
Online Social Networks and
Media

Graph partitioning

• The general problem

– Input: a graph G=(V,E)
• edge (u,v) denotes similarity between u and v

• weighted graphs: weight of edge captures the degree of similarity

– Partitioning as an optimization problem:
• Partition the nodes in the graph such that nodes within clusters

are well interconnected (high edge weights), and nodes across
clusters are sparsely interconnected (low edge weights)

• most graph partitioning problems are NP hard

Measuring connectivity

• What does it mean that a set of nodes are well or sparsely
interconnected?

• min-cut: the min number of edges such that when removed
cause the graph to become disconnected
– small min-cut implies sparse connectivity

–

U V-U

Ui UVj

U
ji,AUVU,E min

This problem can be solved in polynomial time

Min-cut/Max-flow algorithm

Measuring connectivity

• What does it mean that a set of nodes are well
interconnected?

• min-cut: the min number of edges such that when removed
cause the graph to become disconnected
– not always a good idea!

U U V-U V-U

A bad example

Graph Bisection

• Since the minimum cut does always yield good
results we need an extra constraints to make the
problem meaningful.

• Graph Bisection refers to the problem of
partitioning the nodes of the graph into two
equal sets.

• Kernighan-Lin algorithm: Start with random equal
partitions and then swap nodes to improve some
quality metric (e.g., cut, modularity, etc).

Graph expansion

• Normalize the cut by the size of the smallest
component

• Cut ratio:

• Graph expansion:

• Other Normalized Cut Ratio:

 UV,Umin

U-VU,E
minGα

U

 UV,Umin

U-VU,E
α

𝛽 =
E(U,V−U)

𝑉𝑜𝑙(𝑈)
 +

E(U,V−U)

𝑉𝑜𝑙(𝑉−𝑈)

Vol(U) = number of edges with one endpoint in U
 = total degree of nodes in U

Spectral analysis

• The Laplacian matrix L = D – A where

– A = the adjacency matrix

– D = diag(d1,d2,…,dn)

• di = degree of node i

• Therefore

– L(i,i) = di

– L(i,j) = -1, if there is an edge (i,j)

Laplacian Matrix properties

• The matrix L is symmetric and positive semi-
definite

– all eigenvalues of L are positive

• The matrix L has 0 as an eigenvalue, and
corresponding eigenvector w1 = (1,1,…,1)

– λ1 = 0 is the smallest eigenvalue

The second smallest eigenvalue

• The second smallest eigenvalue (also known
as Fielder value) λ2 satisfies

• The eigenvector for eigenvalue λ2 is called the
Fielder vector. It minimizes

Lxxminλ T

1x,wx
2

1

Ej)(i,

2

ji
0x

2 xxminλ where
i i 0x

Spectral ordering

• The values of x minimize

• For weighted matrices

• The ordering according to the xi values will group similar
(connected) nodes together

• Physical interpretation: The stable state of springs placed on
the edges of the graph

 2
),(

Eji

ji xx
0x

min

j)(i,

2

ji
0x

xxji,Amin

i i 0x

i i 0x

Spectral partition

• Partition the nodes according to the ordering induced
by the Fielder vector

• If u = (u1,u2,…,un) is the Fielder vector, then split
nodes according to a threshold value s

– bisection: s is the median value in u

– ratio cut: s is the value that minimizes α

– sign: separate positive and negative values (s=0)

– gap: separate according to the largest gap in the values of u

• This works well (provably for special cases)

Fielder Value

• The value λ2 is a good approximation of the graph expansion

• For the minimum ratio cut of the Fielder vector we have that

• If the max degree d is bounded we obtain a good approximation of the
minimum expansion cut

α(G)λ
2d

α(G)
2

2

2

 22
2 λ2dλα(G)

2

λ

d = maximum degree

α(G)λ
2d

α
2

2

2

MAXIMUM DENSEST SUBGRAPH
Thanks to Aris Gionis

Finding dense subgraphs

• Dense subgraph: A collection of vertices such
that there are a lot of edges between them

– E.g., find the subset of email users that talk the
most between them

– Or, find the subset of genes that are most
commonly expressed together

• Similar to community identification but we do
not require that the dense subgraph is
sparsely connected with the rest of the graph.

Definitions

• Input: undirected graph 𝐺 = (𝑉, 𝐸).

• Degree of node u: deg 𝑢

• For two sets 𝑆 ⊆ 𝑉 and 𝑇 ⊆ 𝑉:
𝐸 𝑆, 𝑇 = u, v ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

• 𝐸 𝑆 = 𝐸(𝑆, 𝑆): edges within nodes in 𝑆

• Graph Cut defined by nodes in 𝑆 ⊆ 𝑉:

𝐸(𝑆, 𝑆): edges between 𝑆 and the rest of the graph

• Induced Subgraph by set 𝑆 : 𝐺𝑆 = (𝑆, 𝐸 𝑆)

Definitions

• How do we define the density of a subgraph?

• Average Degree:

𝑑 𝑆 =
2|𝐸 𝑆 |

|𝑆|

• Problem: Given graph G, find subset S, that

maximizes density d(S)
– Surprisingly there is a polynomial-time algorithm for

this problem.

Min-Cut Problem

Given a graph* 𝐺 = (𝑉, 𝐸),
A source vertex 𝑠 ∈ 𝑉,
A destination vertex 𝑡 ∈ 𝑉

Find a set 𝑆 ⊆ 𝑉
Such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑆
That minimizes 𝐸(𝑆, 𝑆)

* The graph may be weighted

Min-Cut = Max-Flow: the minimum cut maximizes the flow that can
be sent from s to t. There is a polynomial time solution.

Decision problem

• Consider the decision problem:

– Is there a set 𝑆 with 𝑑 𝑆 ≥ 𝑐?

• 𝑑 𝑆 ≥ 𝑐

• 2 𝐸 𝑆 ≥ 𝑐|𝑆|

• deg 𝑣 − 𝐸 𝑆, 𝑆 ≥ 𝑐|𝑆|𝑣∈𝑆

• 2 𝐸 − deg 𝑣𝑣∈𝑆 − 𝐸 𝑆, 𝑆 ≥ 𝑐 𝑆

• deg 𝑣𝑣∈𝑆 + 𝐸 𝑆, 𝑆 + 𝑐 𝑆 ≤ 2|𝐸|

Transform to min-cut

• For a value 𝑐 we do the following transformation

• We ask for a min s-t cut in the new graph

Transformation to min-cut

• There is a cut that has value 2|𝐸|

Transformation to min-cut

• Every other cut has value:

• deg 𝑣𝑣∈𝑆 + 𝐸 𝑆, 𝑆 + 𝑐 𝑆

Transformation to min-cut

• If deg 𝑣𝑣∈𝑆 + 𝐸 𝑆, 𝑆 + 𝑐 𝑆 ≤ 2|𝐸| then
𝑆 ≠ ∅ and 𝑑 𝑆 ≥ 𝑐

Algorithm (Goldberg)

Given the input graph G, and value c

1. Create the min-cut instance graph

2. Compute the min-cut

3. If the set S is not empty, return YES

4. Else return NO

How do we find the set with maximum density?

Min-cut algorithm

• The min-cut algorithm finds the optimal solution in
polynomial time O(nm), but this is too expensive for
real networks.

• We will now describe a simpler approximation
algorithm that is very fast
– Approximation algorithm: the ratio of the density of the

set produced by our algorithm and that of the optimal is
bounded.
• We will show that the ratio is at most ½
• The optimal set is at most twice as dense as that of the

approximation algorithm.

• Any ideas for the algorithm?

Greedy Algorithm

Given the graph 𝐺 = (𝑉, 𝐸)

1. 𝑆0 = 𝑉

2. For 𝑖 = 1… |𝑉|

a. Find node 𝑣 ∈ 𝑆 with the minimum degree

b. 𝑆𝑖 = 𝑆𝑖−1 ∖ {𝑣}

3. Output the densest set 𝑆𝑖

Example

Analysis

• We will prove that the optimal set has density
at most 2 times that of the set produced by
the Greedy algorithm.

• Density of optimal set: 𝑑𝑜𝑝𝑡 = max
𝑆⊆𝑉

𝑑(𝑆)

• Density of greedy algorithm 𝑑𝑔

• We want to show that 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ 𝑑𝑔

Upper bound

• We will first upper-bound the solution of optimal

• Assume an arbitrary assignment of an edge
(𝑢, 𝑣) to either 𝑢 or 𝑣

• Define:
– 𝐼𝑁 𝑢 = # edges assigned to u

– Δ = max
𝑢∈𝑉

𝐼𝑁(𝑢)

• We can prove that

– 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ Δ
This is true for any
assignment of the edges!

Lower bound

• We will now prove a lower bound for the density of the
set produced by the greedy algorithm.

• For the lower bound we consider a specific assignment
of the edges that we create as the greedy algorithm
progresses:
– When removing node 𝑢 from 𝑆, assign all the edges to 𝑢

• So: 𝐼𝑁 𝑢 = degree of 𝑢 in 𝑆 ≤ 𝑑 𝑆 ≤ 𝑑𝑔

• This is true for all 𝑢 so Δ ≤ 𝑑𝑔

• It follows that 𝑑𝑜𝑝𝑡 ≤ 2 ⋅ 𝑑𝑔

The k-densest subgraph

• The k-densest subgraph problem: Find the set
of 𝑘 nodes 𝑆, such that the density 𝑑(𝑆) is
maximized.

– The k-densest subgraph problem is NP-hard!

