 , S_2 identical in one particular band: $(0.8)^5 = 0.328$.
- Probability S_1 , S_2 are not similar in any of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.
- Probability S₁, S₂ are similar in at least one of the 20 bands:

$$1-0.00035 = 0.999$$

Suppose S₁, S₂ Only 40% Similar

 Probability S₁, S₂ identical in any one particular band:

$$(0.4)^5 = 0.01$$
.

Probability S₁, S₂ identical in at least 1 of 20 bands:

$$\leq 20 * 0.01 = 0.2$$
.

But false positives much lower for similarities
 40%.

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.

Locality-sensitive hashing (LSH)

- Big Picture: Construct hash functions h: R^d→ U such that for any pair of points p,q, for distance function D we have:
 - If D(p,q)≤r, then Pr[h(p)=h(q)] is high
 - If D(p,q)≥cr, then Pr[h(p)=h(q)] is small
- Then, we can find close pairs by hashing
- LSH is a general framework: for a given distance function D we need to find the right h

LSH for Cosine Distance

- For cosine distance, there is a technique analogous to minhashing for generating a (d₁,d₂,(1-d₁/180),(1-d₂/180))- sensitive family for any d₁ and d₂.
- Called random hyperplanes.

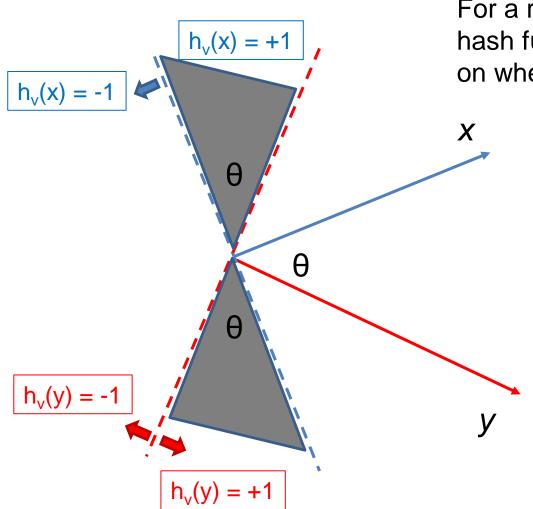
Random Hyperplanes

- Pick a random vector v, which determines a hash function h_v with two buckets.
 - $h_v(x) = +1$ if v.x > 0; = -1 if v.x < 0.
- LS-family H = set of all functions derived from any vector.

- Claim:
 - Prob[h(x)=h(y)] = 1 (angle between x and y)/180

Proof of Claim

Look in the plane of x and y.



For a random vector v the values of the hash functions $h_v(x)$ and $h_v(y)$ depend on where the vector v falls

 $h_v(x) \neq h_v(y)$ when v falls into the shaded area.

What is the probability of this for a randomly chosen vector v?

$$P[h_v(x) \neq h_v(y)] = 2\theta/360 = \theta/180$$

$$P[h_v(x) = h_v(y)] = 1 - \theta/180$$

Signatures for Cosine Distance

- Pick some number of vectors, and hash your data for each vector.
- The result is a signature (sketch) of +1's and –
 1's that can be used for LSH like the minhash
 signatures for Jaccard distance.

Simplification

- We need not pick from among all possible vectors
 v to form a component of a sketch.
- It suffices to consider only vectors v consisting of +1 and -1 components.