DATA MINING LECTURE 15

The Map-Reduce Computational Paradigm

Most of the slides are taken from: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University http://www.mmds.org

Large Scale data mining

• Challenges:

- How to deal with massive amount of data?
 - Storing the web requires Petabytes of data!
- How to distribute computation?
 - Distributed/parallel programming is hard

• Map-reduce addresses all of the above

- Google's computational/data manipulation model
- Elegant way to work with big data

Single Node Architecture

Machine Learning, Statistics

3

"Classical" Data Mining

Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
 - ~4 months to read the web
- ~1,000 hard drives to store the web
- Takes even more to **do** something useful with the data!
- Today, a standard architecture for such problems is emerging:
 - Cluster of commodity Linux nodes
 - Commodity network (ethernet) to connect them

Cluster Architecture

Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

5

Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware
- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
 - People estimated Google had ~1M machines in 2011
 - 1,000 machines fail every day!

Idea and Solution

Issue: Copying data over a network takes time

Idea:

- Bring computation close to the data
- Store files multiple times for reliability
- Map-reduce addresses these problems
 - Google's computational/data manipulation model
 - Elegant way to work with big data
 - Storage Infrastructure File system
 - Google: GFS. Hadoop: HDFS
 - Programming model
 - Map-Reduce

Storage Infrastructure

- Problem:
 - If nodes fail, how to store data persistently?
- Answer:
 - Distributed File System:
 - Provides global file namespace
 - Google GFS; Hadoop HDFS;
- Typical usage pattern
 - Huge files (100s of GB to TB)
 - Data is rarely updated in place
 - Reads and appends are common

Distributed File System

Chunk servers

- File is split into contiguous chunks
- Typically each chunk is 16-64MB
- Each chunk replicated (usually 2x or 3x)
- Try to keep replicas in different racks

Master node

- a.k.a. Name Node in Hadoop's HDFS
- Stores metadata about where files are stored
- Might also be replicated

Client library for file access

- Talks to master to find chunk servers
- Connects directly to chunk servers to access data

Distributed File System

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure

Bring computation directly to the data!

Chunk servers also serve as compute servers

Programming Model: MapReduce

Warm-up task:

- We have a huge text document
- Count the number of times each distinct word appears in the file

Sample application:

- Analyze web server logs to find popular URLs
- Find the frequency of words in the Web.

Task: Word Count

Case 1:

 File too large for memory, but all <word, count> pairs fit in memory

Case 2:

- Count occurrences of words:
 - words (doc.txt) | sort | uniq -c
 - where words takes a file and outputs the words in it, one per a line
- Case 2 captures the essence of MapReduce
 - Great thing is that it is naturally parallelizable

MapReduce: Overview

- Sequentially read a lot of data
- Map:
 - Extract something you care about
- Group by key: Sort and Shuffle
- Reduce:
 - Aggregate, summarize, filter or transform
- Write the result

Outline stays the same, **Map** and **Reduce** change to fit the problem

MapReduce in a figure

MapReduce: The Map Step

Important: Different shapes correspond to different types of keys and values!

16

MapReduce: The <u>Reduce</u> Step

More Specifically

- Input: a set of data elements that we think of as key-value pairs
 - E.g., key is the filename, value is a single line in the file
- Programmer specifies two methods:
 - Map $(k, v) \rightarrow \langle k', v' \rangle^*$
 - Takes a key-value pair and outputs a set of new key-value pairs
 - E.g., the key k' is a word and the value v' is 1. One such pair is produced for each appearance of the word in the input line
 - There is one Map call for every (k, v) pair
 - Reduce($k', \langle v' \rangle^*$) $\rightarrow \langle k', v'' \rangle^*$
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'
 - The output is a new key value pair, where for each key k' a new value v'' is computed from the set of values associated with k'
 - E.g., the value v'' is the sum of values v'

MapReduce: Word Counting

Provided by the programmer

Provided by the programmer

19

Word Count Using MapReduce

map(key, value):

// key: document name; value: text of the document
for each word w in words(value):
 emit(w, 1)

reduce(key, values):

```
// key: a word; value: an iterator over counts
    result = 0
    for each count v in values:
        result += v
    emit(key, result)
```

Map-Reduce: Environment

Map-Reduce environment takes care of:

- Partitioning the input data
- Scheduling the program's execution across a set of machines
- Performing the group by key step
- Handling machine failures
- Managing required inter-machine communication

Map-Reduce: A diagram

Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work

Map-Reduce

- Programmer specifies:
 - Map and Reduce and input files
- Workflow:
 - Read inputs as a set of key-value-pairs
 - Map transforms input (k,v)-pairs into a new set of (k',v')-pairs
 - Sorts & Shuffles the (k'v')-pairs to output nodes
 - All (k',v')-pairs with a given k' are sent to the same reduce
 - Reduce processes all (k',v')-pairs grouped by key into new (k',v'')-pairs
 - Write the resulting pairs to files
- All phases are distributed with many tasks doing the work

24

Data Flow

- Input and final output are stored on a distributed file system (FS):
 - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

Coordination: Master

- Master node takes care of coordination:
 - Task status: (idle, in-progress, completed)
 - Idle tasks get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its *R* intermediate files, one for each reducer
 - Master pushes this info to reducers
- Master pings workers periodically to detect failures

Overview

Figure 2.3: Overview of the execution of a MapReduce program

Dealing with Failures

Map worker failure

- Map tasks completed or in-progress at worker are reset to idle
- Reduce workers are notified when task is rescheduled on another worker

Reduce worker failure

- Only in-progress tasks are reset to idle
- Reduce task is restarted

Master failure

MapReduce task is aborted and client is notified

How many Map and Reduce jobs?

- *M* map tasks, *R* reduce tasks
- Rule of a thumb:
 - Make M much larger than the number of nodes in the cluster
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds up recovery from worker failures

• Usually *R* is smaller than *M*

Because output is spread across R files

Task Granularity & Pipelining

Fine granularity tasks: map tasks >> machines

- Minimizes time for fault recovery
- Can do pipeline shuffling with map execution
- Better dynamic load balancing

Process	Time		>								
User Program	MapReduce()				wait						
Master]	Assign tasks to worker machines									
Worker 1		Map 1	Map 3								
Worker 2		Map 2									
Worker 3			Read 1.1		Read 1.3		Read 1.2		Redu	ice 1	
Worker 4				Read 2.1			Read 2.2	Read	1 2.3	Red	uce 2

Refinements: Backup Tasks

- Problem
 - Slow workers significantly lengthen the job completion time:
 - Other jobs on the machine
 - Bad disks
 - Weird things

Solution

- Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"

Effect

Dramatically shortens job completion time

Refinement: Combiners

- Often a Map task will produce many pairs of the form (k,v₁), (k,v₂), ... for the same key k
 - E.g., popular words in the word count example
- Can save network time by pre-aggregating values in the mapper:
 - combine(k, list(v₁)) \rightarrow v₂
 - Combiner is usually same as the reduce function
- Works only if Reduce function is commutative and associative

Refinement: Combiners

Back to our word counting example:

 Combiner combines the values of all keys of a single mapper (single machine):

Much less data needs to be copied and shuffled!

Refinement: Partition Function

- Want to control how keys get partitioned
 - Inputs to map tasks are created by contiguous splits of input file
 - Reduce needs to ensure that records with the same intermediate key end up at the same worker
- System uses a default partition function:
 - hash(key) mod R
- Sometimes useful to override the hash function:
 - E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same output file

PROBLEMS SUITED FOR MAP-REDUCE

Examples

Counting tasks

- Find the total size in bytes of a host
- Compute the frequency of all k-grams on the web
- Compute the frequency of queries
- Compute the frequency of query, url pairs

• Other examples:

- Link analysis and graph processing PageRank
- Machine Learning algorithms
- Linear algebra operations (matrix-vector, matrix-matrix multiplication)
Example: Join By Map-Reduce

- Compute the natural join $R(A,B) \bowtie S(B,C)$
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

Map-Reduce Join

A Map process turns:

- Each input tuple *R(a,b)* into key-value pair (*b,(a,R*))
- Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce process h(b) (where h is a hash function)
 - Hadoop does this automatically; just tell it what the key is.
- Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) from the list of values associated with b, and outputs (a,b,c).

Other database operations

- All SQL operations can be implemented using map-reduce:
 - Select
 - Project
 - Union
 - Difference
 - Equi-Join
 - Left-outer join

Matrix-Vector multiplication

• Compute the product of matrix M with vector v

$$(Mv)_i = \sum_j m_{ij} v_j$$

- This is an operation that appears very often in many different tasks
 - E.g., the computation of the PageRank vectors.
 - The size of the Web matrix is in the order of billions! But it is a very sparse matrix

• Storage:

The matrix and vectors are stored in a sparse form:

- Triplets of the form (i, j, m_{ij}) for the non-zero entries of the matrix
- Pairs of the form (i, v_i) for the elements of the vector.

Matrix-vector multiplication

Case 1: The vector fits in memory

- In this case the vector that we want multiply is loaded in memory at each mapper.
- Recall that we want to compute:

$$\sum_{j} m_{ij} v_{j}$$

for entry *i* of the output vector.

- How should we define the map-reduce process?
 - The **mapper** reads a chunk of the matrix M, and for each entry (i, j, m_{ij}) it outputs the key-value pair $(i, m_{ij}v_j)$
 - The **reducer** takes the sum of all values that are associated with row *i*.

Matrix-vector multiplication

- Case 2: The vector does not fit in memory
- In this case we split the matrix and the vector into stripes:

Figure 2.4: Division of a matrix and vector into five stripes

- We perform the computation for each stripe of the matrix, where the vector can fit into memory
 - For PageRank it is better to split the matrix into blocks.

Extenstions: Pregel- Giraph

- Data and computation is modeled as a Graph.
 - Each node in the graph handles a task
 - Each node output messages to the remaining nodes
 - Each node processes the incoming messages from other nodes.
- Computation is performed in supersteps:
 - In one superstep all messages are processed, and new messages are sent out.
- Failures
 - The computation is periodically checkpointed after a number of supersteps.
- Pregel: developed by Google. Giraph: open-source version
 - Although a general computation model, it is usually used for computations on graphs.

Example: All pairs shortest paths

- Data: the edges of a large graph with weights
- Compute: the shortest path between any two nodes
- Each node in Pregel stores information about a node in the input graph and connects with its neighbors
 - For node *a* we store the pairs (*b*, *w*_{*ab*}) with the distance of *a* to all other nodes
 - Initially only to immediate neighbors
 - At each step each node a broadcasts the distances (a, b, w_{ab}) to its neighbors.
 - When node a receives message (c, d, w_{cd}), it checks if there are pairs (c, w_{ac}) and (d, w_{ad}) stored locally
 - If $w_{ac} + w_{cd} < w_{ad}$ then it updates the pair (d, w_{ad}) .

POINTERS AND FURTHER READING

Implementations

- Google
 - Not available outside Google
- Hadoop
 - An open-source implementation in Java
 - Uses HDFS for stable storage
 - Download: <u>http://lucene.apache.org/hadoop/</u>
- Aster Data
 - Cluster-optimized SQL Database that also implements MapReduce

Reading

- Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters
 - <u>http://labs.google.com/papers/mapreduce.html</u>
- Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: The Google File System
 - http://labs.google.com/papers/gfs.html

Resources

- Hadoop Wiki
 - Introduction
 - http://wiki.apache.org/lucene-hadoop/
 - Getting Started
 - http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
 - Map/Reduce Overview
 - http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
 - <u>http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses</u>
 - Eclipse Environment
 - http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
- Hadoop releases from Apache download mirrors
 - http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
- Javadoc
 - http://lucene.apache.org/hadoop/docs/api/

Other systems

- Apache Spark
 - https://spark.apache.org/
 - A different distributed computation software stack running over HDFS, or Amazon S3
 - Developed by UC Berkeley
- On top of Apache Spark:
 - Spark SQL: allows for querying structured and semistructured data
 - MLlib Apache Mahout: Distributed Machine Learning framework
 - Implements clustering, classification, dimensionality reduction algorithms
 - GraphX: Distributed Graph processing framework, similar to Pregel
 - Implements several graph processing algorithms

Other systems

- Apache Hive:
 - https://hive.apache.org/
 - Distributed Data Warehousing system. Works over HDFS and Amazon S3.
 - HiveQL: SQL like querying language.
 - Developed by Facebook.
- GraphLab and GraphChi
 - Distributed Graph processing framework
 - Pregel-like computation

Cloud Computing

- Ability to rent computing by the hour
 - Additional services e.g., persistent storage
- Amazon's "Elastic Compute Cloud" (EC2)
- Aster Data and Hadoop can both be run on EC2
- R on the Cloud:
 - Several resources that allow to run R scripts on the cloud. Useful for bio-informatics applications.