Online Social Networks and Media

Graph partitioning

- The general problem
- Input: a graph $G=(V, E)$
- edge (u, v) denotes similarity between u and v
- weighted graphs: weight of edge captures the degree of similarity
- Partitioning as an optimization problem:
- Partition the nodes in the graph such that nodes within clusters are well interconnected (high edge weights), and nodes across clusters are sparsely interconnected (low edge weights)
- most graph partitioning problems are NP hard

Measuring connectivity

- What does it mean that a set of nodes are well or sparsely interconnected?
- min-cut: the min number of edges such that when removed cause the graph to become disconnected
- small min-cut implies sparse connectivity
$-\min _{U} E(U, V-U)=\sum_{i \in U} \sum_{j \in V-U} A[i, j]$

This problem can be solved in polynomial time
Min-cut/Max-flow algorithm

Measuring connectivity

- What does it mean that a set of nodes are well interconnected?
- min-cut: the min number of edges such that when removed cause the graph to become disconnected
- not always a good idea!

A bad example

Figure 10.11: The smallest cut might not be the best cut

Graph Bisection

- Since the minimum cut does always yield good results we need an extra constraints to make the problem meaningful.
- Graph Bisection refers to the problem of partitioning the nodes of the graph into two equal sets.
- Kernighan-Lin algorithm: Start with random equal partitions and then swap nodes to improve some quality metric (e.g., cut, modularity, etc).

Graph expansion

- Normalize the cut by the size of the smallest component
- Cut ratio:

$$
a=\frac{E(U, V-U)}{\min \{U \mid, V-U\}}
$$

- Graph expansion:

$$
a(G)=\min _{U} \frac{E(U, V-U)}{\min \{U|,|V-U|\}}
$$

- Other Normalized Cut Ratio:

$$
\begin{aligned}
& \beta=\frac{\mathrm{E}(\mathrm{U}, \mathrm{~V}-\mathrm{U})}{\operatorname{Vol}(U)}+\frac{\mathrm{E}(\mathrm{U}, \mathrm{~V}-\mathrm{U})}{\operatorname{Vol}(V-U)} \\
& \operatorname{Vol}(\mathrm{U})=\text { number of edges with one endpoint in } \mathrm{U} \\
& \quad=\text { total degree of nodes in } \mathrm{U}
\end{aligned}
$$

Spectral analysis

- The Laplacian matrix L = D - A where
$-A=$ the adjacency matrix
$-D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$
- $d_{i}=$ degree of node i
- Therefore
$-L(i, i)=d_{i}$
$-L(i, j)=-1$, if there is an edge (i, j)

Laplacian Matrix properties

- The matrix L is symmetric and positive semidefinite
- all eigenvalues of L are positive
- The matrix L has 0 as an eigenvalue, and corresponding eigenvector $\mathrm{w}_{1}=(1,1, \ldots, 1)$
$-\lambda_{1}=0$ is the smallest eigenvalue

The second smallest eigenvalue

- The second smallest eigenvalue (also known as Fielder value) λ_{2} satisfies

$$
\lambda_{2}=\min _{x \perp w_{1},|x|=1} x^{\top} L x
$$

- The eigenvector for eigenvalue λ_{2} is called the Fielder vector. It minimizes

$$
\lambda_{2}=\min _{x \neq 0} \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2} \text { where } \sum_{i} x_{i}=0
$$

Spectral ordering

- The values of x minimize

$$
\min _{x \neq 0} \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2} \quad \sum_{i} \mathbf{x}_{\mathrm{i}}=0
$$

- For weighted matrices

$$
\min _{x \neq 0} \sum_{(i, j)} A[i, j]\left(x_{i}-x_{j}\right)^{2} \quad \sum_{i} x_{i}=0
$$

- The ordering according to the x_{i} values will group similar (connected) nodes together
- Physical interpretation: The stable state of springs placed on the edges of the graph

Spectral partition

- Partition the nodes according to the ordering induced by the Fielder vector
- If $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is the Fielder vector, then split nodes according to a threshold value s
- bisection: s is the median value in u
- ratio cut: s is the value that minimizes α
- sign: separate positive and negative values (s=0)
- gap: separate according to the largest gap in the values of u
- This works well (provably for special cases)

Fieldervalue

- The value λ_{2} is a good approximation of the graph expansion

$$
\begin{array}{ll}
\frac{\mathrm{a}(\mathrm{G})^{2}}{2 \mathrm{~d}} \leq \lambda_{2} \leq 2 \mathrm{a}(\mathrm{G}) \\
\frac{\lambda_{2}}{2} \leq \mathrm{a}(\mathrm{G}) \leq \sqrt{\lambda_{2}\left(2 \mathrm{~d}-\lambda_{2}\right)}
\end{array} \quad \mathrm{d}=\text { maximum degree }
$$

- For the minimum ratio cut of the Fielder vector we have that

$$
\frac{\mathrm{a}^{2}}{2 \mathrm{~d}} \leq \lambda_{2} \leq 2 \mathrm{a}(\mathrm{G})
$$

- If the max degree d is bounded we obtain a good approximation of the minimum expansion cut

Thanks to Aris Gionis

MAXIMUM DENSEST SUBGRAPH

Finding dense subgraphs

- Dense subgraph: A collection of vertices such that there are a lot of edges between them
- E.g., find the subset of email users that talk the most between them
- Or, find the subset of genes that are most commonly expressed together
- Similar to community identification but we do not require that the dense subgraph is sparsely connected with the rest of the graph.

Definitions

- Input: undirected graph $G=(V, E)$.
- Degree of node u: $\operatorname{deg}(u)$
- For two sets $S \subseteq V$ and $T \subseteq V$:

$$
E(S, T)=\{(\mathrm{u}, \mathrm{v}) \in E: u \in S, v \in T\}
$$

- $E(S)=E(S, S)$: edges within nodes in S
- Graph Cut defined by nodes in $S \subseteq V$:
$E(S, \bar{S})$: edges between S and the rest of the graph
- Induced Subgraph by set $S: G_{S}=(S, E(S))$

Definitions

- How do we define the density of a subgraph?
- Average Degree:

$$
d(S)=\frac{2|E(S)|}{|S|}
$$

- Problem: Given graph G, find subset S, that maximizes density d(S)
- Surprisingly there is a polynomial-time algorithm for this problem.

Min-Cut Problem

Given a graph* $G=(V, E)$,
A source vertex $s \in V$,
A destination vertex $t \in V$

Find a set $S \subseteq V$
Such that $s \in S$ and $t \in \bar{S}$
That minimizes $E(S, \bar{S})$

* The graph may be weighted

Min-Cut = Max-Flow: the minimum cut maximizes the flow that can be sent from s to t. There is a polynomial time solution.

Decision problem

- Consider the decision problem
- Is there a set S with $d(S) \geq c$?
- $d(S) \geq c$
- $2|E(S)| \geq c|S|$

- $\sum_{v \in S} \operatorname{deg}(v)-E(S, \bar{S}) \geq c|S|$
- $2|E|-\sum_{v \in \bar{S}} \operatorname{deg}(v)-E(S, \bar{S}) \geq c|S|$
- $\sum_{v \in \bar{S}} \operatorname{deg}(v)+E(S, \bar{S})+c|S| \leq 2|E|$

Transform to min-cut

- For a value c we do the following transformation

- We ask for a min s-t cut in the new graph

Transformation to min-cut

- There is a cut that has value $2|E|$

Transformation to min-cut

- Every other cut has value:
- $\sum_{v \in \bar{S}} \operatorname{deg}(v)+E(S, \bar{S})+c|S|$

Transformation to min-cut

- If $\sum_{v \in \bar{S}} \operatorname{deg}(v)+E(S, \bar{S})+c|S| \leq 2|E|$ then $S \neq \varnothing$ and $d(S) \geq c$

Algorithm (Goldberg)

Given the input graph G, and value c

1. Create the min-cut instance graph
2. Compute the min-cut
3. If the set S is not empty, return YES
4. Else return NO

How do we find the set with maximum density?

Min-cut algorithm

- The min-cut algorithm finds the optimal solution in polynomial time $\mathrm{O}(\mathrm{nm})$, but this is too expensive for real networks.
- We will now describe a simpler approximation algorithm that is very fast
- Approximation algorithm: the ratio of the density of the set produced by our algorithm and that of the optimal is bounded.
- We will show that the ratio is at most $1 / 2$
- The optimal set is at most twice as dense as that of the approximation algorithm.
- Any ideas for the algorithm?

Greedy Algorithm

Given the graph $G=(V, E)$

1. $S_{0}=V$
2. For $i=1 \ldots|V|$
a. Find node $v \in S$ with the minimum degree b. $S_{i}=S_{i-1} \backslash\{v\}$
3. Output the densest set S_{i}

圳 圳 场 \＆\＆（ ）为 如

Analysis

- We will prove that the optimal set has density at most 2 times that of the set produced by the Greedy algorithm.
- Density of optimal set: $d_{o p t}=\max _{S \subseteq V} d(S)$
- Density of greedy algorithm d_{g}
- We want to show that $d_{o p t} \leq 2 \cdot d_{g}$

Upper bound

- We will first upper-bound the solution of optimal
- Assume an arbitrary assignment of an edge (u, v) to either u or v
- Define:

$-I N(u)=\#$ edges assigned to u
$-\Delta=\max _{u \in V} I N(u)$
- We can prove that
$-d_{\text {opt }} \leq 2 \cdot \Delta$
This is true for any assignment of the edges!

Lower bound

- We will now prove a lower bound for the density of the set produced by the greedy algorithm.
- For the lower bound we consider a specific assignment of the edges that we create as the greedy algorithm progresses:
- When removing node u from S, assign all the edges to u
- So: $I N(u)=$ degree of u in $S \leq d(S) \leq d_{g}$
- This is true for all u so $\Delta \leq d_{g}$
- It follows that $d_{o p t} \leq 2 \cdot d_{g}$

The k-densest subgraph

- The k-densest subgraph problem: Find the set of k nodes S, such that the density $d(S)$ is maximized.
- The k-densest subgraph problem is NP-hard!

