
DATA MINING

LECTURE 6
Sketching,

Min-Hashing,

Locality Sensitive Hashing

MIN-HASHING

AND

LOCALITY SENSITIVE

HASHING
Thanks to:

Rajaraman, Ullman, Lekovec “Mining Massive Datasets”

Evimaria Terzi, slides for Data Mining Course.

Motivating problem

• Find duplicate and near-duplicate documents

from a web crawl.

• If we wanted exact duplicates we could do this by

hashing

• We will see how to adapt this technique for near

duplicate documents

Main issues

• What is the right representation of the document

when we check for similarity?

• E.g., representing a document as a set of characters

will not do (why?)

• When we have billions of documents, keeping the

full text in memory is not an option.

• We need to find a shorter representation

• How do we do pairwise comparisons of billions of

documents?

• If exact match was the issue it would be ok, can we

replicate this idea?

5

The Big Picture

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures :

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

sensitive

Hashing

Candidate

pairs :

those pairs

of signatures

that we need

to test for

similarity.

Shingling

• Shingle: a sequence of k contiguous characters

a rose is

 rose is a

rose is a

ose is a r

se is a ro

e is a ros

 is a rose

is a rose

s a rose i

 a rose is

1111

2222

3333

4444

5555

6666

7777

8888

9999

0000

Set of Shingles Set of 64-bit integers
Hash function

(Rabin’s fingerprints)

7

Basic Data Model: Sets

• Document: A document is represented as a set of

shingles (more accurately, hashes of shingles)

• Document similarity: Jaccard similarity of the sets

of shingles.

• Common shingles over the union of shingles

• Sim (C1, C2) = |C1C2|/|C1C2|.

• Applicable to any kind of sets.

• E.g., similar customers or items.

Signatures

• Key idea: “hash” each set S to a small signature
Sig (S), such that:

1. Sig (S) is small enough that we can fit all signatures in
main memory.

2. Sim (S1, S2) is (almost) the same as the “similarity” of Sig
(S1) and Sig (S2). (signature preserves similarity).

• Warning: This method can produce false negatives,
and false positives (if an additional check is not
made).
• False negatives: Similar items deemed as non-similar

• False positives: Non-similar items deemed as similar

9

From Sets to Boolean Matrices

• Represent the data as a boolean matrix M

• Rows = the universe of all possible set elements

• In our case, shingle fingerprints take values in [0…264-1]

• Columns = the sets

• In our case, documents, sets of shingle fingerprints

• M(r,S) = 1 in row r and column S if and only if r is a

member of S.

• Typical matrix is sparse.

• We do not really materialize the matrix

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Sim(X,Y) =
3

5

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Sim(X,Y) =
3

5

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

At least one of the columns has value 1

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Sim(X,Y) =
3

5

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

Both columns have value 1

13

Minhashing

• Pick a random permutation of the rows (the

universe U).

• Define “hash” function for set S

• h(S) = the index of the first row (in the permuted order)

in which column S has 1.

or equivalently

• h(S) = the index of the first element of S in the permuted

order.

• Use k (e.g., k = 100) independent random

permutations to create a signature.

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

A

C

G

F

B

E

D

S1 S2 S3 S4

1 A 1 0 1 0

2 C 0 1 0 1

3 G 1 0 1 0

4 F 1 0 1 0

5 B 1 0 0 1

6 E 0 1 1 1

7 D 0 1 0 1

1 2 1 2

Random

Permutation

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

D

B

A

C

F

G

E

S1 S2 S3 S4

1 D 0 1 0 1

2 B 1 0 0 1

3 A 1 0 1 0

4 C 0 1 0 1

5 F 1 0 1 0

6 G 1 0 1 0

7 E 0 1 1 1

2 1 3 1

Random

Permutation

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

C

D

G

F

A

B

E

S1 S2 S3 S4

1 C 0 1 0 1

2 D 0 1 0 1

3 G 1 0 1 0

4 F 1 0 1 0

5 A 1 0 1 0

6 B 1 0 0 1

7 E 0 1 1 1

3 1 3 1

Random

Permutation

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

h1 1 2 1 2

h2 2 1 3 1

h3 3 1 3 1

≈

• Sig(S) = vector of hash values
• e.g., Sig(S2) = [2,1,1]

• Sig(S,i) = value of the i-th hash

function for set S
• E.g., Sig(S2,3) = 1

Signature matrix

18

Hash function Property

Pr(h(S1) = h(S2)) = Sim(S1,S2)

• where the probability is over all choices of
permutations.

• Why?
• The first row where one of the two sets has value 1

belongs to the union.

• Recall that union contains rows with at least one 1.

• We have equality if both sets have value 1, and this row
belongs to the intersection

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

Rows C,D could be anywhere

they do not affect the probability

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

The * rows belong to the union

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

The question is what is the value

of the first * element

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

If it belongs to the intersection

then h(X) = h(Y)

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

Every element of the union is equally likely

to be the * element

Pr(h(X) = h(Y)) =
| A,F,G |

| A,B,E,F,G |
=

3
5

= Sim(X,Y)

Zero similarity is preserved

High similarity is well approximated

24

Similarity for Signatures

• The similarity of signatures is the fraction of the
hash functions in which they agree.

• With multiple signatures we get a good
approximation

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

1 2 1 2

2 1 3 1

3 1 3 1

≈

Actual Sig

(S1, S2) 0 0

(S1, S3) 3/5 2/3

(S1, S4) 1/7 0

(S2, S3) 0 0

(S2, S4) 3/4 1

(S3, S4) 0 0

Signature matrix

Is it now feasible?

• Assume a billion rows

• Hard to pick a random permutation of 1…billion

• Even representing a random permutation

requires 1 billion entries!!!

• How about accessing rows in permuted order?

Being more practical

• Instead of permuting the rows we will apply a hash

function that maps the rows to a new (possibly larger)

space

• The value of the hash function is the position of the row in

the new order (permutation).

• Each set is represented by the smallest hash value among

the elements in the set

• The space of the hash functions should be such that

if we select one at random each element (row) has

equal probability to have the smallest value

• Min-wise independent hash functions

Algorithm – One set, one hash function

Computing Sig(S,i) for a single column S and

single hash function hi

for each row r

 compute hi (r)

 if column S that has 1 in row r

 if hi (r) is a smaller value than Sig(S,i) then

 Sig(S,i) = hi (r);

Sig(S,i) will become the smallest value of hi(r) among all rows

(shingles) for which column S has value 1 (shingle belongs in S);

i.e., hi (r) gives the min index for the i-th permutation

In practice only the rows (shingles)

that appear in the data

hi (r) = index of row r in permutation

S contains row r

Find the row r with minimum index

Algorithm – All sets, k hash functions

Pick k=100 hash functions (h1,…,hk)

for each row r

 for each hash function hi

 compute hi (r)

 for each column S that has 1 in row r

 if hi (r) is a smaller value than Sig(S,i) then

 Sig(S,i) = hi (r);

In practice this means selecting the

hash function parameters

Compute hi (r) only once for all sets

29

Example

Row S1 S2

 A 1 0

 B 0 1

 C 1 1

 D 1 0

 E 0 1

h(x) = x+1 mod 5

g(x) = 2x+3 mod 5

h(0) = 1 1 -

g(0) = 3 3 -

h(1) = 2 1 2

g(1) = 0 3 0

h(2) = 3 1 2

g(2) = 2 2 0

h(3) = 4 1 2

g(3) = 4 2 0

h(4) = 0 1 0

g(4) = 1 2 0

Sig1 Sig2

Row S1 S2

 E 0 1

 A 1 0

 B 0 1

 C 1 1

 D 1 0

Row S1 S2

 B 0 1

 E 0 1

 C 1 0

 A 1 1

 D 1 0

x

0

1

2

3

4

h(Row)

0

1

2

3

4

g(Row)

0

1

2

3

4

h(x)

1

2

3

4

0

g(x)

3

0

2

4

1

30

Implementation

• Often, data is given by column, not row.

• E.g., columns = documents, rows = shingles.

• If so, sort matrix once so it is by row.

• And always compute hi (r) only once for each

row.

31

Finding similar pairs

• Problem: Find all pairs of documents with

similarity at least t = 0.8

• While the signatures of all columns may fit in

main memory, comparing the signatures of all

pairs of columns is quadratic in the number of

columns.

• Example: 106 columns implies 5*1011 column-

comparisons.

• At 1 microsecond/comparison: 6 days.

32

Locality-Sensitive Hashing

• What we want: a function f(X,Y) that tells whether or not X
and Y is a candidate pair: a pair of elements whose
similarity must be evaluated.

• A simple idea: X and Y are a candidate pair if they have
the same min-hash signature.
• Easy to test by hashing the signatures.

• Similar sets are more likely to have the same signature.

• Likely to produce many false negatives.
• Requiring full match of signature is strict, some similar sets will be lost.

• Improvement: Compute multiple signatures; candidate
pairs should have at least one common signature.
• Reduce the probability for false negatives.

! Multiple levels of Hashing!

33

Signature matrix reminder

Matrix M

n hash functions

Sig(S):

signature for set S

hash function i

Sig(S,i)

signature for set S’

Sig(S’,i)

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’)

34

Partition into Bands – (1)

• Divide the signature matrix Sig into b bands of r

rows.

• Each band is a mini-signature with r hash functions.

35

Partitioning into bands

Matrix Sig

r rows

per band

b bands

 One

signature

n = b*r hash functions

b mini-signatures

36

Partition into Bands – (2)

• Divide the signature matrix Sig into b bands of r

rows.

• Each band is a mini-signature with r hash functions.

• For each band, hash the mini-signature to a hash

table with k buckets.

• Make k as large as possible so that mini-signatures that

hash to the same bucket are almost certainly identical.

37

Matrix M

r rows b bands

3 2 1 5 6 4 7

Hash Table Columns 2 and 6

are (almost certainly) identical.

Columns 6 and 7 are

surely different.

38

Partition into Bands – (3)

• Divide the signature matrix Sig into b bands of r
rows.
• Each band is a mini-signature with r hash functions.

• For each band, hash the mini-signature to a hash table
with k buckets.
• Make k as large as possible so that mini-signatures that hash

to the same bucket are almost certainly identical.

• Candidate column pairs are those that hash to the
same bucket for at least 1 band.

• Tune b and r to catch most similar pairs, but few non-
similar pairs.

39

Analysis of LSH – What We Want

 True similarity s of two sets

Probability

of sharing

a bucket

t

No chance

if s < t

Probability

= 1 if s > t

40

What One Band of One Row Gives You

Similarity s of two sets

Probability

of sharing

a bucket

t

Remember:

probability of

equal hash-values

= similarity

Single hash signature

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’)

41

What b Bands of r Rows Gives You

Similarity s of two sets

Probability

of sharing

a bucket

t

s r

All rows

of a band

are equal

1 -

Some row

of a band

unequal

()b

No bands

identical

1 -

At least

one band

identical

t ~ (1/b)1/r

42

Example: b = 20; r = 5

 s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

t = 0.5

43

Suppose S1, S2 are 80% Similar

• We want all 80%-similar pairs. Choose 20 bands of 5
integers/band.

• Probability S1, S2 identical in one particular band:

(0.8)5 = 0.328.

• Probability S1, S2 are not similar in any of the 20 bands:

(1-0.328)20 = 0.00035

• i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.

• Probability S1, S2 are similar in at least one of the 20
bands:

1-0.00035 = 0.999

44

Suppose S1, S2 Only 40% Similar

• Probability S1, S2 identical in any one particular
band:

 (0.4)5 = 0.01 .

• Probability S1, S2 identical in at least 1 of 20
bands:

 ≤ 20 * 0.01 = 0.2 .

• But false positives much lower for similarities
<< 40%.

45

LSH Summary

• Tune to get almost all pairs with similar

signatures, but eliminate most pairs that do not

have similar signatures.

• Check in main memory that candidate pairs

really do have similar signatures.

• Optional: In another pass through data, check

that the remaining candidate pairs really

represent similar sets .

Locality-sensitive hashing (LSH)

• Big Picture: Construct hash functions h: Rd
 U

such that for any pair of points p,q, for distance

function D we have:

• If D(p,q)≤r, then Pr[h(p)=h(q)] ≥ α is high

• If D(p,q)≥cr, then Pr[h(p)=h(q)] ≤ β is small

• Then, we can find close pairs by hashing

• LSH is a general framework: for a given distance

function D we need to find the right h

• h is (r,cr, α, β)-sensitive

47

LSH for Cosine Distance

• For cosine distance, there is a technique

analogous to minhashing for generating a

(d1,d2,(1-d1/180),(1-d2/180))- sensitive family

for any d1 and d2.

• Called random hyperplanes.

48

Random Hyperplanes

• Pick a random vector v, which determines a

hash function hv with two buckets.

• hv(x) = +1 if v.x > 0; = -1 if v.x < 0.

• LS-family H = set of all functions derived from

any vector.

• Claim:

• Prob[h(x)=h(y)] = 1 – (angle between x and y)/180

49

Proof of Claim

x

y

Look in the plane of x and y.

θ

hv(x) = +1

hv(x) = -1

For a random vector v the values of the

hash functions hv(x) and hv(y) depend

on where the vector v falls

hv(y) = -1

hv(y) = +1

hv(x) ≠ hv(y) when v falls into the

shaded area.

What is the probability of this for

a randomly chosen vector v?

θ

θ

P[hv(x) ≠ hv(y)] = 2θ/360 = θ/180

P[hv(x) = hv(y)] = 1- θ/180

50

Signatures for Cosine Distance

• Pick some number of vectors, and hash your

data for each vector.

• The result is a signature (sketch) of +1’s and –

1’s that can be used for LSH like the minhash

signatures for Jaccard distance.

51

Simplification

• We need not pick from among all possible vectors

v to form a component of a sketch.

• It suffices to consider only vectors v consisting of

+1 and –1 components.

