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Large Scale data mining 

• Challenges: 

• How to deal with massive amount of data? 

• Storing the web requires Petabytes of data! 

• How to distribute computation? 

• Distributed/parallel programming is hard 
 

• Map-reduce addresses all of the above 

• Google’s computational/data manipulation model 

• Elegant way to work with big data 
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Single Node Architecture 
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Machine Learning, Statistics 

“Classical” Data Mining 
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Motivation: Google Example 

• 20+ billion web pages x 20KB = 400+ TB 

• 1 computer reads 30-35 MB/sec from disk 

• ~4 months to read the web 

• ~1,000 hard drives to store the web 

• Takes even more to do something useful  

with the data! 

• Today, a standard architecture for such 

problems is emerging: 

• Cluster of commodity Linux nodes 

• Commodity network (ethernet) to connect them 
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Cluster Architecture 

Mem 

Disk 

CPU 

Mem 

Disk 

CPU 

… 

Switch 

Each rack contains 16-64 nodes 
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Switch 

Switch 1 Gbps between  

any pair of nodes 

in a rack 

2-10 Gbps backbone between racks 

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO  

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org 
5 

http://bit.ly/Shh0RO
http://bit.ly/Shh0RO


 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org 
6 



Large-scale Computing 

• Large-scale computing for data mining  

problems on commodity hardware 

• Challenges: 

• How do you distribute computation? 

• How can we make it easy to write distributed 

programs? 

• Machines fail: 

• One server may stay up 3 years (1,000 days) 

• If you have 1,000 servers, expect to loose 1/day 

• People estimated Google had ~1M machines in 2011 

• 1,000 machines fail every day! 
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Idea and Solution 

• Issue: Copying data over a network takes time 

• Idea: 

• Bring computation close to the data 

• Store files multiple times for reliability 

• Map-reduce addresses these problems 

• Google’s computational/data manipulation model 

• Elegant way to work with big data 

• Storage Infrastructure – File system 

• Google: GFS. Hadoop: HDFS 

• Programming model 

• Map-Reduce 
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Storage Infrastructure 

• Problem: 

• If nodes fail, how to store data persistently?  

• Answer: 

• Distributed File System: 

• Provides global file namespace 

• Google GFS; Hadoop HDFS; 

• Typical usage pattern 

• Huge files (100s of GB to TB) 

• Data is rarely updated in place 

• Reads and appends are common 
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Distributed File System 

• Chunk servers 
• File is split into contiguous chunks 

• Typically each chunk is 16-64MB 

• Each chunk replicated (usually 2x or 3x) 

• Try to keep replicas in different racks 

• Master node 
• a.k.a. Name Node in Hadoop’s HDFS 

• Stores metadata about where files are stored 

• Might also be replicated 

• Client library for file access 
• Talks to master to find chunk servers  

• Connects directly to chunk servers to access data 
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Distributed File System 

• Reliable distributed file system 

• Data kept in “chunks” spread across machines 

• Each chunk replicated on different machines  

• Seamless recovery from disk or machine failure 
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Chunk server 1 

D1 

C5 
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Bring computation directly to the data! 
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Programming Model: MapReduce 

Warm-up task: 

• We have a huge text document 
 

• Count the number of times each distinct word 

appears in the file 
 

• Sample application:  

• Analyze web server logs to find popular URLs 

• Find the frequency of words in the Web. 
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Task: Word Count 

Case 1:  

• File too large for memory, but all <word, count> pairs fit 

in memory 

Case 2: 

• Count occurrences of words: 

• words(doc.txt) | sort | uniq -c 

• where words takes a file and outputs the words in it, one per a 

line 

• Case 2 captures the essence of MapReduce 

• Great thing is that it is naturally parallelizable 
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MapReduce: Overview 

• Sequentially read a lot of data 

• Map: 

• Extract something you care about 

• Group by key: Sort and Shuffle 

• Reduce: 

• Aggregate, summarize, filter or transform 

• Write the result 

Outline stays the same, Map and 

Reduce change to fit the problem 
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MapReduce in a figure 



MapReduce: The Map Step 
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Important: 

Different shapes 

correspond to 

different types of keys 

and values! 



MapReduce: The Reduce Step 
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More Specifically 

• Input: a set of data elements that we think of as key-value 
pairs 
• E.g., key is the filename, value is a single line in the file 

• Programmer specifies two methods: 
• Map(𝒌, 𝒗)  <𝑘’, 𝑣’>* 

• Takes a key-value pair and outputs a set of new key-value pairs 

• E.g., the key 𝑘’ is a word and the value 𝑣’ is 1. One such pair is produced for each 
appearance of the word in the input line 

• There is one Map call for every (𝑘, 𝑣) pair 

• Reduce(𝒌’, <𝒗’>∗)  <𝑘’, 𝑣’’>* 

• All values 𝑣’ with same key 𝑘’ are reduced together and processed in 𝑣’ order 

• There is one Reduce function call per unique key 𝑘’ 
• The output is a new key value pair, where for each key 𝑘’ a new value 𝑣’’ is 

computed from the set of values associated with 𝑘’ 

• E.g., the value 𝑣’’ is the sum of values 𝑣’ 
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MapReduce: Word Counting 

The crew of the space 

shuttle Endeavor recently 

returned to Earth as 

ambassadors, harbingers of 

a new era of space 

exploration. Scientists at 

NASA are saying that the 

recent assembly of the 

Dextre bot is the first step in 

a long-term space-based 

man/mache partnership. 
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-- the robotics we're doing -
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Word Count Using MapReduce 

map(key, value): 

// key: document name; value: text of the document 

 for each word w in words(value): 

  emit(w, 1) 

 

reduce(key, values): 

// key: a word; value: an iterator over counts 

 result = 0 

 for each count v in values: 

  result += v 

 emit(key, result) 
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Map-Reduce: Environment 

Map-Reduce environment takes care of: 

• Partitioning the input data 

• Scheduling the program’s execution across a  

set of machines 

• Performing the group by key step 

• Handling machine failures 

• Managing required inter-machine communication 
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Map-Reduce: A diagram 
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Big document 

MAP: 
Read input and 

produces a set of 

key-value pairs 

Group by key: 
Collect all pairs with 

same key 
(Hash merge, Shuffle, 

Sort, Partition) 

Reduce: 
Collect all values 

belonging to the 

key and output 



Map-Reduce: In Parallel 
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All phases are distributed with many tasks doing the work 



Map-Reduce 
• Programmer specifies: 

• Map and Reduce and input files 

• Workflow: 
• Read inputs as a set of key-value-pairs 

• Map transforms input (k,v)-pairs into a 
new set of (k’,v’)-pairs 

• Sorts & Shuffles the (k'v’)-pairs to 
output nodes 

• All (k’,v’)-pairs with a given k’ are sent 
to the same reduce 

• Reduce processes all (k’,v’)-pairs 
grouped by key into new (k’,v’’)-pairs 

• Write the resulting pairs to files 
 

• All phases are distributed with 
many tasks doing the work 

 

Input 0 

Map 0 

Input 1 

Map 1 

Input 2 

Map 2 

Reduce 0 Reduce 1 

Out 0 Out 1 

Shuffle 
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Data Flow 

• Input and final output are stored on a 

distributed file system (FS): 

• Scheduler tries to schedule map tasks “close” to 

physical storage location of input data 
 

• Intermediate results are stored on local FS  

of Map and Reduce workers 
 

• Output is often input to another  

MapReduce task 
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Coordination: Master 

• Master node takes care of coordination: 

• Task status: (idle, in-progress, completed) 

• Idle tasks get scheduled as workers become available 

• When a map task completes, it sends the master the 

location and sizes of its R intermediate files, one for 

each reducer 

• Master pushes this info to reducers 
 

• Master pings workers periodically to detect 

failures 
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Overview 

 



Dealing with Failures 

• Map worker failure 

• Map tasks completed or in-progress at  

worker are reset to idle 

• Reduce workers are notified when task is rescheduled 

on another worker 

• Reduce worker failure 

• Only in-progress tasks are reset to idle  

• Reduce task is restarted 

• Master failure 

• MapReduce task is aborted and client is notified 
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How many Map and Reduce jobs? 

• M map tasks, R reduce tasks 

• Rule of a thumb: 

• Make M much larger than the number of nodes in the 

cluster 

• One DFS chunk per map is common 

• Improves dynamic load balancing and speeds up 

recovery from worker failures 

• Usually R is smaller than M 

• Because output is spread across R files 
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Task Granularity & Pipelining 
• Fine granularity tasks:  map tasks >> machines 

• Minimizes time for fault recovery 

• Can do pipeline shuffling with map execution 

• Better dynamic load balancing  

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org 
30 



Refinements: Backup Tasks 

• Problem 

• Slow workers significantly lengthen the job completion 

time: 

• Other jobs on the machine 

• Bad disks 

• Weird things 

• Solution 

• Near end of phase, spawn backup copies of tasks 

• Whichever one finishes first “wins” 

• Effect 

• Dramatically shortens job completion time 
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Refinement: Combiners 

• Often a Map task will produce many pairs of the 
form (k,v1), (k,v2), … for the same key k 
• E.g., popular words in the word count example 

• Can save network time by  
pre-aggregating values in  
the mapper: 
• combine(k, list(v1))  v2 

• Combiner is usually same  
as the reduce function 

• Works only if Reduce  
function is commutative and associative 
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Refinement: Combiners 

• Back to our word counting example: 

• Combiner combines the values of all keys of a single 

mapper (single machine): 

 

 

 

 

 

 

• Much less data needs to be copied and shuffled! 
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Refinement: Partition Function 

• Want to control how keys get partitioned 
• Inputs to map tasks are created by contiguous splits of 

input file 

• Reduce needs to ensure that records with the same 
intermediate key end up at the same worker 

• System uses a default partition function: 
• hash(key) mod R 

 

• Sometimes useful to override the hash 
function: 
• E.g., hash(hostname(URL)) mod R ensures URLs 

from a host end up in the same output file 
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PROBLEMS SUITED 

FOR  

MAP-REDUCE 



Examples 

• Counting tasks 

• Find the total size in bytes of a host 

• Compute the frequency of all k-grams on the web 

• Compute the frequency of queries 

• Compute the frequency of query,url pairs 
 

• Other examples:  

• Link analysis and graph processing – PageRank  

• Machine Learning algorithms 

• Linear algebra operations (matrix-vector, matrix-matrix 

multiplication) 
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Example: Join By Map-Reduce 

• Compute the natural join R(A,B) ⋈ S(B,C) 

• R and S are each stored in files 

• Tuples are pairs (a,b) or (b,c) 
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Map-Reduce Join 

• A Map process turns: 

• Each input tuple R(a,b) into key-value pair (b,(a,R)) 

• Each input tuple S(b,c) into (b,(c,S)) 
 

• Map processes send each key-value pair with key b 

to Reduce process h(b) (where h is a hash function) 

• Hadoop does this automatically; just tell it what the key is. 

• Each Reduce process matches all the pairs 

(b,(a,R)) with all (b,(c,S)) from the list of values 

associated with b, and outputs (a,b,c). 
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Other database operations 

• All SQL operations can be implemented using 

map-reduce: 

• Select 

• Project 

• Union 

• Difference 

• Equi-Join 

• Left-outer join 

 



Matrix-Vector multiplication 

• Compute the product of matrix 𝑀 with vector 𝑣 

𝑀𝑣 𝑖 = 𝑚𝑖𝑗𝑣𝑗
𝑗

 

• This is an operation that appears very often in many 
different tasks 
• E.g., the computation of the PageRank vectors. 

• The size of the Web matrix is in the order of billions! But it is a very 
sparse matrix 

 

• Storage: 

The matrix and vectors are stored in a sparse form: 
• Triplets of the form (𝑖, 𝑗, 𝑚𝑖𝑗) for the non-zero entries of the matrix 

• Pairs of the form 𝑖, 𝑣𝑖  for the elements of the vector. 



Matrix-vector multiplication 

• Case 1: The vector fits in memory 
• In this case the vector that we want multiply is loaded in memory at 

each mapper. 

 

• Recall that we want to compute: 

 𝑚𝑖𝑗𝑣𝑗
𝑗

 

  for entry 𝑖 of the output vector. 

 

• How should we define the map-reduce process? 
• The mapper reads a chunk of the matrix M, and for each entry 
𝑖, 𝑗, 𝑚𝑖𝑗  it outputs the key-value pair (𝑖,𝑚𝑖𝑗𝑣𝑗) 

• The reducer takes the sum of all values that are associated with 
row 𝑖. 



Matrix-vector multiplication 

• Case 2: The vector does not fit in memory 

• In this case we split the matrix and the vector into stripes: 

 

 

 

 

 

 

 

 

• We perform the computation for  each stripe of the matrix, 
where the vector can fit into memory 
• For PageRank it is better to split the matrix into blocks. 

 



Extenstions: Pregel- Giraph 

• Data and computation is modeled as a Graph. 
• Each node in the graph handles a task 

• Each node output messages to the remaining nodes 

• Each node processes the incoming messages from other nodes. 

 

• Computation is performed in supersteps: 
• In one superstep all messages are processed, and new messages are 

sent out. 

 

• Failures 
• The computation is periodically checkpointed after a number of 

supersteps. 

 

• Pregel: developed by Google. Giraph: open-source version 
• Although a general computation model, it is usually used for 

computations on graphs. 



Example: All pairs shortest paths 

• Data: the edges of a large graph with weights 

• Compute: the shortest path between any two nodes 

 

• Each node in Pregel stores information about a node 
in the input graph and connects with its neighbors 
• For node 𝑎 we store the pairs (𝑏, 𝑤𝑎𝑏) with the distance of 𝑎 

to all other nodes 

• Initially only to immediate neighbors 

• At each step each node 𝑎 broadcasts the distances 
(𝑎, 𝑏, 𝑤𝑎𝑏) to its neighbors. 

• When node 𝑎 receives message (𝑐, 𝑑, 𝑤𝑐𝑑), it checks if there 
are pairs (𝑐, 𝑤𝑎𝑐) and (𝑑, 𝑤𝑎𝑑) stored locally 

• If 𝑤𝑎𝑐 +𝑤𝑐𝑑 < 𝑤𝑎𝑑 then it updates the pair 𝑑,𝑤𝑎𝑑 . 



 

POINTERS AND 

FURTHER READING 



Implementations 

• Google 
• Not available outside Google 

• Hadoop 
• An open-source implementation in Java 

• Uses HDFS for stable storage 

• Download: http://lucene.apache.org/hadoop/ 

• Aster Data 
• Cluster-optimized SQL Database that also implements 

MapReduce 
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Reading 

• Jeffrey Dean and Sanjay Ghemawat: 

MapReduce: Simplified Data Processing   on 

Large Clusters 

• http://labs.google.com/papers/mapreduce.html 

 

• Sanjay Ghemawat, Howard Gobioff, and Shun-

Tak Leung: The Google File System 

• http://labs.google.com/papers/gfs.html  
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Resources 

• Hadoop Wiki 
•  Introduction 

•  http://wiki.apache.org/lucene-hadoop/ 

•  Getting Started 
•  http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop 

•  Map/Reduce Overview  
•  http://wiki.apache.org/lucene-hadoop/HadoopMapReduce 

•  http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses 

•  Eclipse Environment 
• http://wiki.apache.org/lucene-hadoop/EclipseEnvironment 

• Hadoop releases from Apache download mirrors 
• http://www.apache.org/dyn/closer.cgi/lucene/hadoop/ 

• Javadoc 
•  http://lucene.apache.org/hadoop/docs/api/  
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Other systems 

• Apache Spark 
• https://spark.apache.org/ 

• A different distributed computation software stack running 
over HDFS, or Amazon S3 

• Developed by UC Berkeley 

 

• On top of Apache Spark: 
• Spark SQL: allows for querying structured and semi-

structured data 

• MLlib – Apache Mahout: Distributed Machine Learning 
framework  
• Implements clustering, classification, dimensionality reduction 

algorithims 

• GraphX: Distributed Graph processing framework, similar to 
Pregel 
• Implements several graph processing algorithms  

https://spark.apache.org/
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Other systems 

• Apache Hive: 

• https://hive.apache.org/ 

• Distributed Data Warehousing system. Works over 

HDFS and Amazon S3. 

• HiveQL: SQL like querying language. 

• Developed by Facebook. 

 

• GraphLab and GraphChi 

• Distributed Graph processing framework 

• Pregel-like computation 

https://hive.apache.org/
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Cloud Computing 

• Ability to rent computing by the hour 

• Additional services e.g., persistent storage 
 

• Amazon’s “Elastic Compute Cloud” (EC2) 
 

• Aster Data and Hadoop can both be run on EC2 

 

• R on the Cloud: 

• Several resources that allow to run R scripts on the 

cloud. Useful for bio-informatics applications. 
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