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CLUSTERING



What is a Clustering?

• In general a grouping of objects such that the objects in a 

group (cluster) are similar (or related) to one another and 

different from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized



Clustering Algorithms

• K-means and its variants

• Hierarchical clustering

• DBSCAN



MIXTURE MODELS AND 

THE EM ALGORITHM



Model-based clustering

• In order to understand our data, we will assume that there 
is a generative process (a model) that creates/describes 
the data, and we will try to find the model that best fits the 
data.
• Models of different complexity can be defined, but we will assume 

that our model is a distribution from which data points are sampled

• Example: the data is the height of all people in Greece

• In most cases, a single distribution is not good enough to 
describe all data points: different parts of the data follow a 
different distribution
• Example: the data is the height of all people in Greece and China

• We need a mixture model

• Different distributions correspond to different clusters in the data.



Gaussian Distribution

• Example: the data is the height of all people in 

Greece

• Experience has shown that this data follows a Gaussian

(Normal) distribution

• Reminder: Normal distribution:

• 𝜇 = mean, 𝜎 = standard deviation

𝑃 𝑥 =
1

2𝜋𝜎
𝑒
−

𝑥−𝜇 2

2𝜎2



Gaussian Model

• What is a model?

• A Gaussian distribution is fully defined by the mean 

𝜇 and the standard deviation 𝜎

• We define our model as the pair of parameters 𝜃 =
(𝜇, 𝜎)

• This is a general principle: a model is defined as 

a vector of parameters 𝜃



Fitting the model

• We want to find the normal distribution that best 

fits our data

• Find the best values for 𝜇 and 𝜎

• But what does best fit mean?



Maximum Likelihood Estimation (MLE)

• Suppose that we have a vector 𝑋 = (𝑥1, … , 𝑥𝑛) of 
values and we want to fit a Gaussian 𝑁(𝜇, 𝜎) model to 
the data

• Probability of observing point 𝑥𝑖:

• Probability of observing all points (assume 
independence)

• We want to find the parameters 𝜃 = (𝜇, 𝜎) that 
maximize the probability 𝑃(𝑋|𝜃)

𝑃 𝑥𝑖 =
1

2𝜋𝜎
𝑒
−
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Maximum Likelihood Estimation (MLE)

• The probability 𝑃(𝑋|𝜃) as a function of 𝜃 is called the 
Likelihood function

• It is usually easier to work with the Log-Likelihood
function

• Maximum Likelihood Estimation
• Find parameters 𝜇, 𝜎 that maximize 𝐿𝐿(𝜃)

𝐿(𝜃) =  

𝑖=1

𝑛
1
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MLE

• Note: these are also the most likely parameters 

given the data

𝑃 𝜃 𝑋 =
𝑃 𝑋 𝜃 𝑃(𝜃)

𝑃(𝑋)

• If we have no prior information about 𝜃, or X, then 

maximizing 𝑃 𝑋 𝜃 is the same as maximizing 

𝑃 𝜃 𝑋



Mixture of Gaussians

• Suppose that you have the heights of people from 

Greece and China and the distribution looks like 

the figure below (dramatization)



Mixture of Gaussians

• In this case the data is the result of the mixture of 

two Gaussians 

• One for Greek people, and one for Chinese people

• Identifying for each value which Gaussian is most likely 

to have generated it will give us a clustering.



Mixture model

• A value 𝑥𝑖 is generated according to the following 

process:

• First select the nationality

• With probability 𝜋𝐺 select Greece, with probability 𝜋𝐶 select 

China (𝜋𝐺 + 𝜋𝐶 = 1)

• Given the nationality, generate the point from the 

corresponding Gaussian

• 𝑃 𝑥𝑖 𝜃𝐺 ~ 𝑁 𝜇𝐺 , 𝜎𝐺 if Greece

• 𝑃 𝑥𝑖 𝜃𝐶 ~ 𝑁 𝜇𝐶 , 𝜎𝐶 if China

We can also thing of this as a Hidden Variable Z 

that takes two values: Greece and China

𝜃𝐺: parameters of the Greek distribution

𝜃𝐶: parameters of the China distribution



• Our model has the following parameters

Θ = (𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜎𝐺 , 𝜇𝐶 , 𝜎𝐶)

Mixture Model

Mixture probabilities

𝜃𝐶: parameters of the China distribution

𝜃𝐺: parameters of the Greek distribution



• Our model has the following parameters

Θ = (𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜎𝐺 , 𝜇𝐶 , 𝜎𝐶)

• For value 𝑥𝑖, we have:

𝑃 𝑥𝑖|Θ = 𝜋𝐺𝑃 𝑥𝑖 𝜃𝐺 + 𝜋𝐶𝑃(𝑥𝑖|𝜃𝐶)

• For all values 𝑋 = 𝑥1, … , 𝑥𝑛

𝑃 𝑋|Θ =  

𝑖=1

𝑛

𝑃(𝑥𝑖|Θ)

• We want to estimate the parameters that maximize
the Likelihood of the data

Mixture Model

Mixture probabilities Distribution Parameters



• Our model has the following parameters

Θ = (𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜎𝐺 , 𝜇𝐶 , 𝜎𝐶)

• For value 𝑥𝑖, we have:

𝑃 𝑥𝑖|Θ = 𝜋𝐺𝑃 𝑥𝑖 𝜃𝐺 + 𝜋𝐶𝑃(𝑥𝑖|𝜃𝐶)

• For all values 𝑋 = 𝑥1, … , 𝑥𝑛

𝑃 𝑋|Θ =  

𝑖=1

𝑛

𝑃(𝑥𝑖|Θ)

• We want to estimate the parameters that maximize
the Likelihood of the data

Mixture Model

Mixture probabilities Distribution Parameters



Mixture Models

• Once we have the parameters Θ =
(𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜇𝐶 , 𝜎𝐺 , 𝜎𝐶) we can estimate the 

membership probabilities 𝑃 𝐺 𝑥𝑖 and 𝑃 𝐶 𝑥𝑖 for 

each point 𝑥𝑖: 

• This is the probability that point 𝑥𝑖 belongs to the Greek 

or the Chinese population (cluster)

𝑃 𝐺 𝑥𝑖 =
𝑃 𝑥𝑖 𝐺 𝑃(𝐺)

𝑃 𝑥𝑖 𝐺 𝑃 𝐺 + 𝑃 𝑥𝑖 𝐶 𝑃(𝐶)

=
𝑃 𝑥𝑖 𝜃𝐺 𝜋𝐺

𝑃 𝑥𝑖 𝜃𝐺 𝜋𝐺 + 𝑃 𝑥𝑖 𝜃𝐶 𝜋𝐶

Given from the Gaussian 

distribution 𝑁(𝜇𝐺 , 𝜎𝐺) for Greek



EM (Expectation Maximization) Algorithm

• Initialize the values of the parameters in Θ to some 
random values

• Repeat until convergence
• E-Step: Given the parameters Θ estimate the membership 

probabilities 𝑃 𝐺 𝑥𝑖 and 𝑃 𝐶 𝑥𝑖

• M-Step: Compute the parameter values that (in expectation) 
maximize the data likelihood

𝜇𝐶 =  
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𝑛
𝑃 𝐶 𝑥𝑖
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1

𝑛
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𝑖=1

𝑛
𝑃 𝐺 𝑥𝑖
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𝑥𝑖

𝜎𝐶
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𝑖=1

𝑛
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2 𝜎𝐺
2 =  
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𝑛
𝑃 𝐺 𝑥𝑖

𝑛 ∗ 𝜋𝐺
𝑥𝑖 − 𝜇𝐺

2

MLE Estimates

if 𝜋’s were fixed

Fraction of 

population in G,C



Relationship to K-means

• E-Step: Assignment of points to clusters 

• K-means: hard assignment, EM: soft assignment

• M-Step: Computation of centroids

• K-means assumes common fixed variance (spherical 

clusters)

• EM: can change the variance for different clusters or 

different dimensions (ellipsoid clusters)

• If the variance is fixed then both minimize the 

same error function









CLUSTERING 

EVALUATION



Clustering Evaluation

• How do we evaluate the “goodness” of the resulting 
clusters?

• But “clustering lies in the eye of the beholder”! 

• Then why do we want to evaluate them?
• To avoid finding patterns in noise

• To compare clusterings, or clustering algorithms

• To compare against a “ground truth”



Clusters found in Random Data
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1. Determining the clustering tendency of a set of data, i.e., 

distinguishing whether non-random structure actually exists in the 

data. 

2. Comparing the results of a cluster analysis to externally known 

results, e.g., to externally given class labels.

3. Evaluating how well the results of a cluster analysis fit the data 

without reference to external information. 

- Use only the data

4. Comparing the results of two different sets of cluster analyses to 

determine which is better.

5. Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to 

evaluate the entire clustering or just individual clusters. 

Different Aspects of Cluster Validation



• Numerical measures that are applied to judge various aspects 

of cluster validity, are classified into the following three types.

• External Index: Used to measure the extent to which cluster labels 

match externally supplied class labels.
• E.g., entropy, precision, recall

• Internal Index: Used to measure the goodness of a clustering 

structure without reference to external information. 
• E.g., Sum of Squared Error (SSE)

• Relative Index: Used to compare two different clusterings or 

clusters. 
• Often an external or internal index is used for this function, e.g., SSE or 

entropy

• Sometimes these are referred to as criteria instead of indices

• However, sometimes criterion is the general strategy and index is the 

numerical measure that implements the criterion.

Measures of Cluster Validity



• Two matrices 
• Similarity or Distance Matrix

• One row and one column for each data point

• An entry is the similarity or distance of the associated pair of points

• “Incidence” Matrix

• One row and one column for each data point

• An entry is 1 if the associated pair of points belong to the same cluster

• An entry is 0 if the associated pair of points belongs to different clusters

• Compute the correlation between the two matrices
• Since the matrices are symmetric, only the correlation between 

n(n-1) / 2 entries needs to be calculated.

• High correlation (positive for similarity, negative for 
distance) indicates that points that belong to the same 
cluster are close to each other. 

• Not a good measure for some density or contiguity based 
clusters.

Measuring Cluster Validity Via Correlation



Measuring Cluster Validity Via Correlation

• Correlation of incidence and proximity matrices 

for the K-means clusterings of the following two 

data sets. 
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• Order the similarity matrix with respect to cluster 

labels and inspect visually. 

Using Similarity Matrix for Cluster Validation
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Using Similarity Matrix for Cluster Validation

• Clusters in random data are not so crisp
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• Clusters in random data are not so crisp

K-means
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Using Similarity Matrix for Cluster Validation

• Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation
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• Clusters in more complicated figures are not well separated

• This technique can only be used for small datasets since it requires a 

quadratic computation



• Internal Index:  Used to measure the goodness of a 

clustering structure without reference to external 

information

• Example: SSE

• SSE is good for comparing two clusterings or two clusters 

(average SSE).

• Can also be used to estimate the number of clusters

Internal Measures: SSE
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Estimating the “right” number of clusters

• Typical approach: find a “knee” in an internal measure curve.

• Question: why not the k that minimizes the SSE?
• Forward reference: minimize a measure, but with a “simple” clustering

• Desirable property: the clustering algorithm does not require 
the number of clusters to be specified (e.g., DBSCAN)
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Internal Measures: SSE

• SSE curve for a more complicated data set
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SSE of clusters found using K-means



• Cluster Cohesion: Measures how closely related 

are objects in a cluster

• Cluster Separation: Measure how distinct or well-

separated a cluster is from other clusters

• Example: Squared Error

• Cohesion is measured by the within cluster sum of squares (SSE)

• Separation is measured by the between cluster sum of squares

• Where mi is the size of cluster i 

Internal Measures: Cohesion and Separation
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• A proximity graph based approach can also be used for 

cohesion and separation.

• Cluster cohesion is the sum of the weight of all links within a cluster.

• Cluster separation is the sum of the weights between nodes in the cluster 

and nodes outside the cluster.

Internal Measures: Cohesion and Separation

cohesion separation



Internal measures – caveats 

• Internal measures have the problem that the 

clustering algorithm did not set out to optimize 

this measure, so it is will not necessarily do well 

with respect to the measure.

• An internal measure can also be used as an 

objective function for clustering



• Need a framework to interpret any measure. 
• For example, if our measure of evaluation has the value, 10, is that 

good, fair, or poor?

• Statistics provide a framework for cluster validity
• The more “non-random” a clustering result is, the more likely it 

represents valid structure in the data

• Can compare the values of an index that result from random data or 

clusterings to those of a clustering result.

• If the value of the index is unlikely, then the cluster results are valid

• For comparing the results of two different sets of cluster 

analyses, a framework is less necessary.
• However, there is the question of whether the difference between two 

index values is significant

Framework for Cluster Validity



• Example
• Compare SSE of 0.005 against three clusters in random data

• Histogram of SSE for three clusters in 500 random data sets of 

100 random points distributed in the range 0.2 – 0.8 for x and y

• Value 0.005 is very unlikely

Statistical Framework for SSE
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• Correlation of incidence and proximity matrices for the 

K-means clusterings of the following two data sets. 

Statistical Framework for Correlation
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Empirical p-value

• If we have a measurement v (e.g., the SSE value)

• ..and we have N measurements on random datasets

• …the empirical p-value is the fraction of 
measurements in the random data that have value 
less or equal than value v (or greater or equal if we 
want to maximize) 
• i.e., the value in the random dataset is at least as good as 

that in the real data

• We usually require that p-value ≤ 0.05

• Hard question: what is the right notion of a random 
dataset?



External Measures for Clustering Validity

• Assume that the data is labeled with some class 
labels
• E.g., documents are classified into topics, people classified 

according to their income, politicians classified according to 
the political party.

• This is called the “ground truth”

• In this case we want the clusters to be homogeneous
with respect to classes
• Each cluster should contain elements of mostly one class

• Each class should ideally be assigned to a single cluster

• This does not always make sense
• Clustering is not the same as classification

• …but this is what people use most of the time



Confusion matrix

• 𝑛 = number of points

• 𝑚𝑖 = points in cluster i

• 𝑐𝑗 = points in class j

• 𝑛𝑖𝑗= points in cluster i

coming from class j

• 𝑝𝑖𝑗 = 𝑛𝑖𝑗/𝑚𝑖= probability 

of element from cluster i

to be assigned in class j

Class 1 Class 2 Class 3

Cluster 1 𝑛11 𝑛12 𝑛13 𝑚1

Cluster 2 𝑛21 𝑛22 𝑛23 𝑚2

Cluster 3 𝑛31 𝑛32 𝑛33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛

Class 1 Class 2 Class 3

Cluster 1 𝑝11 𝑝12 𝑝13 𝑚1

Cluster 2 𝑝21 𝑝22 𝑝23 𝑚2

Cluster 3 𝑝31 𝑝32 𝑝33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛



Measures

• Entropy:

• Of a cluster i: 𝑒𝑖 = − 𝑗=1
𝐿 𝑝𝑖𝑗 log 𝑝𝑖𝑗

• Highest when uniform, zero when single class

• Of a clustering: 𝑒 =  𝑖=1
𝐾 𝑚𝑖

𝑛
𝑒𝑖

• Purity:

• Of a cluster i: 𝑝𝑖 = max
𝑗

𝑝𝑖𝑗

• Of a clustering: 𝑝(𝐶) =  𝑖=1
𝐾 𝑚𝑖

𝑛
𝑝𝑖

Class 1 Class 2 Class 3

Cluster 1 𝑝11 𝑝12 𝑝13 𝑚1

Cluster 2 𝑝21 𝑝22 𝑝23 𝑚2

Cluster 3 𝑝31 𝑝32 𝑝33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛



Measures

• Precision:

• Of cluster i with respect to class j: 𝑃𝑟𝑒𝑐 𝑖, 𝑗 = 𝑝𝑖𝑗

• Recall:

• Of cluster i with respect to class j: 𝑅𝑒𝑐 𝑖, 𝑗 =
𝑛𝑖𝑗

𝑐𝑗

• F-measure:

• Harmonic Mean of Precision and Recall:

𝐹 𝑖, 𝑗 =
2 ∗ 𝑃𝑟𝑒𝑐 𝑖, 𝑗 ∗ 𝑅𝑒𝑐(𝑖, 𝑗)

𝑃𝑟𝑒𝑐 𝑖, 𝑗 + 𝑅𝑒𝑐(𝑖, 𝑗)

Class 1 Class 2 Class 3

Cluster 1 𝑝11 𝑝12 𝑝13 𝑚1

Cluster 2 𝑝21 𝑝22 𝑝23 𝑚2

Cluster 3 𝑝31 𝑝32 𝑝33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛



Measures

• Assign to cluster 𝑖 the class 𝑘𝑖 such that 𝑘𝑖 = argmax
𝑗

𝑛𝑖𝑗

• Precision:

• Of cluster i: 𝑃𝑟𝑒𝑐 𝑖 =
𝑛𝑖𝑘𝑖

𝑚𝑖

• Of the clustering: 𝑃𝑟𝑒𝑐(𝐶) =  𝑖
𝑚𝑖

𝑛
𝑃𝑟𝑒𝑐(𝑖)

• Recall:

• Of cluster i: 𝑅𝑒𝑐 𝑖 =
𝑛𝑖𝑘𝑖

𝑐𝑘𝑖

• Of the clustering: 𝑅𝑒𝑐 𝐶 =  𝑖
𝑚𝑖

𝑛
𝑅𝑒𝑐(𝑖)

• F-measure:
• Harmonic Mean of Precision and Recall

Class 1 Class 2 Class 3

Cluster 1 𝑛11 𝑛12 𝑛13 𝑚1

Cluster 2 𝑛21 𝑛22 𝑛23 𝑚2

Cluster 3 𝑛31 𝑛32 𝑛33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛

Precision/Recall for clusters and clusterings



Good and bad clustering

Class 1 Class 2 Class 3

Cluster 1 20 35 35 90

Cluster 2 30 42 38 110

Cluster 3 38 35 27 100

100 100 100 300

Class 1 Class 2 Class 3

Cluster 1 2 3 85 90

Cluster 2 90 12 8 110

Cluster 3 8 85 7 100

100 100 100 300

Purity: (0.94, 0.81, 0.85) 

– overall 0.86

Precision: (0.94, 0.81, 0.85) 

– overall 0.86

Recall: (0.85, 0.9, 0.85)  

- overall 0.87 

Purity: (0.38, 0.38, 0.38) 

– overall 0.38

Precision: (0.38, 0.38, 0.38) 

– overall 0.38

Recall: (0.35, 0.42, 0.38) 

– overall 0.39 



Another clustering

Class 1 Class 2 Class 3

Cluster 1 0 0 35 35

Cluster 2 50 77 38 165

Cluster 3 38 35 27 100

100 100 100 300

Cluster 1: 

Purity: 1

Precision: 1

Recall: 0.35  



External Measures of Cluster Validity: 

Entropy and Purity



“The validation of clustering structures is the most 
difficult and frustrating part of cluster analysis. 

Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only to 
those true believers who have experience and 
great courage.”

Algorithms for Clustering Data, Jain and Dubes

Final Comment on Cluster Validity



SEQUENCE 

SEGMENTATION



Sequential data

• Sequential data (or time series) refers to data that appear 
in a specific order.
• The order defines a time axis, that differentiates this data from 

other cases we have seen so far

• Examples
• The price of a stock (or of many stocks) over time

• Environmental data (pressure, temperature, precipitation etc) over 
time

• The sequence of queries in a search engine, or the frequency of a 
single query over time

• The words in a document as they appear in order

• A DNA sequence of nucleotides

• Event occurrences in a log over time

• Etc…

• Time series: usually we assume that we have a vector of 
numeric values that change over time.



Time-series data

 Financial time series, process monitoring…



Time series analysis

• The addition of the time axis defines new sets of 
problems
• Discovering periodic patterns in time series

• Defining similarity between time series

• Finding bursts, or outliers

• Also, some existing problems need to be revisited 
taking sequential order into account
• Association rules and Frequent Itemsets in sequential 

data

• Summarization and Clustering: Sequence 
Segmentation



Sequence Segmentation

• Goal: discover structure in the sequence and 
provide a concise summary

• Given a sequence T, segment it into K contiguous
segments that are as homogeneous as possible

• Similar to clustering but now we require the  
points in the cluster to be contiguous

• Commonly used for summarization of histograms
in databases



Example

t

R

t

R

Segmentation into 4 segments

Homogeneity: points are 

close to the mean value 

(small error)



Basic definitions

• Sequence 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑁}: an ordered set of 𝑁 𝑑-dimensional real 
points 𝑡𝑖 ∈ 𝑅𝑑

• A 𝐾-segmentation 𝑆: a partition of 𝑇 into 𝐾 contiguous segments 
{𝑠1, 𝑠2, … , 𝑠𝐾}. 
• Each segment 𝑠 ∈ 𝑆 is represented by a single vector 𝜇 ∈ ℝ𝑑(the 

representative of the segment -- same as the centroid of a cluster)

• Error E(S): The error of replacing individual points with 
representatives
• Different error functions, define different representatives.

• Sum of Squares Error (SSE):

𝐸 𝑆 =  

𝑠∈𝑆

 

𝑡∈𝑠

𝑡 − 𝜇𝑠
2

• Representative of segment 𝑠 with SSE: mean 𝜇𝑠 =
1

|𝑠|
 𝑡∈𝑠 𝑡



The K-segmentation problem

• Similar to 𝐾-means clustering, but now we need 
the points in the clusters to respect the order of 
the sequence.
• This actually makes the problem easier.

 Given a sequence 𝑇 of length 𝑁 and a value 𝐾, find a 
𝐾-segmentation 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝐾} of T such that 
the SSE error E is minimized.



Basic Definitions

• Observation: a 𝐾-segmentation 𝑆 is defined by 𝐾 + 1
boundary points 𝑏0, 𝑏1, … , 𝑏𝐾−1, 𝑏𝐾.

• 𝑏0 = 0, 𝑏𝑘 = 𝑁 + 1 always. 
• We only need to specify 𝑏1, … , 𝑏𝐾−1

t

R

𝑏0 𝑏1 𝑏2 𝑏3 𝑏4



Optimal solution for the k-segmentation problem

 [Bellman’61: The K-segmentation problem can be 
solved optimally using a standard dynamic 
programming algorithm

• Dynamic Programming:
• Construct the solution of the problem by using solutions 

to problems of smaller size
• Define the dynamic programming recursion

• Build the solution bottom up from smaller to larger 
instances
• Define the dynamic programming table that stores the solutions 

to the sub-problems



Rule of thumb

• Most optimization problems where order is 

involved can be solved optimally in polynomial 

time using dynamic programming. 

• The polynomial exponent may be large though



Dynamic Programming Recursion

• Terminology: 
• 𝑇[1, 𝑛]: subsequence {𝑡1, 𝑡2, … , 𝑡𝑛} for 𝑛 ≤ 𝑁
• 𝐸 𝑆[1, 𝑛], 𝑘 : error of optimal segmentation of subsequence 𝑇[1, 𝑛] with 
𝑘 segments for 𝑘 ≤ 𝐾

• Dynamic Programming Recursion:

𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 +  

𝑗+1≤𝑡≤𝑛

𝑡 − 𝜇 𝑗+1,𝑛
2

Error of k-th (last) segment 

when the last segment is 

[j+1,n]

Error of optimal 

segmentation S[1,j] 

with k-1 segments

Minimum over all possible 

placements of the last 

boundary point 𝑏𝑘−1



• Two−dimensional table 𝐴[1…𝐾, 1…𝑁]

𝐸 𝑆 1, 𝑛 , 𝑘 = min
𝑘≤j≤n−1

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 +  

𝑗+1≤𝑡≤𝑛

𝑡 − 𝜇 𝑗+1,𝑛
2

• Fill the table top to bottom, left to right.

N1

1

K

Dynamic programming table

k

n𝐴 𝑘, 𝑛 = 𝐸 𝑆 1, 𝑛 , 𝑘

Error of optimal K-segmentation



Example

R

n-th point

k = 3

Where should we place boundary 𝑏2 ?

N1

1

2

3

4

n
𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1  𝐸 𝑆 1, 𝑗 , 𝑘 − 1

𝑏2𝑏1



Example

R

n-th point

k = 3

Where should we place boundary 𝑏2 ?

N1

1

2

3

4

n
𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1  𝐸 𝑆 1, 𝑗 , 𝑘 − 1

𝑏2𝑏1



Example

R

n-th point

k = 3

Where should we place boundary 𝑏2 ?

N1

1

2

3

4

n
𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1  𝐸 𝑆 1, 𝑗 , 𝑘 − 1

𝑏2𝑏1



Example

R

n-th point

k = 3

Where should we place boundary 𝑏2 ?

N1

1

2

3

4

n
𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1  𝐸 𝑆 1, 𝑗 , 𝑘 − 1

𝑏2𝑏1



Example

R

n-th point

k = 3

Optimal segmentation S[1:n]
N1

1

2

3

4

n

𝑏2𝑏1

The cell 𝐴[3, 𝑛] stores the error of the 

optimal solution 3-segmentation of 𝑇[1, 𝑛]

In the cell (or in a different table) we also 

store the position 𝑛 − 3 of the boundary so 

we can trace back the segmentation

n-3



Dynamic-programming algorithm

• Input: Sequence T, length N, K segments, error function E()

• For i=1 to N //Initialize first row
– A[1,i]=E(T[1…i]) //Error when everything is in one cluster

• For k=1 to K // Initialize diagonal
– A[k,k] = 0 // Error when each point in its own cluster

• For k=2 to K

– For i=k+1 to N

• A[k,i] = minj<i{A[k-1,j]+E(T[j+1…i])}

• To recover the actual segmentation (not just the optimal 
cost) store also the minimizing values j



Algorithm Complexity

• What is the complexity?

• NK cells to fill

• Computation per cell 𝐸 𝑆 1, 𝑛 , 𝑘 = min
𝑘≤j<n

 𝐸 𝑆 1, 𝑗 , 𝑘 − 1 +  𝑗+1≤𝑡≤𝑛 𝑡 −



Heuristics

• Top-down greedy (TD): O(NK)
• Introduce boundaries one at the time so that you get the 

largest decrease in error, until K segments are created.

• Bottom-up greedy (BU): O(NlogN)
• Merge adjacent points each time selecting the two 

points that cause the smallest increase in the error until 
K segments

• Local Search Heuristics: O(NKI)
• Assign the breakpoints randomly and then move them 

so that you reduce the error



Other time series analysis

• Using signal processing techniques is common 

for defining similarity between series

• Fast Fourier Transform

• Wavelets

• Rich literature in the field


