DATA MINING LECTURE 3

Frequent Itemsets
Association Rules

This is how it all started...

- Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining Association Rules between Sets of Items in Large Databases. SIGMOD Conference 1993: 207216
- Rakesh Agrawal, Ramakrishnan Srikant: Fast Algorithms for Mining Association Rules in Large Databases. VLDB 1994: 487-499
- These two papers are credited with the birth of Data Mining
- For a long time people were fascinated with Association Rules and Frequent Itemsets
- Some people (in industry and academia) still are.

Market-Basket Data

- A large set of items, e.g., things sold in a supermarket.
- A large set of baskets, each of which is a small subset of the items, e.g., the things one customer buys on one day.

Market-Baskets - (2)

- Really, a general many-to-many mapping (association) between two kinds of things, where the one (the baskets) is a set of the other (the items)
- But we ask about connections among "items," not "baskets."
- The technology focuses on common events, not rare events ("long tail").

Frequent Itemsets

- Given a set of transactions, find combinations of items (itemsets) that occur frequently

Market-Basket transactions
Support $s(I)$: number of transactions that contain itemset I
Items: \{Bread, Milk, Diaper, Beer, Eggs, Coke\}

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Examples of frequent itemsets $s(I) \geq 3$

```
{Bread}:4
{Milk}:4
{Diaper}:4
{Beer}: 3
{Diaper, Beer}:3
{Milk, Bread} : 3
```


Applications - (1)

- Items = products; baskets = sets of products someone bought in one trip to the store.
- Example application: given that many people buy beer and diapers together:
- Run a sale on diapers; raise price of beer.
- Only useful if many buy diapers \& beer.

Applications - (2)

- Baskets = Web pages; items = words.
- Example application: Unusual words appearing together in a large number of documents, e.g., "Brad" and "Angelina," may indicate an interesting relationship.

Applications - (3)

- Baskets = sentences; items = documents containing those sentences.
- Example application: Items that appear together too often could represent plagiarism.
- Notice items do not have to be "in" baskets.

Definition: Frequent Itemset

- Itemset
- A collection of one or more items
- Example: \{Milk, Bread, Diaper\}
- k-itemset
- An itemset that contains k items

Support (s)

- Count: Frequency of occurrence of an itemset
- E.g. s(\{Milk, Bread,Diaper\}) $=2$
- Fraction: Fraction of transactions that contain an itemset
- E.g. s(\{Milk, Bread, Diaper\}) $=40 \%$
- An itemset whose support is greater than or equal to a minsup threshold

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Frequent Itemset

Mining Frequent Itemsets task

- Input: A set of transactions T, over a set of items
- Output: All itemsets with items in I having
- support \geq minsup threshold
- Problem parameters:
- $\mathrm{N}=|\mathrm{T}|$: number of transactions
- $d=\| \|$: number of (distinct) items
- w: max width of a transaction
- Number of possible itemsets? $\mathrm{M}=2^{\text {d }}$
- Scale of the problem:
- WalMart sells 100,000 items and can store billions of baskets.
- The Web has billions of words and many billions of pages.

The itemset lattice

A Naïve Algorithm

- Brute-force approach, each itemset is a candidate :
- Consider each itemset in the lattice, and count the support of each candidate by scanning the data
- Time Complexity ~ O(NMw) , Space Complexity ~ O(d)
- OR
- Scan the data, and for each transaction generate all possible itemsets. Keep a count for each itemset in the data.
- Time Complexity ~ O(N2 ${ }^{\text {w }}$) , Space Complexity ~ O(M)
- Expensive since $M=2^{d}$!!!

Transactions
List of

| TID | Items |
| :--- | :--- | :--- |
| 1 | Bread, Milk |
| 2 | Bread, Diaper, Beer, Eggs |

Computation Model

- Typically, data is kept in flat files rather than in a database system.
- Stored on disk.
- Stored basket-by-basket.
- Expand baskets into pairs, triples, etc. as you read baskets.
- Use k nested loops to generate all sets of size k .

Example file: retail

```
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32
33 34 35
36}37438394041424344454
38 394748
38 39 48 49 50 51 52 53 54 55 56 57 58
32 41 59 60 61 62
3 3948
63 64 65 66 67 68
3269
48 70 71 72
39}73>74 75 76 77 78 79,
36}38849414849 80 81
82 83 84
41 85 86 87 88
3948 89 90 91 92 93 94 95 96 97 98 99 100 101
36 38 39 48 89
3941 102 103 104 105 106 107 108
38 39 41 109 110
39 111 112 113 114 115 116 117 118
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
48 134 135 136
39 48 137 138 139 140 141 142 143 144 145 146 147 148 149
39 150 151 152
38 39 56 153 154 155
```

Example: items are positive integers, and each basket corresponds to a line in the file of space-separated integers

Computation Model - (2)

- The true cost of mining disk-resident data is usually the number of disk I/O's.
- In practice, association-rule algorithms read the data in passes - all baskets read in turn.
- Thus, we measure the cost by the number of passes an algorithm takes.

Main-Memory Bottleneck

- For many frequent-itemset algorithms, main memory is the critical resource.
- As we read baskets, we need to count something, e.g., occurrences of pairs.
- The number of different things we can count is limited by main memory.
- Swapping counts in/out is a disaster (why?).

The Apriori Principle

- Apriori principle (Main observation):
- If an itemset is frequent, then all of its subsets must also be frequent
- If an itemset is not frequent, then all of its supersets cannot be frequent

$$
\forall X, Y: X \subseteq Y \Rightarrow s(X) \geq s(Y)
$$

- The support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustration of the Apriori principle

Figure 6.3. An illustration of the Apriori principle. If $\{c, d, e\}$ is frequent, then all subsets of this itemset are frequent.

Illustration of the Apriori principle

Found to be Infrequent

The Apriori algorithm

Level-wise approach

$\mathrm{C}_{\mathrm{k}}=$ candidate itemsets of size k $\mathrm{L}_{\mathrm{k}}=$ frequent itemsets of size k

1. $\mathrm{k}=1, \mathrm{C}_{1}=$ all items
2. While C_{k} not empty

Frequent 3. Scan the database to find which itemsets in itemset generation C_{k} are frequent and put them into
4. Use L_{k} to generate a collection of candidate itemsets $\mathrm{C}_{\mathrm{k}+1}$ of size $\mathrm{k}+1$
5. $k=k+1$
R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",

Proc. of the 20th Int'I Conference on Very Large Databases, 1994.

Illustration of the Apriori principle

Milk	$\mathbf{4}$
Beer	$\mathbf{3}$
Diaper	$\mathbf{4}$
Eggs	1

Itemset	Count	
\{Bread,Milk	3	
\{Bread,Beer\}	2	
\{Bread,Diaper\}	3	
\{Milk,Beer\}	2	
\{Milk,Diaper\}	3	
\{Beer,Diaper\}	3	

Pairs (2-itemsets)
(No need to generate candidates involving Coke or Eggs)

Triplets (3-itemsets)

If every subset is considered, $\binom{6}{1}+\binom{6}{2}+\binom{6}{3}=6+15+20=41$
With support-based pruning,
$\binom{6}{1}+\binom{4}{2}+1=6+6+1=13$

Itemset	Count
\{Bread,Milk,Diaper \}	$\mathbf{2}$

Only this triplet has all subsets to be frequent But it is below the minsup threshold

Candidate Generation

- Basic principle (Apriori):
- An itemset of size $k+1$ is candidate to be frequent only if all of its subsets of size k are known to be frequent
- Main idea:
- Construct a candidate of size k+1 by combining frequent itemsets of size k
- If $k=1$, take the all pairs of frequent items
- If $k>1$, join pairs of itemsets that differ by just one item
- For each generated candidate itemset ensure that all subsets of size k are frequent.

Generate Candidates $\mathrm{C}_{\mathrm{k}+1}$

- Assumption: The items in an itemset are ordered
- E.g., if integers ordered in increasing order, if strings ordered in lexicographic order
- The order ensures that if item $y>x$ appears before x, then x is not in the itemset
- The itemsets in L_{k} are also listed in an order

Create a candidate itemset of size $k+1$, by joining
two itemsets of size k, that share the first $k-1$ items
Item 1 Item 2 Item 3

1	2	3
1	2	5
1	4	5

Generate Candidates $\mathrm{C}_{\mathrm{k}+1}$

- Assumption: The items in an itemset are ordered
- E.g., if integers ordered in increasing order, if strings ordered in lexicographic order
- The order ensures that if item $\mathrm{y}>\mathrm{x}$ appears before x , then x is not in the itemset
- The items in L_{k} are also listed in an order

Create a candidate itemset of size $\mathrm{k}+1$, by joining two itemsets of size k, that share the first k - 1 items
Item 1 Item 2 Item 3
$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline 1 & 2 & 3 \\ \hline 1 & 2 & 5 \\ \hline 1 & 4 & 5 & & & 2 & 3\end{array}\right) 5$

Generate Candidates $\mathrm{C}_{\mathrm{k}+1}$

- Assumption: The items in an itemset are ordered
- E.g., if integers ordered in increasing order, if strings ordered in lexicographic order
- The order ensures that if item $\mathrm{y}>\mathrm{x}$ appears before x , then x is not in the itemset
- The items in L_{k} are also listed in an order

Create a candidate itemset of size $\mathrm{k}+1$, by joining two itemsets of size k, that share the first k - 1 items

Item 1 Item 2 Item 3

1	2	3	Are we missing something? What about this candidate?		
1	2	5			
1	4	5	2	4	5

Generating Candidates $\mathrm{C}_{\mathrm{k}+1}$ in SQL

- self-join L_{k}
insert into \boldsymbol{C}_{k+1}
select p.item ${ }_{1}$, p.item $_{2}, \ldots$, p.item $_{k}$, $_{\text {q.item }}^{k}$
from $L_{k} p, L_{k} q$
where p.item $_{1}=$ q.item ${ }_{1}, \ldots$, p.item $_{k-1}=$ q.item ${ }_{k-1}$, p.item $_{k}<$ q.item ${ }_{k}$

Example I

- $\mathrm{L}_{3}=\{a b c, a b d$, acd, ace, bcd $\}$
- Self-join: $L_{3}{ }^{*} L_{3}$
- abcd from abc and abd
- acde from acd and ace

item1	item2	item3	item1	item2	item3
a	b	c	a	b	c
a	b	d	a	b	d
a	c	d	a	c	d
a	c	e	a	c	e
b	c	d	b	c	d

p.item $_{1}=q$. item $_{1}$, p.item $_{2}=q$. item $_{2}$, p.item $_{3}<$ q.item $_{3}$

Example I

- $\mathrm{L}_{3}=\{\mathrm{abc}, \mathrm{abd}, \mathrm{acd}, \mathrm{ace}, \mathrm{bcd}\}$
- Self-joining: $L_{3}{ }^{*} \mathrm{~L}_{3}$
- abcd from abc and abd
- acde from acd and ace

item1	item2	item3
a	b	c
a	b	d
a	c	d
a	c	e
b	c	d

item1	item2	item3
a	b	c
a	b	d
a	c	d
a	c	e
b	c	d

p.item $_{1}=q$. item $_{1}$, p.item $_{2}=q$. item $_{2}$, p.item $_{3}<$ q.item $_{3}$

Example I

- $\mathrm{L}_{3}=\{a b c, a b d$, acd, ace, bcd $\}$
- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from abc and abd
- acde from acd and ace

p.item $_{1}=$ q. item ${ }_{1}$, p.item $_{2}=$ q.item ${ }_{2}$, p.item $_{3}<$ q.item ${ }_{3}$

Example I

- $\mathrm{L}_{3}=\{\mathrm{abc}, \mathrm{abd}, \mathrm{acd}, \mathrm{ace}, \mathrm{bcd}\}$
- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from abc and abd
- acde from acd and ace

item1	item2	item3	item1	item2	item3
a	b	c	a	b	c
a	b	d	a	b	d
a	c	d	a	c	d
a	c	e	a	c	e
b	c	d	b	c	d

p.item $_{1}=$ q. item $_{1}$, p.item $_{2}=$ q.item ${ }_{2}$, p.item $_{3}<$ q.item ${ }_{3}$

Example II

Generate Candidates $\mathrm{C}_{\mathrm{k}+1}$

- Are we done? Are all the candidates valid?

Item 1	Item 2	Item 3

| 1 | 2 | 3 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 5 | | |
| 1 | 4 | 5 | | |
| 1 | 2 | 3 | 5 | |

No. Subsets $(1,3,5)$ and $(2,3,5)$ should also be frequent

- Pruning step:

Apriori principle

- For each candidate ($k+1$)-itemset create all subset k-itemsets
- Remove a candidate if it contains a subset k-itemset that is not frequent

Example I

$$
\{\mathbf{a}, \mathbf{b}, \mathbf{c}\} \quad\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}
$$

$L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$

- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from abc and abd
- acde from acd and ace
- Pruning:
- abcd is kept since all subset itemsets are in L_{3}
- acde is removed because ade is not in L_{3}
- $C_{4}=\{a b c d\}$

Generate Candidates $\mathrm{C}_{\mathrm{k}+1}$

- We have all frequent k-itemsets L_{k}
- Step 1: self-join L_{k}
- Create set $\mathrm{C}_{\mathrm{k}+1}$ by joining frequent k-itemsets that share the first $\mathrm{k}-1$ items
- Step 2: prune
- Remove from $\mathrm{C}_{\mathrm{k}+1}$ the itemsets that contain a subset k-itemset that is not frequent

Computing Frequent Itemsets

- Given the set of candidate itemsets C_{k}, we need to compute the support and find the frequent itemsets L_{k}.
- Scan the data, and use a hash structure to keep a counter for each candidate itemset that appears in the data

Buckets

A simple hash structure

- Create a dictionary (hash table) that stores the candidate itemsets as keys, and the number of appearances as the value.
- Initialize with zero
- Increment the counter for each itemset that you see in the data

Example

Suppose you have 15 candidate itemsets of length 3 :
\{1 4 5\}, \{1 2 4\}, \{4 5 7\}, \{1 2 5\}, \{4 5 8\},
\{1 5 9\}, \{1 3 6\}, \{2 3 4\}, \{5 6 7\}, \{3 4 5\},
\{3 5 6\}, \{3 5 7\}, \{6 8 9\}, \{3 67$\},\{36$ 8\}

Hash table stores the counts of the candidate itemsets as they have been computed so far
$\left.\begin{array}{|c|c|}\hline \text { Key } & \text { Value } \\ \hline\left\{\begin{array}{l|l|}\hline & 6\end{array}\right\} & 0 \\ \hline\left\{\begin{array}{ll}3 & 4\end{array}\right\} & 1 \\ \hline\{1 & 3 \\ \hline\end{array}\right\}$

Subset Generation

Given a transaction t , what are the possible subsets of size 3 ?

Recursion!

Transaction, t

Level 3
Subsets of 3 items

Example

Tuple $\{1,2,3,5,6\}$ generates the following itemsets of length 3 :
\{1 2 3\}, \{1 2 5\}, \{1 2 6\}, \{1 3 5\}, \{1 36$\}$,
\{1 5 6\}, \{2 3 5\}, \{2 3 6\}, \{3 5 6\},

Increment the counters for the itemsets in the dictionary

Key	Value
\{367\}	0
\{3 4 5\}	1
\{1 36$\}$	3
\{145\}	5
\{2 3 4\}	2
\{159\}	1
\{36 8\}	0
\{4 57 7	2
\{6 89 9	0
\{5 67 7	3
\{124\}	8
\{3 57 7	1
\{125\}	0
\{3 56 \}	1
\{4 58 \}	0

Example

Tuple $\{1,2,3,5,6\}$ generates the following itemsets of length 3 :
\{1 2 3\}, \{1 2 5\}, \{1 2 6\}, \{1 3 5\}, \{1 36$\}$,
\{1 5 6\}, \{2 3 5\}, \{2 3 6\}, \{3 5 6\},

Increment the counters for the itemsets in the dictionary

Key	Value
\{367\}	0
\{3 4 5\}	1
	4
\{145\}	5
\{2 3 4\}	2
\{159\}	1
\{36 8\}	0
\{4 57 7	2
\{6 89 9	0
\{5 67 7	3
\{12 4\}	8
\{3 57$\}$	1
	1
	2
\{4 58 \}	0

The Hash Tree Structure

Suppose you have the same 15 candidate itemsets of length 3 :
$\{145\},\{124\},\{457\},\{125\},\{458\},\{159\},\{136\},\{234\}$,
$\{567\},\{34$ 5\}, $\{35$ 6\}, \{3 5 7\}, \{6 8 9\}, $\{367\},\{36$ 8\}
You need:

- Hash function
- Leafs: Store the itemsets

Hash function $=x$ mod 3

At the i-th level we hash on the i-th item

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Hash-tree enables to enumerate itemsets in transaction and match them against candidates

The frequent itemset algorithm

A-Priori for All Frequent Itemsets

- One pass for each k.
- Needs room in main memory to count each candidate k-set.
- For typical market-basket data and reasonable support (e.g., 1\%), $k=2$ requires the most memory.

Picture of A-Priori

Pass 1
Pass 2

Details of Main-Memory Counting

- Two approaches:

1. Count all pairs, using a "triangular matrix" = one dimensional array that stores the lower diagonal.
2. Keep a table of triples $[i, j, c]=$ "the count of the pair of items $\{i, j\}$ is c."

- (1) requires only 4 bytes/pair.
- Note: always assume integers are 4 bytes.
- (2) requires 12 bytes/pair, but only for those pairs with count >0.

Method (1)
Method (2)

Triangular-Matrix Approach - (1)

- Number items 1, 2,...
- Requires table of size $O(n)$ to convert item names to consecutive integers.
- Count $\{i, j\}$ only if $i<j$.
- Keep pairs in the order $\{1,2\},\{1,3\}, \ldots,\{1, n\}$, $\{2,3\},\{2,4\}, \ldots,\{2, n\},\{3,4\}, \ldots,\{3, n\}, \ldots\{n-1, n\}$.

Triangular-Matrix Approach - (2)

- Find pair $\{i, j\}$ at the position

$$
(i-1)(n-i / 2)+j-i .
$$

- Total number of pairs $n(n-1) / 2$; total bytes about $2 n^{2}$.

Details of Approach \#2

- Total bytes used is about $12 p$, where p is the number of pairs that actually occur.
- Beats triangular matrix if at most $1 / 3$ of possible pairs actually occur.
- May require extra space for retrieval structure, e.g., a hash table.

A-Priori Using Triangular Matrix for Counts

Pass 1
Pass 2

Factors Affecting Complexity

- Choice of minimum support threshold
- lowering support threshold results in more frequent itemsets
- this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
- more space is needed to store support count of each item
- if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
- since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
- transaction width increases with denser data sets
- This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

ASSOCIATION RULES

Association Rule Mining

- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules
$\{$ Diaper $\} \rightarrow\{$ Beer $\}$,
$\{$ Milk, Bread $\} \rightarrow\{$ Eggs,Coke $\}$,
$\{$ Beer, Bread $\} \rightarrow\{$ Milk $\}$,

Implication means co-occurrence, not causality!

Definition: Association Rule

- Association Rule
- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example:
$\{$ Milk, Diaper $\} \rightarrow\{$ Beer $\}$
- Rule Evaluation Metrics
- Support (s)
- Fraction of transactions that contain both X and Y
- the probability $P(X, Y)$ that X and Y

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
$\mathbf{5}$	Bread, Milk, Diaper, Coke

Example:
$\{$ Milk, Diaper $\} \Rightarrow$ Beer occur together

- Confidence (c)
- Measures how often items in Y appear in transactions that contain X
- the conditional probability $P(Y \mid X)$ that Y

$$
s=\frac{\sigma(\text { Milk }, \text { Diaper, Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4
$$ occurs given that X has occurred.

Association Rule Mining Task

- Input: A set of transactions T, over a set of items
- Output: All rules with items in I having
- support \geq minsup threshold
- confidence \geq minconf threshold

Mining Association Rules

Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a partitioning of a frequent itemset into Left-Hand-Side (LHS) and Right-Hand-Side (RHS)

Frequent itemset: $\{A, B, C, D\}$
Rule:
$A B \rightarrow C D$

Rule Generation

- We have all frequent itemsets, how do we get the rules?
- For every frequent itemset S, we consider all subsets $L \subset S$, and we find rules of the form $S-L \rightarrow L$, that satisfy the minimum confidence requirement
- Example: $S=\{A, B, C, D\}$
- Candidate rules:

$$
\begin{aligned}
\mathrm{BCD} \rightarrow \mathrm{~A}, \quad \mathrm{ACD} & \rightarrow \mathrm{~B}, \quad \mathrm{ABD} \rightarrow \mathrm{C}, \quad \mathrm{ABC} \rightarrow \mathrm{D}, \\
\mathrm{CD} & \rightarrow \mathrm{AB}, \mathrm{BD} \rightarrow \mathrm{AC,}, \mathrm{BC} \rightarrow \mathrm{AD}, \mathrm{AD} \rightarrow \mathrm{BC}, \mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{AC} \rightarrow \mathrm{BD}, \\
\mathrm{D} \rightarrow \mathrm{ABC}, \quad \mathrm{C} \rightarrow \mathrm{ABD}, \quad \mathrm{~B} & \rightarrow \mathrm{ACD}, \quad \mathrm{~A} \rightarrow \mathrm{BCD}
\end{aligned}
$$

- If $|S|=k$, then there are $2^{k}-2$ candidate association rules (ignoring $S \rightarrow \varnothing$ and $\varnothing \rightarrow S$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
- In general, confidence does not have an anti-monotone property
$\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D})$ can be larger or smaller than $\mathrm{c}(\mathrm{AB} \rightarrow \mathrm{D})$
- But confidence of rules generated from the same itemset has an anti-monotone property
- e.g., $L=\{A, B, C, D\}$:

$$
\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D}) \geq \mathrm{c}(\mathrm{AB} \rightarrow \mathrm{CD}) \geq \mathrm{c}(\mathrm{~A} \rightarrow \mathrm{BCD})
$$

- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Lattice of rules created by the RHS

Rule Generation for APriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the RHS
- join(CD $\rightarrow A B, B D \rightarrow A C)$ would produce the candidate rule $D \rightarrow A B C$
- Prune rule $D \rightarrow A B C$ if its subset $A D \rightarrow B C$ does not have high confidence
- Essentially we are doing APriori on the RHS

