
DATA MINING

LECTURE 13
Link Analysis Ranking

PageRank -- Random walks

HITS



How to organize the web

• First try: Manually curated Web Directories



How to organize the web

• Second try: Web Search
• Information Retrieval investigates:

• Find relevant docs in a small and trusted set e.g., 
Newspaper articles, Patents, etc. (“needle-in-a-haystack”)

• Limitation of keywords (synonyms, polysemy, etc)

• But: Web is huge, full of untrusted documents, random 
things, web spam, etc. 

 Everyone can create a web page of high production value

 Rich diversity of people issuing queries

 Dynamic and constantly-changing nature of web content



How to organize the web

• Third try (the Google era): using the web graph

• Sift from relevance to authoritativeness

• It is not only important that a page is relevant, but that it 

is also important on the web

• For example, what kind of results would we like to 

get for the query “greek newspapers”?



Link Analysis Ranking

• Use the graph structure in order to determine the 

relative importance of the nodes

• Applications: Ranking on graphs (Web, Twitter, FB, etc)

• Intuition: An edge from node p to node q denotes 

endorsement

• Node p endorses/recommends/confirms the 

authority/centrality/importance of node q

• Use the graph of recommendations to assign an 

authority value to every node



Link Analysis

• Not all web pages are equal on the web

What is the simplest way to 

measure importance of a 

page on the web?



Rank by Popularity

• Rank pages according to the number of incoming 

edges (in-degree, degree centrality)

1. Red Page

2. Yellow Page

3. Blue Page

4. Purple Page

5. Green Page

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Popularity

• It is not important only how many link to you, but 
how important are the people that link to you.

• Good authorities are pointed by good authorities
• Recursive definition of importance



PAGERANK



PageRank

• Good authorities should be pointed by 
good authorities
• The value of a node is the value of the nodes that point 

to it.

• How do we implement that?
• Assume that we have a unit of authority to distribute to 

all nodes.

• Initially each node gets 
1

𝑛
amount of authority

• Each node distributes the authority value they have to 
their neighbors

• The authority value of each node is the sum of the 
authority fractions it collects from its neighbors.

𝑤𝑣 =  

𝑢→𝑣

1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢
𝑤𝑣: the PageRank value of node 𝑣

Recursive definition



Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

𝑤𝑣 =  

𝑢→𝑣

1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Computing PageRank weights

• A simple way to compute the weights is by 
iteratively updating the weights

• PageRank Algorithm

• This process converges

Initialize all PageRank weights to 
1

𝑛

Repeat:

𝑤𝑣 =  𝑢→𝑣
1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

Until the weights do not change



Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

𝑤𝑣 =  

𝑢→𝑣

1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓

t=0 0.2 0.2 0.2 0.2 0.2

t=1 0.16 0.36 0.16 0.1 0.2

t=2 0.13 0.28 0.11 0.1 0.36

t=3 0.22 0.22 0.1 0.18 0.28

t=4 0.2 0.27 0.17 0.14 0.22

Think of the weight as a fluid: there is 

constant amount of it in the graph, 

but it moves around until it stabilizes



Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

𝑤𝑣 =  

𝑢→𝑣

1

𝑑𝑜𝑢𝑡 𝑢
𝑤𝑢

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓

t=25 0.18 0.27 0.13 0.13 0.27 Think of the weight as a fluid: there is 

constant amount of it in the graph, 

but it moves around until it stabilizes



Random Walks on Graphs

• The algorithm defines a random walk on the graph

• Random walk:
• Start from a node chosen uniformly at random with 

probability 
1

𝑛
.

• Pick one of the outgoing edges uniformly at random

• Move to the destination of the edge

• Repeat.

• The Random Surfer model
• Users wander on the web, following links.



Example

• Step 0

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 0

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 1

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 1
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𝑣4𝑣5
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Example

• Step 2
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Example

• Step 2
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Example

• Step 3
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𝑣3
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Example

• Step 3

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Example

• Step 4…

𝑣2

𝑣3

𝑣4𝑣5

𝑣1



Random walk

• Question: what is the probability 𝑝𝑖
𝑡 of being at 

node 𝑖 after 𝑡 steps?
𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝑝3
0 =
1

5

𝑝4
0 =
1

5

𝑝5
0 =
1

5

𝑝1
𝑡 =
1

3
𝑝4
𝑡−1 +
1

2
𝑝5
𝑡−1

𝑝2
𝑡 =
1

2
𝑝1
𝑡−1 + 𝑝3

𝑡−1 +
1

3
𝑝4
𝑡−1

𝑝3
𝑡 =
1

2
𝑝1
𝑡−1 +

1

3
𝑝4
𝑡−1

𝑝4
𝑡 =
1

2
𝑝5
𝑡−1

𝑝5
𝑡 = 𝑝2

𝑡−1

𝑝1
0 =
1

5

𝑝2
0 =
1

5

The equations are the same as those for the 

PageRank computation



Markov chains
• A Markov chain describes a discrete time stochastic process over a set of 

states
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}

according to a transition probability matrix 𝑃 = {𝑃𝑖𝑗}
• 𝑃𝑖𝑗 = probability of moving to state 𝑗 when at state 𝑖

• Matrix 𝑃 has the property that the entries of all rows sum to 1

 

𝑗

𝑃 𝑖, 𝑗 = 1

A matrix with this property is called stochastic

• State probability distribution: The vector 𝑝𝑡 = (𝑝𝑖
𝑡 , 𝑝2
𝑡 , … , 𝑝𝑛

𝑡 ) that stores the 
probability of being at state 𝑠𝑖 after 𝑡 steps

• Memorylessness property: The next state of the chain depends only at the 
current state and not on the past of the process (first order MC)
• Higher order MCs are also possible

• Markov Chain Theory: After infinite steps the state probability vector converges 
to a unique distribution if the chain is irreducible and aperiodic



Random walks

• Random walks on graphs correspond to Markov 

Chains

• The set of states 𝑆 is the set of nodes of the graph 𝐺

• The transition probability matrix is the probability that 

we follow an edge from one node to another

𝑃 𝑖, 𝑗 =
1

deg𝑜𝑢𝑡 𝑖

• We can compute the vector 𝑝𝑡 at step t using a 

vector-matrix multiplication
𝑝𝑡+1 = 𝑝𝑡𝑃



An example
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An example
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Stationary distribution

• The stationary distribution of a random walk with 
transition matrix 𝑃, is a probability distribution 𝜋, such 
that 𝜋 = 𝜋𝑃

• The stationary distribution is an eigenvector of matrix 𝑃
• the principal left eigenvector of P – stochastic matrices have 

maximum eigenvalue 1

• The probability 𝜋𝑖 is the fraction of times that we visited  
state 𝑖 as 𝑡 → ∞

• Markov Chain Theory: The random walk converges to a 
unique stationary distribution independent of the initial 
vector if the graph is strongly connected, and not
bipartite. 



Computing the stationary distribution

• The Power Method

• After many iterations pt → 𝜋 regardless of the 
initial vector 𝑝0

• Power method because it computes 𝑝𝑡 = 𝑝0𝑃𝑡

• Rate of convergence
• determined by the second eigenvalue 𝜆2

Initialize 𝑝0 to some distribution 
Repeat 
𝑝𝑡 = 𝑝𝑡−1𝑃

Until convergence



The stationary distribution

• What is the meaning of the stationary distribution 𝜋 of 
a random walk?

• 𝜋(𝑖): the probability of being at node i after very large 
(infinite) number of steps

• 𝜋 is the left eigenvector of transition matrix P

• 𝜋 = 𝑝0𝑃
∞, where 𝑃 is the transition matrix, 𝑝0 the 

original vector 
• 𝑃 𝑖, 𝑗 : probability of going from i to j in one step

• 𝑃2(𝑖, 𝑗): probability of going from i to j in two steps (probability 
of all paths of length 2)

• 𝑃∞ 𝑖, 𝑗 = 𝜋(𝑗): probability of going from i to j in infinite steps 
– starting point does not matter.



The PageRank random walk

• Vanilla random walk

• make the adjacency matrix stochastic and run a random 

walk
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The PageRank random walk

• What about sink nodes?

• what happens when the random walk moves to a node 

without any outgoing inks?

























0210021

00313131

00010

00000

0021210

P



























0210021

00313131

00010

5151515151

0021210

P'

The PageRank random walk

• Replace these row vectors with a vector v

• typically, the uniform vector

P’ = P + dvT
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The PageRank random walk

• What about loops?

• Spider traps
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The PageRank random walk
• Add a random jump to vector v with prob 1-α

• typically, to a uniform vector

• Restarts after 1/(1-α) steps in expectation

• Guarantees irreducibility, convergence

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s
Random walk with restarts



PageRank algorithm [BP98]

• The Random Surfer model

• pick a page at random

• with probability 1- α jump to a random 

page

• with probability α follow a random 

outgoing link

• Rank according to the stationary 

distribution

•
1. Red Page

2. Purple Page

3. Yellow Page

4. Blue Page

5. Green Page

 
nqOut

qPR
pPR

pq

1
1

)(

)(
)(   



𝛼 = 0.85 in most cases



PageRank: Example



Stationary distribution with random jump

• If 𝑣 is the jump vector

𝑝0 = 𝑣
𝑝1 = 𝛼𝑝0𝑃 + 1 − 𝛼 𝑣 = 𝛼𝑣𝑃 + 1 − 𝛼 𝑣

𝑝2 = 𝛼𝑝1𝑃 + 1 − 𝛼 𝑣 = 𝛼2𝑣𝑃2 + 1 − 𝛼 𝑣𝛼𝑃 + 1 − 𝛼 𝑣
⋮

𝑝∞ = 1 − 𝛼 𝑣 + 1 − 𝛼 𝑣𝛼𝑃 + 1 − 𝛼 𝑣𝛼2𝑃2 + ⋯
= 1 − 𝛼 𝐼 − 𝛼𝑃 −1

• With the random jump the shorter paths are more important, 
since the weight decreases exponentially
• makes sense when thought of as a restart

• If 𝑣 is not uniform, we can bias the random walk towards the 
nodes that are close to 𝑣
• Personalized and Topic-Specific Pagerank.



Effects of random jump

• Guarantees convergence to unique distribution

• Motivated by the concept of random surfer

• Offers additional flexibility 

• personalization

• anti-spam

• Controls the rate of convergence

• the second eigenvalue of matrix 𝑃′′ is α



Random walks on undirected graphs

• For undirected graphs, the stationary distribution 

is proportional to the degrees of the nodes

• Thus in this case a random walk is the same as degree 

popularity

• This is no longer true if we do random jumps

• Now the short paths play a greater role, and the 

previous distribution does not hold.



Pagerank implementation

• Store the graph in adjacency list, or list of edges

• Keep current pagerank values and new pagerank

values

• Go through edges and update the values of the 

destination nodes.

• Repeat until the difference (𝐿1 or 𝐿∞ difference) is 

below some small value ε. 



A (Matlab-friendly) PageRank algorithm

• Performing vanilla power method is now too 

expensive – the matrix is not sparse

q0 = v

t = 1

repeat

t = t +1

until δ < ε

  1tTt q'P'q 
1tt qqδ 

Efficient computation of y = (P’’)T x

βvyy

yx β

xαPy

11

T







P = normalized adjacency matrix

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s

P’ = P + dvT, where di is 1 if i is sink and 0 o.w.



Pagerank history

• Huge advantage for Google in the early days
• It gave a way to get an idea for the value of a page, which 

was useful in many different ways

• Put an order to the web.

• After a while it became clear that the anchor text was 
probably more important for ranking

• Also, link spam became a new (dark) art

• Flood of research
• Numerical analysis got rejuvenated

• Huge number of variations

• Efficiency became a great issue.

• Huge number of applications in different fields 

• Random walk is often referred to as PageRank.



THE HITS ALGORITHM



The HITS algorithm

• Another algorithm proposed around the same 

time as Pagerank for using the hyperlinks to rank 

pages

• Kleinberg: then an intern at IBM Almaden

• IBM never made anything out of it



Query dependent input

Root Set

Root set obtained from a text-only search engine



Query dependent input

Root Set

IN OUT



Query dependent input

Root Set

IN OUT



Query dependent input

Root Set

IN OUT

Base Set



Hubs and Authorities [K98]

• Authority is not necessarily 
transferred directly 
between authorities

• Pages have double 
identity
• hub identity

• authority identity

• Good hubs point to good 
authorities

• Good authorities are 
pointed by good hubs

hubs authorities



Hubs and Authorities

• Two kind of weights:

• Hub weight

• Authority weight

• The hub weight is the sum of the authority 

weights of the authorities pointed to by the hub

• The authority weight is the sum of the hub 

weights that point to this authority.



HITS Algorithm

• Initialize all weights to 1.

• Repeat until convergence
• O operation : hubs collect the weight of the authorities

• I operation: authorities collect the weight of the hubs

• Normalize weights under some norm





jij

ji ah
:





ijj

ji ha
:



HITS and eigenvectors

• The HITS algorithm is a power-method eigenvector 
computation

• In vector terms 
• 𝑎𝑡 = 𝐴𝑇ℎ𝑡−1 and ℎ𝑡 = 𝐴𝑎𝑡−1

• 𝑎𝑡 = 𝐴𝑇𝐴𝑎𝑡−1 and ℎ𝑡 = 𝐴𝐴𝑇ℎ𝑡−1

• Repeated iterations will converge to the eigenvectors

• The authority weight vector 𝑎 is the eigenvector of 𝐴𝑇𝐴
• The hub weight vector ℎ is the eigenvector of 𝐴𝐴𝑇

• The vectors 𝑎 and ℎ are called the singular vectors of 
the matrix A



Singular Value Decomposition

• r : rank of matrix A

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA)

• : left singular vectors (eig-vectors of AAT)

• : right singular vectors (eig-vectors of ATA)

•
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Why does the Power Method work?

• If a matrix R is real and symmetric, it has real 
eigenvalues and eigenvectors: 𝜆1, 𝑤1 , 𝜆2, 𝑤2 ,
… , (𝜆𝑟 , 𝑤𝑟)
• r is the rank of the matrix

• |𝜆1 ≥ |𝜆2 ≥ ⋯ ≥ 𝜆𝑟
• For any matrix R, the eigenvectors 𝑤1, 𝑤2, … , 𝑤𝑟 of R 
define a basis of the vector space
• For any vector 𝑥, 𝑅𝑥 = 𝛼1𝑤1 + 𝑎2𝑤2 +⋯+ 𝑎𝑟𝑤𝑟

• After t multiplications we have:
𝑅𝑡𝑥 = 𝜆1

𝑡−1𝛼1𝑤1 + 𝜆2
𝑡−1𝑎2𝑤2 +⋯+ 𝜆2

𝑡−1𝑎𝑟𝑤𝑟

• Normalizing leaves only the term 𝑤1.



Example

hubs authorities
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Example

hubs authorities
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Step 1: O operation



Example

hubs authorities
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Step 1: I operation



Example

hubs authorities
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Step 1: Normalization (Max norm)



Example

hubs authorities
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Example

hubs authorities
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Step 2: I step



Example

hubs authorities
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Example

hubs authorities

1

0.8

0.6

0.14

0

0.4

0.75

1

0.3

0

Convergence



OTHER ALGORITHMS



The SALSA algorithm [LM00]

• Perform a random walk alternating 
between hubs and authorities

• What does this random walk 
converge to?

• The graph is essentially 
undirected, so it will be 
proportional to the degree.

hubs authorities



Social network analysis

• Evaluate the centrality of individuals in social 

networks

• degree centrality

• the (weighted) degree of a node

• distance centrality

• the average (weighted) distance of a node to the rest in the 

graph

• betweenness centrality

• the average number of (weighted) shortest paths that use node v
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Counting paths – Katz 53

• The importance of a node is measured by the 

weighted sum of paths that lead to this node

• Am[i,j] = number of paths of length m from i to j

• Compute 

• converges when b < λ1(A)

• Rank nodes according to the column sums of the 

matrix P
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Bibliometrics

• Impact factor (E. Garfield 72)

• counts the number of citations received for papers of 

the journal in the previous two years

• Pinsky-Narin 76

• perform a random walk on the set of journals

• Pij = the fraction of citations from journal i that are 

directed to journal j


