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Graph partitioning 

• The general problem 

– Input: a graph G=(V,E) 
• edge (u,v) denotes similarity between u and v 

• weighted graphs: weight of edge captures the degree of similarity 

– Partitioning as an optimization problem:  
• Partition the nodes in the graph such that nodes within clusters 

are well interconnected (high edge weights), and nodes across 
clusters are sparsely interconnected (low edge weights) 

• most graph partitioning problems are NP hard 



Measuring connectivity 

• What does it mean that a set of nodes are well or sparsely 
interconnected? 

 

• min-cut: the min number of edges such that when removed 
cause the graph to become disconnected 
– small min-cut implies sparse connectivity 
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This problem can be solved in polynomial time 
 
Min-cut/Max-flow algorithm 



Measuring connectivity 

• What does it mean that a set of nodes are well 
interconnected? 

 

• min-cut: the min number of edges such that when removed 
cause the graph to become disconnected 
– not always a good idea! 
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A bad example 



Graph Bisection 

• Since the minimum cut does always yield good 
results we need an extra constraints to make the 
problem meaningful. 

• Graph Bisection refers to the problem of 
partitioning the nodes of the graph into two 
equal sets. 

• Kernighan-Lin algorithm: Start with random equal 
partitions and then swap nodes to improve some 
quality metric (e.g., cut, modularity, etc). 



Graph expansion 

• Normalize the cut by the size of the smallest 
component 

• Cut ratio: 

 

• Graph expansion: 

 

 

• Other Normalized Cut Ratio: 
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Vol(U) = number of edges with one endpoint in U 
            = total degree of nodes in U 



Spectral analysis 

• The Laplacian matrix L = D – A where 

– A = the adjacency matrix 

– D = diag(d1,d2,…,dn) 

• di = degree of node i 

 

• Therefore 

– L(i,i) = di 

– L(i,j) = -1, if there is an edge (i,j) 



Laplacian Matrix properties 

• The matrix L is symmetric and positive semi-
definite 

– all eigenvalues of L are positive 

 

• The matrix L has 0 as an eigenvalue, and 
corresponding eigenvector w1 = (1,1,…,1) 

– λ1 = 0 is the smallest eigenvalue 



The second smallest eigenvalue 

• The second smallest eigenvalue (also known 
as Fielder value) λ2 satisfies 

 

 

• The eigenvector for eigenvalue λ2 is called the 
Fielder vector. It minimizes  
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Spectral ordering 

• The values of x minimize 

 

 

• For weighted matrices 

 

 

• The ordering according to the xi values will group similar 
(connected) nodes together 

 

• Physical interpretation: The stable state of springs placed on 
the edges of the graph   
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Spectral partition 

• Partition the nodes according to the ordering induced 
by the Fielder vector 

• If u = (u1,u2,…,un) is the Fielder vector, then split 
nodes according to a threshold value s 

– bisection: s is the median value in u 

– ratio cut: s is the value that minimizes α 

– sign: separate positive and negative values (s=0) 

– gap: separate according to the largest gap in the values of u 

• This works well (provably for special cases) 



Fielder Value 

• The value λ2 is a good approximation of the graph expansion 
 
 
 
 
 
 

• For the minimum ratio cut of the Fielder vector we have that 
 
 
 
 

• If the max degree d is bounded we obtain a good approximation of the 
minimum expansion cut 
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MAXIMUM DENSEST SUBGRAPH 
Thanks to Aris Gionis 



Finding dense subgraphs 

• Dense subgraph: A collection of vertices such 
that there are a lot of edges between them 

– E.g., find the subset of email users that talk the 
most between them 

– Or, find the subset of genes that are most 
commonly expressed together 

• Similar to community identification but we do 
not require that the dense subgraph is 
sparsely connected with the rest of the graph. 



Definitions 

• Input: undirected graph 𝐺 = (𝑉, 𝐸). 

• Degree of node u: deg 𝑢  

• For two sets 𝑆 ⊆ 𝑉 and 𝑇 ⊆ 𝑉: 
𝐸 𝑆, 𝑇 = u, v ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇  

• 𝐸 𝑆 = 𝐸(𝑆, 𝑆): edges within nodes in 𝑆 

• Graph Cut defined by nodes in 𝑆 ⊆ 𝑉: 

𝐸(𝑆, 𝑆 ): edges between 𝑆 and the rest of the graph 

• Induced Subgraph by set 𝑆 : 𝐺𝑆 = (𝑆, 𝐸 𝑆 ) 



Definitions 

• How do we define the density of a subgraph? 
 

• Average Degree: 

𝑑 𝑆 =  
2|𝐸 𝑆 |

|𝑆|
 

 
• Problem: Given graph G, find subset S, that 

maximizes density d(S) 
– Surprisingly there is a polynomial-time algorithm for 

this problem. 



Min-Cut Problem 

Given a graph* 𝐺 = (𝑉, 𝐸),  
A source vertex 𝑠 ∈ 𝑉,  
A destination vertex 𝑡 ∈ 𝑉 
 
Find a set 𝑆 ⊆ 𝑉 
Such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑆  
That minimizes 𝐸(𝑆, 𝑆 ) 

* The graph may be weighted 

Min-Cut = Max-Flow: the minimum cut maximizes the flow that can 
be sent from s to t. There is a polynomial time solution. 



Decision problem 

• Consider the decision problem: 

– Is there a set 𝑆 with 𝑑 𝑆 ≥ 𝑐? 

• 𝑑 𝑆 ≥ 𝑐 
 

• 2 𝐸 𝑆 ≥ 𝑐|𝑆| 
 

•  deg 𝑣 − 𝐸 𝑆, 𝑆 ≥ 𝑐|𝑆|𝑣∈𝑆  
 

• 2 𝐸 −  deg 𝑣𝑣∈𝑆 − 𝐸 𝑆, 𝑆 ≥ 𝑐 𝑆  
 

•  deg 𝑣𝑣∈𝑆 + 𝐸 𝑆, 𝑆 + 𝑐 𝑆 ≤ 2|𝐸| 



Transform to min-cut 

• For a value 𝑐 we do the following transformation 

 

 

 

 

 

 

 

 

 

• We ask for a min s-t cut in the new graph 



Transformation to min-cut 

• There is a cut that has value 2|𝐸| 



Transformation to min-cut 

• Every other cut has value: 

•  deg 𝑣𝑣∈𝑆 + 𝐸 𝑆, 𝑆 + 𝑐 𝑆  



Transformation to min-cut 

• If  deg 𝑣𝑣∈𝑆 + 𝐸 𝑆, 𝑆 + 𝑐 𝑆 ≤ 2|𝐸| then 
𝑆 ≠ ∅ and 𝑑 𝑆 ≥ 𝑐 



Algorithm (Goldberg) 

Given the input graph G, and value c 

1. Create the min-cut instance graph 

2. Compute the min-cut 

3. If the set S is not empty, return YES 

4. Else return NO 

 

How do we find the set with maximum density? 



Min-cut algorithm 

• The min-cut algorithm finds the optimal solution in 
polynomial time O(nm), but this is too expensive for 
real networks. 

• We will now describe a simpler approximation 
algorithm that is very fast 
– Approximation algorithm: the ratio of the density of the 

set produced by our algorithm and that of the optimal is 
bounded. 
• We will show that the ratio is at most ½  
• The optimal set is at most twice as dense as that of the 

approximation algorithm. 

 
• Any ideas for the algorithm? 



Greedy Algorithm 

Given the graph 𝐺 = (𝑉, 𝐸) 

1.  𝑆0 = 𝑉 

2.  For 𝑖 = 1… |𝑉| 

a. Find node 𝑣 ∈ 𝑆 with the minimum degree 

b.  𝑆𝑖 = 𝑆𝑖−1 ∖ {𝑣} 

3. Output the densest set 𝑆𝑖   



Example 



Analysis 

• We will prove that the optimal set has density 
at most 2 times that of the set produced by 
the Greedy algorithm. 

 

• Density of optimal set: 𝑑𝑜𝑝𝑡 = max
𝑆⊆𝑉

𝑑(𝑆) 

• Density of greedy algorithm 𝑑𝑔 

 

• We want to show that 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ 𝑑𝑔 



Upper bound 

• We will first upper-bound the solution of optimal 

• Assume an arbitrary assignment of an edge 
(𝑢, 𝑣) to either 𝑢 or 𝑣 

 

• Define:  
– 𝐼𝑁 𝑢 = # edges assigned to u 

– Δ = max
𝑢∈𝑉

𝐼𝑁(𝑢) 

• We can prove that  

– 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ Δ 
This is true for any 
assignment of the edges! 



Lower bound 

• We will now prove a lower bound for the density of the 
set produced by the greedy algorithm. 

• For the lower bound we consider a specific assignment 
of the edges that we create as the greedy algorithm 
progresses: 
– When removing node 𝑢 from 𝑆, assign all the edges to 𝑢 

• So: 𝐼𝑁 𝑢 = degree of 𝑢 in 𝑆 ≤ 𝑑 𝑆 ≤ 𝑑𝑔 

• This is true for all 𝑢 so Δ ≤ 𝑑𝑔 

 

• It follows that 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ 𝑑𝑔 



The k-densest subgraph 

• The k-densest subgraph problem: Find the set 
of 𝑘 nodes 𝑆, such that the density 𝑑(𝑆) is 
maximized. 

– The k-densest subgraph problem is NP-hard! 


