
DATA MINING

LECTURE 15
The Map-Reduce Computational Paradigm

Most of the slides are taken from:

Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman

Stanford University

http://www.mmds.org

Large Scale data mining

• Challenges:

• How to deal with massive amount of data?

• Storing the web requires Petabytes of data!

• How to distribute computation?

• Distributed/parallel programming is hard

• Map-reduce addresses all of the above

• Google’s computational/data manipulation model

• Elegant way to work with big data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
2

Single Node Architecture

Memory

Disk

CPU

Machine Learning, Statistics

“Classical” Data Mining

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
3

Motivation: Google Example

• 20+ billion web pages x 20KB = 400+ TB

• 1 computer reads 30-35 MB/sec from disk

• ~4 months to read the web

• ~1,000 hard drives to store the web

• Takes even more to do something useful

with the data!

• Today, a standard architecture for such

problems is emerging:

• Cluster of commodity Linux nodes

• Commodity network (ethernet) to connect them

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
4

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch 1 Gbps between

any pair of nodes

in a rack

2-10 Gbps backbone between racks

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
5

http://bit.ly/Shh0RO
http://bit.ly/Shh0RO

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
6

Large-scale Computing

• Large-scale computing for data mining

problems on commodity hardware

• Challenges:

• How do you distribute computation?

• How can we make it easy to write distributed

programs?

• Machines fail:

• One server may stay up 3 years (1,000 days)

• If you have 1,000 servers, expect to loose 1/day

• People estimated Google had ~1M machines in 2011

• 1,000 machines fail every day!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
7

Idea and Solution

• Issue: Copying data over a network takes time

• Idea:

• Bring computation close to the data

• Store files multiple times for reliability

• Map-reduce addresses these problems

• Google’s computational/data manipulation model

• Elegant way to work with big data

• Storage Infrastructure – File system

• Google: GFS. Hadoop: HDFS

• Programming model

• Map-Reduce

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
8

Storage Infrastructure

• Problem:

• If nodes fail, how to store data persistently?

• Answer:

• Distributed File System:

• Provides global file namespace

• Google GFS; Hadoop HDFS;

• Typical usage pattern

• Huge files (100s of GB to TB)

• Data is rarely updated in place

• Reads and appends are common

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
9

Distributed File System

• Chunk servers
• File is split into contiguous chunks

• Typically each chunk is 16-64MB

• Each chunk replicated (usually 2x or 3x)

• Try to keep replicas in different racks

• Master node
• a.k.a. Name Node in Hadoop’s HDFS

• Stores metadata about where files are stored

• Might also be replicated

• Client library for file access
• Talks to master to find chunk servers

• Connects directly to chunk servers to access data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
10

Distributed File System

• Reliable distributed file system

• Data kept in “chunks” spread across machines

• Each chunk replicated on different machines

• Seamless recovery from disk or machine failure

C0 C1

C2 C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3 C5

Chunk server 2

…
C2 D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
11

Chunk servers also serve as compute servers

Programming Model: MapReduce

Warm-up task:

• We have a huge text document

• Count the number of times each distinct word

appears in the file

• Sample application:

• Analyze web server logs to find popular URLs

• Find the frequency of words in the Web.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
12

Task: Word Count

Case 1:

• File too large for memory, but all <word, count> pairs fit

in memory

Case 2:

• Count occurrences of words:

• words(doc.txt) | sort | uniq -c

• where words takes a file and outputs the words in it, one per a

line

• Case 2 captures the essence of MapReduce

• Great thing is that it is naturally parallelizable

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
13

MapReduce: Overview

• Sequentially read a lot of data

• Map:

• Extract something you care about

• Group by key: Sort and Shuffle

• Reduce:

• Aggregate, summarize, filter or transform

• Write the result

Outline stays the same, Map and

Reduce change to fit the problem

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
14

MapReduce in a figure

MapReduce: The Map Step

v k

k v

k v

map
v k

v k

…

k v

map

Input

Data elements

(key-value pairs)

Intermediate

key-value pairs

…

k v

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
16

Important:

Different shapes

correspond to

different types of keys

and values!

MapReduce: The Reduce Step

k v

…

k v

k v

k v

Intermediate

key-value pairs

Group

by key

reduce

reduce

k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups
Output

key-value pairs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
17

More Specifically

• Input: a set of data elements that we think of as key-value
pairs
• E.g., key is the filename, value is a single line in the file

• Programmer specifies two methods:
• Map(𝒌, 𝒗)  <𝑘’, 𝑣’>*

• Takes a key-value pair and outputs a set of new key-value pairs

• E.g., the key 𝑘’ is a word and the value 𝑣’ is 1. One such pair is produced for each
appearance of the word in the input line

• There is one Map call for every (𝑘, 𝑣) pair

• Reduce(𝒌’, <𝒗’>∗)  <𝑘’, 𝑣’’>*

• All values 𝑣’ with same key 𝑘’ are reduced together and processed in 𝑣’ order

• There is one Reduce function call per unique key 𝑘’
• The output is a new key value pair, where for each key 𝑘’ a new value 𝑣’’ is

computed from the set of values associated with 𝑘’

• E.g., the value 𝑣’’ is the sum of values 𝑣’

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
18

MapReduce: Word Counting

The crew of the space

shuttle Endeavor recently

returned to Earth as

ambassadors, harbingers of

a new era of space

exploration. Scientists at

NASA are saying that the

recent assembly of the

Dextre bot is the first step in

a long-term space-based

man/mache partnership.

'"The work we're doing now

-- the robotics we're doing -

- is what we're going to

need ……………………..

Big document

(The, 1)

(crew, 1)

(of, 1)

(the, 1)

(space, 1)

(shuttle, 1)

(Endeavor, 1)

(recently, 1)

….

(crew, 1)

(crew, 1)

(space, 1)

(the, 1)

(the, 1)

(the, 1)

(shuttle, 1)

(recently, 1)

…

(crew, 2)

(space, 1)

(the, 3)

(shuttle, 1)

(recently, 1)

…

MAP:
Read input and

produces a set of

key-value pairs

Group by

key:
Collect all pairs

with same key

Reduce:
Collect all values

belonging to the

key and output

(key, value)

Provided by the

programmer

Provided by the

programmer

(key, value) (key, value)

S
e
q
u
e
n
ti
a
lly

 r
e
a
d
 t

h
e
 d

a
ta

O

n
ly

s
e
q
u
e
n
ti
a
l

 r

e
a

d
s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
19

Word Count Using MapReduce

map(key, value):

// key: document name; value: text of the document

 for each word w in words(value):

 emit(w, 1)

reduce(key, values):

// key: a word; value: an iterator over counts

 result = 0

 for each count v in values:

 result += v

 emit(key, result)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
20

Map-Reduce: Environment

Map-Reduce environment takes care of:

• Partitioning the input data

• Scheduling the program’s execution across a

set of machines

• Performing the group by key step

• Handling machine failures

• Managing required inter-machine communication

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
21

Map-Reduce: A diagram

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
22

Big document

MAP:
Read input and

produces a set of

key-value pairs

Group by key:
Collect all pairs with

same key
(Hash merge, Shuffle,

Sort, Partition)

Reduce:
Collect all values

belonging to the

key and output

Map-Reduce: In Parallel

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
23

All phases are distributed with many tasks doing the work

Map-Reduce
• Programmer specifies:

• Map and Reduce and input files

• Workflow:
• Read inputs as a set of key-value-pairs

• Map transforms input (k,v)-pairs into a
new set of (k’,v’)-pairs

• Sorts & Shuffles the (k'v’)-pairs to
output nodes

• All (k’,v’)-pairs with a given k’ are sent
to the same reduce

• Reduce processes all (k’,v’)-pairs
grouped by key into new (k’,v’’)-pairs

• Write the resulting pairs to files

• All phases are distributed with
many tasks doing the work

Input 0

Map 0

Input 1

Map 1

Input 2

Map 2

Reduce 0 Reduce 1

Out 0 Out 1

Shuffle

24
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org

Data Flow

• Input and final output are stored on a

distributed file system (FS):

• Scheduler tries to schedule map tasks “close” to

physical storage location of input data

• Intermediate results are stored on local FS

of Map and Reduce workers

• Output is often input to another

MapReduce task

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
25

Coordination: Master

• Master node takes care of coordination:

• Task status: (idle, in-progress, completed)

• Idle tasks get scheduled as workers become available

• When a map task completes, it sends the master the

location and sizes of its R intermediate files, one for

each reducer

• Master pushes this info to reducers

• Master pings workers periodically to detect

failures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
26

Overview

Dealing with Failures

• Map worker failure

• Map tasks completed or in-progress at

worker are reset to idle

• Reduce workers are notified when task is rescheduled

on another worker

• Reduce worker failure

• Only in-progress tasks are reset to idle

• Reduce task is restarted

• Master failure

• MapReduce task is aborted and client is notified

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
28

How many Map and Reduce jobs?

• M map tasks, R reduce tasks

• Rule of a thumb:

• Make M much larger than the number of nodes in the

cluster

• One DFS chunk per map is common

• Improves dynamic load balancing and speeds up

recovery from worker failures

• Usually R is smaller than M

• Because output is spread across R files

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
29

Task Granularity & Pipelining
• Fine granularity tasks: map tasks >> machines

• Minimizes time for fault recovery

• Can do pipeline shuffling with map execution

• Better dynamic load balancing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
30

Refinements: Backup Tasks

• Problem

• Slow workers significantly lengthen the job completion

time:

• Other jobs on the machine

• Bad disks

• Weird things

• Solution

• Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Effect

• Dramatically shortens job completion time

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
31

Refinement: Combiners

• Often a Map task will produce many pairs of the
form (k,v1), (k,v2), … for the same key k
• E.g., popular words in the word count example

• Can save network time by
pre-aggregating values in
the mapper:
• combine(k, list(v1))  v2

• Combiner is usually same
as the reduce function

• Works only if Reduce
function is commutative and associative

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
32

Refinement: Combiners

• Back to our word counting example:

• Combiner combines the values of all keys of a single

mapper (single machine):

• Much less data needs to be copied and shuffled!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
33

Refinement: Partition Function

• Want to control how keys get partitioned
• Inputs to map tasks are created by contiguous splits of

input file

• Reduce needs to ensure that records with the same
intermediate key end up at the same worker

• System uses a default partition function:
• hash(key) mod R

• Sometimes useful to override the hash
function:
• E.g., hash(hostname(URL)) mod R ensures URLs

from a host end up in the same output file

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
34

PROBLEMS SUITED

FOR

MAP-REDUCE

Examples

• Counting tasks

• Find the total size in bytes of a host

• Compute the frequency of all k-grams on the web

• Compute the frequency of queries

• Compute the frequency of query,url pairs

• Other examples:

• Link analysis and graph processing – PageRank

• Machine Learning algorithms

• Linear algebra operations (matrix-vector, matrix-matrix

multiplication)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
36

Example: Join By Map-Reduce

• Compute the natural join R(A,B) ⋈ S(B,C)

• R and S are each stored in files

• Tuples are pairs (a,b) or (b,c)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
37

A B

a1 b1

a2 b1

a3 b2

a4 b3

B C

b2 c1

b2 c2

b3 c3

⋈

A B C

a3 b2 c1

a3 b2 c2

a4 b3 c3

=

R

S

Map-Reduce Join

• A Map process turns:

• Each input tuple R(a,b) into key-value pair (b,(a,R))

• Each input tuple S(b,c) into (b,(c,S))

• Map processes send each key-value pair with key b

to Reduce process h(b) (where h is a hash function)

• Hadoop does this automatically; just tell it what the key is.

• Each Reduce process matches all the pairs

(b,(a,R)) with all (b,(c,S)) from the list of values

associated with b, and outputs (a,b,c).

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
38

Other database operations

• All SQL operations can be implemented using

map-reduce:

• Select

• Project

• Union

• Difference

• Equi-Join

• Left-outer join

Matrix-Vector multiplication

• Compute the product of matrix 𝑀 with vector 𝑣

𝑀𝑣 𝑖 = 𝑚𝑖𝑗𝑣𝑗
𝑗

• This is an operation that appears very often in many
different tasks
• E.g., the computation of the PageRank vectors.

• The size of the Web matrix is in the order of billions! But it is a very
sparse matrix

• Storage:

The matrix and vectors are stored in a sparse form:
• Triplets of the form (𝑖, 𝑗, 𝑚𝑖𝑗) for the non-zero entries of the matrix

• Pairs of the form 𝑖, 𝑣𝑖 for the elements of the vector.

Matrix-vector multiplication

• Case 1: The vector fits in memory
• In this case the vector that we want multiply is loaded in memory at

each mapper.

• Recall that we want to compute:

 𝑚𝑖𝑗𝑣𝑗
𝑗

 for entry 𝑖 of the output vector.

• How should we define the map-reduce process?
• The mapper reads a chunk of the matrix M, and for each entry
𝑖, 𝑗, 𝑚𝑖𝑗 it outputs the key-value pair (𝑖,𝑚𝑖𝑗𝑣𝑗)

• The reducer takes the sum of all values that are associated with
row 𝑖.

Matrix-vector multiplication

• Case 2: The vector does not fit in memory

• In this case we split the matrix and the vector into stripes:

• We perform the computation for each stripe of the matrix,
where the vector can fit into memory
• For PageRank it is better to split the matrix into blocks.

Extenstions: Pregel- Giraph

• Data and computation is modeled as a Graph.
• Each node in the graph handles a task

• Each node output messages to the remaining nodes

• Each node processes the incoming messages from other nodes.

• Computation is performed in supersteps:
• In one superstep all messages are processed, and new messages are

sent out.

• Failures
• The computation is periodically checkpointed after a number of

supersteps.

• Pregel: developed by Google. Giraph: open-source version
• Although a general computation model, it is usually used for

computations on graphs.

Example: All pairs shortest paths

• Data: the edges of a large graph with weights

• Compute: the shortest path between any two nodes

• Each node in Pregel stores information about a node
in the input graph and connects with its neighbors
• For node 𝑎 we store the pairs (𝑏, 𝑤𝑎𝑏) with the distance of 𝑎

to all other nodes

• Initially only to immediate neighbors

• At each step each node 𝑎 broadcasts the distances
(𝑎, 𝑏, 𝑤𝑎𝑏) to its neighbors.

• When node 𝑎 receives message (𝑐, 𝑑, 𝑤𝑐𝑑), it checks if there
are pairs (𝑐, 𝑤𝑎𝑐) and (𝑑, 𝑤𝑎𝑑) stored locally

• If 𝑤𝑎𝑐 +𝑤𝑐𝑑 < 𝑤𝑎𝑑 then it updates the pair 𝑑,𝑤𝑎𝑑 .

POINTERS AND

FURTHER READING

Implementations

• Google
• Not available outside Google

• Hadoop
• An open-source implementation in Java

• Uses HDFS for stable storage

• Download: http://lucene.apache.org/hadoop/

• Aster Data
• Cluster-optimized SQL Database that also implements

MapReduce

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
46

http://lucene.apache.org/hadoop/

Reading

• Jeffrey Dean and Sanjay Ghemawat:

MapReduce: Simplified Data Processing on

Large Clusters

• http://labs.google.com/papers/mapreduce.html

• Sanjay Ghemawat, Howard Gobioff, and Shun-

Tak Leung: The Google File System

• http://labs.google.com/papers/gfs.html

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
47

http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/gfs.html

Resources

• Hadoop Wiki
• Introduction

• http://wiki.apache.org/lucene-hadoop/

• Getting Started
• http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop

• Map/Reduce Overview
• http://wiki.apache.org/lucene-hadoop/HadoopMapReduce

• http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses

• Eclipse Environment
• http://wiki.apache.org/lucene-hadoop/EclipseEnvironment

• Hadoop releases from Apache download mirrors
• http://www.apache.org/dyn/closer.cgi/lucene/hadoop/

• Javadoc
• http://lucene.apache.org/hadoop/docs/api/

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
48

http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment
http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
http://www.apache.org/dyn/closer.cgi/lucene/hadoop/
http://lucene.apache.org/hadoop/docs/api/
http://lucene.apache.org/hadoop/docs/api/

Other systems

• Apache Spark
• https://spark.apache.org/

• A different distributed computation software stack running
over HDFS, or Amazon S3

• Developed by UC Berkeley

• On top of Apache Spark:
• Spark SQL: allows for querying structured and semi-

structured data

• MLlib – Apache Mahout: Distributed Machine Learning
framework
• Implements clustering, classification, dimensionality reduction

algorithims

• GraphX: Distributed Graph processing framework, similar to
Pregel
• Implements several graph processing algorithms

https://spark.apache.org/
https://spark.apache.org/

Other systems

• Apache Hive:

• https://hive.apache.org/

• Distributed Data Warehousing system. Works over

HDFS and Amazon S3.

• HiveQL: SQL like querying language.

• Developed by Facebook.

• GraphLab and GraphChi

• Distributed Graph processing framework

• Pregel-like computation

https://hive.apache.org/
https://hive.apache.org/

Cloud Computing

• Ability to rent computing by the hour

• Additional services e.g., persistent storage

• Amazon’s “Elastic Compute Cloud” (EC2)

• Aster Data and Hadoop can both be run on EC2

• R on the Cloud:

• Several resources that allow to run R scripts on the

cloud. Useful for bio-informatics applications.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org
51

