
DATA MINING 

LECTURE 6 
Sketching,  

Min-Hashing,  

Locality Sensitive Hashing 



MIN-HASHING 

AND  

LOCALITY SENSITIVE 

HASHING 
Thanks to: 

Rajaraman, Ullman, Lekovec “Mining Massive Datasets” 

Evimaria Terzi, slides for Data Mining Course.  



Motivating problem 

• Find duplicate and near-duplicate documents 

from a web crawl. 

 

• If we wanted exact duplicates we could do this by 

hashing 

• We will see how to adapt this technique for near 

duplicate documents 



Main issues 

• What is the right representation of the document 

when we check for similarity? 

• E.g., representing a document as a set of characters 

will not do (why?) 

• When we have billions of documents, keeping the 

full text in memory is not an option. 

• We need to find a shorter representation 

• How do we do pairwise comparisons of billions of 

documents? 

• If exact match was the issue it would be ok, can we 

replicate this idea? 
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The Big Picture 

Docu- 

ment 

The set 

of strings 

of length k 

that appear 

in the doc- 

ument 

Signatures : 

short integer 

vectors that 

represent the 

sets, and 

reflect their 

similarity 

Locality- 

sensitive 

Hashing 

Candidate 

pairs : 

those pairs 

of signatures 

that we need 

to test for 

similarity. 



Shingling 

• Shingle: a sequence of k contiguous characters 

a rose is  

 rose is a 

rose is a  

ose is a r 

se is a ro 

e is a ros 

 is a rose 

is a rose  

s a rose i 

 a rose is 

1111 

2222 

3333 

4444 

5555 

6666 

7777 

8888 

9999 

0000 

Set of Shingles Set of 64-bit integers 
Hash function 

(Rabin’s fingerprints) 
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Basic Data Model: Sets 

• Document: A document is represented as a set of 

shingles (more accurately, hashes of shingles) 

 

• Document similarity: Jaccard similarity of the sets 

of shingles. 

• Common shingles over the union of shingles 

• Sim (C1, C2) = |C1C2|/|C1C2|. 

 

• Applicable to any kind of sets. 

• E.g., similar customers or items. 



Signatures  

• Key idea: “hash” each set S  to a small signature   
Sig (S), such that: 

 

1. Sig (S) is small enough that we can fit all signatures in 
main memory. 

 

2. Sim (S1, S2) is (almost) the same as the “similarity” of Sig 
(S1) and Sig (S2). (signature preserves similarity). 

 

• Warning: This method can produce false negatives, 
and false positives (if an additional check is not 
made). 
• False negatives: Similar items deemed as non-similar 

• False positives: Non-similar items deemed as similar 
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From Sets to Boolean Matrices 

• Represent the data as a boolean matrix M 

• Rows = the universe of all possible set elements  

• In our case, shingle fingerprints take values in [0…264-1] 

• Columns = the sets  

• In our case, documents, sets of shingle fingerprints 

• M(r,S) = 1 in row r  and column S  if and only if r  is a 

member of S. 

 

• Typical matrix is sparse. 

• We do not really materialize the matrix 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Sim(X,Y) = 
3

5
 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Sim(X,Y) = 
3

5
 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

At least one of the columns has value 1 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Sim(X,Y) = 
3

5
 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

Both columns have value 1 
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Minhashing 

• Pick a random permutation of the rows (the 

universe U). 

• Define “hash” function for set S 

• h(S) = the index of the first row (in the permuted order) 

in which column S has 1. 

or equivalently 

• h(S) = the index of the first element of S in the permuted 

order. 

• Use k (e.g., k = 100) independent random 

permutations to create a signature. 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

A 

C 

G 

F 

B 

E 

D 

S1 S2 S3 S4 

1 A 1 0 1 0 

2 C 0 1 0 1 

3 G 1 0 1 0 

4 F 1 0 1 0 

5 B 1 0 0 1 

6 E 0 1 1 1 

7 D 0 1 0 1 

1 2 1 2 

Random 

Permutation 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

D 

B 

A 

C 

F 

G 

E 

S1 S2 S3 S4 

1 D 0 1 0 1 

2 B 1 0 0 1 

3 A 1 0 1 0 

4 C 0 1 0 1 

5 F 1 0 1 0 

6 G 1 0 1 0 

7 E 0 1 1 1 

2 1 3 1 

Random 

Permutation 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

C 

D 

G 

F 

A 

B 

E 

S1 S2 S3 S4 

1 C 0 1 0 1 

2 D 0 1 0 1 

3 G 1 0 1 0 

4 F 1 0 1 0 

5 A 1 0 1 0 

6 B 1 0 0 1 

7 E 0 1 1 1 

3 1 3 1 

Random 

Permutation 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

S1 S2 S3 S4 

h1 1 2 1 2 

h2 2 1 3 1 

h3 3 1 3 1 

≈ 

• Sig(S) = vector of hash values  
• e.g., Sig(S2) = [2,1,1] 

• Sig(S,i) = value of the i-th hash 

function for set S 
• E.g., Sig(S2,3) = 1 

Signature matrix 
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Hash function Property 

 

Pr(h(S1) = h(S2)) = Sim(S1,S2) 

 

• where the probability is over all choices of  
permutations.  

 

• Why? 
• The first row where one of the two sets has value 1 

belongs to the union. 

• Recall that union contains rows with at least one 1. 

• We have equality if both sets have value 1, and this row 
belongs to the intersection 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

Rows C,D could be anywhere 

they do not affect the probability 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

The * rows belong to the union 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

The question is what is the value 

of the first * element 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

If it belongs to the intersection 

then h(X) = h(Y) 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

Every element of the union is equally likely 

to be the * element 

Pr(h(X) = h(Y)) = 
| A,F,G |

| A,B,E,F,G |
= 

3
5

= Sim(X,Y) 

 



Zero similarity is preserved 

High similarity is well approximated 
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Similarity for Signatures 

• The similarity of signatures  is the fraction of the 
hash functions in which they agree. 

 

 

 

 

 

 

 

• With multiple signatures we get a good 
approximation 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

S1 S2 S3 S4 

1 2 1 2 

2 1 3 1 

3 1 3 1 

≈ 

Actual Sig 

(S1, S2) 0 0 

(S1, S3) 3/5 2/3 

(S1, S4) 1/7 0 

(S2, S3) 0 0 

(S2, S4) 3/4 1 

(S3, S4) 0 0 

Signature matrix 



Is it now feasible? 

• Assume a billion rows 

• Hard to pick a random permutation of 1…billion 

• Even representing a random permutation 

requires 1 billion entries!!! 

• How about accessing rows in permuted order?  



Being more practical 

• Instead of permuting the rows we will apply a hash 

function that maps the rows to a new (possibly larger) 

space 

• The value of the hash function is the position of the row in 

the new order (permutation). 

• Each set is represented by the smallest hash value among 

the elements in the set 

 

• The space of the hash functions should be such that 

if we select one at random each element (row) has 

equal probability to have the smallest value 

• Min-wise independent hash functions  



Algorithm – One set, one hash function 

Computing Sig(S,i) for a single column S and 

single hash function hi 

 

for each row r  

     compute hi (r )  

      if column S that has 1 in row r  

  if hi (r ) is a smaller value than Sig(S,i) then 

    Sig(S,i) = hi (r); 

 

 
Sig(S,i) will become the smallest value of hi(r) among all rows 

(shingles) for which column S has value 1 (shingle belongs in S); 

i.e., hi (r) gives the min index for the i-th permutation 

In practice only the rows (shingles) 

that appear in the data 

hi (r) = index of row r in permutation 

S contains row r 

Find the row r with minimum index 



Algorithm – All sets, k hash functions 

Pick k=100 hash functions (h1,…,hk) 

 

for each row r  

   for each hash function hi  

      compute hi (r )  

      for each column S that has 1 in row r  

  if hi (r ) is a smaller value than Sig(S,i) then 

    Sig(S,i) = hi (r); 

 

 

In practice this means selecting the 

hash function parameters 

Compute hi (r) only once for all sets 
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Example 

Row S1 S2 

  A  1  0 

  B  0  1 

  C  1  1 

  D  1  0 

  E  0  1 

h(x) = x+1 mod 5 

g(x) = 2x+3 mod 5 

h(0) = 1  1 - 

g(0) = 3  3 - 

h(1) = 2  1 2 

g(1) = 0  3 0 

h(2) = 3  1 2 

g(2) = 2  2 0 

h(3) = 4  1 2 

g(3) = 4  2 0 

h(4) = 0  1 0 

g(4) = 1  2 0 

Sig1 Sig2 

Row S1 S2 

  E    0  1  

  A    1  0 

  B    0  1 

  C    1  1 

  D    1  0 

   

Row S1 S2 

  B    0  1  

  E    0  1  

  C    1  0 

  A    1  1 

  D   1  0 

   

x 

0 

1 

2 

3 

4 

h(Row) 

0 

1 

2 

3 

4 

g(Row) 

0 

1 

2 

3 

4 

h(x) 

1 

2 

3 

4 

0 

g(x) 

3 

0 

2 

4 

1 
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Implementation 

• Often, data is given by column, not row. 

• E.g., columns = documents, rows = shingles. 

• If so, sort matrix once so it is by row. 

• And always  compute hi (r ) only once for each 

row. 
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Finding similar pairs 

• Problem: Find all pairs of documents with 

similarity at least t = 0.8 

• While the signatures of all columns may fit in 

main memory, comparing the signatures of all 

pairs of columns is quadratic in the number of 

columns. 

• Example: 106 columns implies 5*1011 column-

comparisons. 

• At 1 microsecond/comparison: 6 days. 
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Locality-Sensitive Hashing 

• What we want: a function f(X,Y) that tells whether or not X  
and Y  is a candidate pair: a pair of elements whose 
similarity must be evaluated. 

 

• A simple idea: X and Y are a candidate pair if they have 
the same min-hash signature. 
• Easy to test by hashing the signatures. 

• Similar sets are more likely to have the same signature. 

• Likely to produce many false negatives. 
• Requiring full match of signature is strict, some similar sets will be lost. 

 

• Improvement: Compute multiple signatures; candidate 
pairs should have at least one common signature.  
• Reduce the probability for false negatives. 

! Multiple levels of Hashing! 
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Signature matrix reminder 

Matrix M 

n hash functions 

Sig(S): 

signature for set S 

hash function i 

Sig(S,i) 

signature for set S’ 

Sig(S’,i) 

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’) 
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Partition into Bands – (1) 

• Divide the signature matrix Sig  into b  bands of r  

rows. 

• Each band is a mini-signature with r hash functions. 
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Partitioning into bands 

Matrix Sig 

r  rows 

per band 

b  bands 

   One 

signature 

n = b*r   hash functions 

b  mini-signatures 
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Partition into Bands – (2) 

• Divide the signature matrix Sig  into b  bands of r  

rows. 

• Each band is a mini-signature with r hash functions. 

• For each band, hash the mini-signature to a hash 

table with k  buckets. 

• Make k  as large as possible so that mini-signatures that 

hash to the same bucket are almost certainly identical. 
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Matrix M 

r  rows b  bands 

3 2 1 5 6 4 7 

Hash Table Columns 2 and 6 

are (almost certainly) identical. 

Columns 6 and 7 are 

surely different. 
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Partition into Bands – (3) 

• Divide the signature matrix Sig  into b  bands of r  
rows. 
• Each band is a mini-signature with r hash functions. 

• For each band, hash the mini-signature to a hash table 
with k  buckets. 
• Make k  as large as possible so that mini-signatures that hash 

to the same bucket are almost certainly identical. 

• Candidate column pairs are those that hash to the 
same bucket for at least 1 band. 

• Tune b and r  to catch most similar pairs, but few non-
similar pairs. 
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Analysis of LSH – What We Want 

       True similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

No chance 

if s < t 

Probability 

= 1 if s > t 
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What One Band of One Row Gives You 

Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

Remember: 

probability of 

equal hash-values 

= similarity 

Single hash signature 

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’) 
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What b  Bands of r  Rows Gives You 

Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

s r  

All rows 

of a band 

are equal 

1 - 

Some row 

of a band 

unequal 

( )b  

 

No bands 

identical 

1 - 

At least 

one band 

identical 

t ~ (1/b)1/r  
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Example: b  = 20; r  = 5 

 s  1-(1-sr)b 

.2    .006 

.3    .047 

.4    .186 

.5    .470 

.6    .802 

.7    .975 

.8    .9996 

t = 0.5 
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Suppose S1, S2 are 80% Similar 

• We want all 80%-similar pairs. Choose 20 bands of 5 
integers/band. 

 

• Probability S1, S2 identical in one particular band:  

(0.8)5 = 0.328. 

 

• Probability S1, S2 are not  similar in any of the 20 bands: 

(1-0.328)20 = 0.00035  
 

• i.e., about 1/3000-th of the 80%-similar column pairs are false negatives. 

 

• Probability S1, S2 are similar in at least one of the 20 
bands:  

1-0.00035 = 0.999 
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Suppose S1, S2 Only 40% Similar 

• Probability S1, S2 identical in any one particular 
band:  

  (0.4)5  = 0.01 . 

 

• Probability S1, S2 identical in at least 1 of 20 
bands:  

   ≤ 20 * 0.01 = 0.2 . 

 

• But false positives much lower for similarities 
<< 40%.  
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LSH Summary 

• Tune to get almost all pairs with similar 

signatures, but eliminate most pairs that do not 

have similar signatures. 

• Check in main memory that candidate pairs 

really do have similar signatures. 

• Optional: In another pass through data, check 

that the remaining candidate pairs really 

represent similar sets . 



Locality-sensitive hashing (LSH) 

• Big Picture: Construct hash functions h: Rd
 U 

such that for any pair of points p,q, for distance 

function D we have: 

• If D(p,q)≤r, then Pr[h(p)=h(q)] ≥ α  is high 

• If D(p,q)≥cr, then Pr[h(p)=h(q)] ≤ β  is small 

• Then, we can find close pairs by hashing 

 

• LSH is a general framework: for a given distance 

function D we need to find the right h 

• h is (r,cr, α, β)-sensitive 
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LSH for Cosine Distance 

• For cosine distance, there is a technique 

analogous to minhashing for generating a 

(d1,d2,(1-d1/180),(1-d2/180))- sensitive family 

for any d1 and d2. 

• Called random hyperplanes. 
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Random Hyperplanes 

• Pick a random vector v, which determines a 

hash function hv  with two buckets. 

• hv(x) = +1 if v.x > 0; = -1 if v.x < 0. 

 

• LS-family H = set of all functions derived from 

any vector. 

 

• Claim:  

• Prob[h(x)=h(y)] = 1 – (angle between x and y)/180 
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Proof of Claim 

x 

y 

Look in the plane of x and y. 

θ 

hv(x) = +1 

hv(x) = -1 

For a random vector v the values of the 

hash functions hv(x) and hv(y) depend 

on where the vector v falls 

hv(y) = -1 

hv(y) = +1 

hv(x) ≠ hv(y) when v falls into the 

shaded area. 

What is the probability of this for 

a randomly chosen vector v? 

θ 

θ 

P[hv(x) ≠ hv(y)] = 2θ/360 = θ/180 

 

P[hv(x) = hv(y)] = 1- θ/180 
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Signatures for Cosine Distance 

• Pick some number of vectors, and hash your 

data for each vector. 

• The result is a signature (sketch ) of +1’s and –

1’s that can be used for LSH like the minhash 

signatures for Jaccard distance. 
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Simplification 

• We need not pick from among all possible vectors 

v  to form a component of a sketch. 

• It suffices to consider only vectors v  consisting of 

+1 and –1 components. 


