DATA MINING LECTURE 6

Sketching,

Min-Hashing,
Locality Sensitive Hashing

MIN-HASHING AND LOCALITY SENSITIVE HASHING

Thanks to:
Rajaraman, Ullman, Lekovec "Mining Massive Datasets" Evimaria Terzi, slides for Data Mining Course.

Motivating problem

- Find duplicate and near-duplicate documents from a web crawl.
- If we wanted exact duplicates we could do this by hashing
- We will see how to adapt this technique for near duplicate documents

Main issues

- What is the right representation of the document when we check for similarity?
- E.g., representing a document as a set of characters will not do (why?)
- When we have billions of documents, keeping the full text in memory is not an option.
- We need to find a shorter representation
- How do we do pairwise comparisons of billions of documents?
- If exact match was the issue it would be ok, can we replicate this idea?

The Big Picture

Shingling

- Shingle: a sequence of k contiguous characters

Set of Shingles
Hash function
Set of 64-bit integers

a rose is
rose is a
rose is a
ose is a r
se is a ro
e is a ros
is a rose
is a rose
s a rose i
a rose is

(Rabin's fingerprints)	1111
\longrightarrow	2222
\longrightarrow	3333
\longrightarrow	4444
\longrightarrow	5555
\longrightarrow	7777
\longrightarrow	8888
$\longrightarrow \longrightarrow$	

Basic Data Model: Sets

- Document: A document is represented as a set of shingles (more accurately, hashes of shingles)
- Document similarity: Jaccard similarity of the sets of shingles.
- Common shingles over the union of shingles
- $\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right|| | \mathrm{C}_{1} \cup \mathrm{C}_{2} \mid$.
- Applicable to any kind of sets.
- E.g., similar customers or items.

Signatures

- Key idea: "hash" each set S to a small signature Sig (S), such that:

1. Sig. (S) is small enough that we can fit all signatures in main memory.
2. $\operatorname{Sim}\left(S_{1}, S_{2}\right)$ is (almost) the same as the "similarity" of Sig $\left(S_{1}\right)$ and Sig $^{2}\left(S_{2}\right)$. (signature preserves similarity).

- Warning: This method can produce false negatives, and false positives (if an additional check is not made).
- False negatives: Similar items deemed as non-similar
- False positives: Non-similar items deemed as similar

From Sets to Boolean Matrices

- Represent the data as a boolean matrix M
- Rows = the universe of all possible set elements
- In our case, shingle fingerprints take values in [0...264-1]
- Columns = the sets
- In our case, documents, sets of shingle fingerprints
- $M(r, S)=1$ in row r and column S if and only if r is a member of S.
- Typical matrix is sparse.
- We do not really materialize the matrix

Example

- Universe: $\mathrm{U}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$

- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$
- $\operatorname{Sim}(X, Y)=\frac{3}{5}$

	\mathbf{X}	\mathbf{Y}
A	1	1
B	1	0
C	0	0
D	0	0
E	0	1
F	1	1
\mathbf{G}	1	1

Example

- Universe: $\mathrm{U}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$

- $X=\{A, B, F, G\}$
- $\mathrm{Y}=\{\mathrm{A}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$

	\mathbf{X}	\mathbf{Y}
\mathbf{A}	1	1
B	1	0
C	0	0
D	0	0
E	0	1
F	1	1
\mathbf{G}	1	1

At least one of the columns has value 1

Example

- Universe: $\mathrm{U}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$

- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

	\mathbf{X}	\mathbf{Y}
A	1	1
B	1	0
C	0	0
D	0	0
E	0	1
F	1	1
\mathbf{G}	1	1

Both columns have value 1

Minhashing

- Pick a random permutation of the rows (the universe U).
- Define "hash" function for set S
- $\mathrm{h}(\mathrm{S})=$ the index of the first row (in the permuted order) in which column S has 1.
or equivalently
- $h(S)=$ the index of the first element of S in the permuted order.
- Use k (e.g., $k=100$) independent random permutations to create a signature.

Example of minhash signatures

- Input matrix

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	1	1
F	1	0	1	0
G	1	0	1	0

Random
Permutation

Example of minhash signatures

- Input matrix

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	1	1
F	1	0	1	0
G	1	0	1	0

Random
Permutation

Example of minhash signatures

- Input matrix

	S_{1}	S_{2}	S_{3}	S_{4}
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	1	1
F	1	0	1	0
G	1	0	1	0

Random
Permutation

Example of minhash signatures

- Input matrix

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

Signature matrix

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	2	1	2
\mathbf{h}_{2}	2	1	3	1
\mathbf{h}_{3}	3	1	3	1

- $\operatorname{Sig}(S)=$ vector of hash values
- e.g., $\operatorname{Sig}\left(\mathrm{S}_{2}\right)=[2,1,1]$
- $\operatorname{Sig}(\mathrm{S}, \mathrm{i})=$ value of the i-th hash function for set S
- E.g., $\operatorname{Sig}\left(\mathrm{S}_{2}, 3\right)=1$

Hash function Property

$$
\operatorname{Pr}\left(h\left(S_{1}\right)=h\left(S_{2}\right)\right)=\operatorname{Sim}\left(S_{1}, S_{2}\right)
$$

- where the probability is over all choices of permutations.
-Why?
- The first row where one of the two sets has value 1 belongs to the union.
- Recall that union contains rows with at least one 1.
- We have equality if both sets have value 1 , and this row belongs to the intersection

Example

- Universe: $U=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

Rows C,D could be anywhere they do not affect the probability

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = $\{A, F, G\}$

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0	*			
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: $\mathbb{U}=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$
- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = $\{A, F, G\}$

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0				
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: $U=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

The question is what is the value of the first * element

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y		X	Y
A	1	1		0	0
B	1	0			
C	0	0			
D	0	0		0	0
E	0	1			
F	1	1			
G	1	1			

Example

- Universe: $U=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

If it belongs to the intersection then $h(X)=h(Y)$

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0				
D	0	0	c	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: $\mathbb{U}=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

Every element of the union is equally likely to be the * element

$$
\operatorname{Pr}(h(X)=h(Y))=\frac{|\{A, F, G\}|}{|\{A, B, E, F, G\}|}=\frac{3}{5}=\operatorname{Sim}(X, Y)
$$

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0	*			
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Similarity for Signatures

- The similarity of signatures is the fraction of the hash functions in which they agree.

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

Signature matrix						Actual	Sig
\approx	S_{1}	S_{2}	S_{3}	S_{4}	$\left(S_{1}, S_{2}\right)$	0	0
	1	2	1	2	$\left(\mathrm{S}_{1}, \mathrm{~S}_{3}\right)$	3/5	2/3
	2	1	3	1	$\left(S_{1}, S_{4}\right)$	1/7	0
	3	1	3	1	$\left(\mathrm{S}_{2}, \mathrm{~S}_{3}\right)$	0	0
					$\left(S_{2}, S_{4}\right)$	3/4	1
Zero similarity is preserved					$\left(S_{3}, S_{4}\right)$	0	0
High similarity is well approximated							

- With multiple signatures we get a good approximation

Is it now feasible?

- Assume a billion rows
- Hard to pick a random permutation of $1 .$. .billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order? :

Being more practical

- Instead of permuting the rows we will apply a hash function that maps the rows to a new (possibly larger) space
- The value of the hash function is the position of the row in the new order (permutation).
- Each set is represented by the smallest hash value among the elements in the set
- The space of the hash functions should be such that if we select one at random each element (row) has equal probability to have the smallest value
- Min-wise independent hash functions

Algorithm - One set, one hash function

Computing Sig(S,i) for a single column S and single hash function h_{i}
for each row r In practice only the rows (shingles) that appear in the data

$$
\operatorname{Sig}(\mathbf{S}, \mathbf{i})=h_{i}(\mathbf{r}) ;
$$

Find the row r with minimum index
Sig(S, i) will become the smallest value of $h_{i}(r)$ among all rows (shingles) for which column S has value 1 (shingle belongs in S); i.e., $h_{i}(r)$ gives the min index for the i-th permutation

Algorithm - All sets, k hash functions

Pick $k=100$ hash functions ($\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{k}}$)
In practice this means selecting the hash function parameters

for each row r

for each hash function h_{i}
compute $\mathrm{h}_{\mathrm{i}}(\mathrm{r})$
Compute $\mathrm{h}_{\mathrm{i}}(\mathrm{r})$ only once for all sets
for each column S that has 1 in row r
if $h_{i}(r)$ is a smaller value than $\operatorname{Sig}(S, i)$ then

$$
\operatorname{Sig}(\mathbf{S}, \mathbf{i})=h_{i}(\mathbf{r}) ;
$$

Example

x	Row	S1	S2	$h(x)$	$g(x)$	
0	A	1	0	1	3	
1	B	0	1	2	0	
2	C	1	1	3	2	
3	D	1	0	4	4	
4	E	0	1	0	1	

$$
\begin{aligned}
& h(x)=x+1 \bmod 5 \\
& g(x)=2 x+3 \bmod 5
\end{aligned}
$$

h(Row)	Row	S1 1	S2
0	E	0	1
1	A	1	0
2	B	0	1
3	C	1	1
4	D	1	0

g(Row)	Row	S1 1	S2
	B	B	1
1	E	0	1
2	C	1	0
3	A	1	1
4	D	1	0

$$
\begin{equation*}
h(4)=0 \quad 1 \tag{0
0}
\end{equation*}
$$

Implementation

- Often, data is given by column, not row.
- E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- And always compute $h_{i}(r)$ only once for each row.

Finding similar pairs

- Problem: Find all pairs of documents with similarity at least $t=0.8$
- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- Example: 10^{6} columns implies 5*10 ${ }^{11}$ columncomparisons.
- At 1 microsecond/comparison: 6 days.

Locality-Sensitive Hashing

- What we want: a function $f(X, Y)$ that tells whether or not X and Y is a candidate pair: a pair of elements whose similarity must be evaluated.
- A simple idea: X and Y are a candidate pair if they have the same min-hash signature.
- Easy to test by hashing the signatures.
! Multiple levels of Hashing!
- Similar sets are more likely to have the same signature.
- Likely to produce many false negatives.
- Requiring full match of signature is strict, some similar sets will be lost.
- Improvement: Compute multiple signatures; candidate pairs should have at least one common signature.
- Reduce the probability for false negatives.

Signature matrix reminder

Partition into Bands - (1)

- Divide the signature matrix Sig into b bands of r rows.
- Each band is a mini-signature with r hash functions.

Partitioning into bands

$n=b^{*} r$ hash functions

Partition into Bands - (2)

- Divide the signature matrix Sig into b bands of r rows.
- Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
- Make k as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.

Partition into Bands - (3)

- Divide the signature matrix Sig into b bands of r rows.
- Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
- Make k as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.
- Candidate column pairs are those that hash to the same bucket for at least 1 band.
- Tune b and r to catch most similar pairs, but few nonsimilar pairs.

Analysis of LSH - What We Want

True similarity s of two sets

What One Band of One Row Gives You

Similarity s of two sets

What b Bands of r Rows Gives You

Similarity s of two sets

Example: $b=20 ; r=5$

\boldsymbol{s}	$\mathbf{1 - (1 - s r}^{\mathbf{r}} \mathbf{b}^{\mathbf{b}}$
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Figure 3.7: The S-curve

Suppose $\mathrm{S}_{1}, \mathrm{~S}_{2}$ are 80% Similar

- We want all 80%-similar pairs. Choose 20 bands of 5 integers/band.
- Probability $\mathrm{S}_{1}, \mathrm{~S}_{2}$ identical in one particular band:

$$
(0.8)^{5}=0.328
$$

- Probability $\mathrm{S}_{1}, \mathrm{~S}_{2}$ are not similar in any of the 20 bands:

$$
(1-0.328)^{20}=0.00035
$$

- i.e., about $1 / 3000$-th of the 80%-similar column pairs are false negatives.
- Probability S_{1}, S_{2} are similar in at least one of the 20 bands:

$$
1-0.00035=0.999
$$

Suppose $\mathrm{S}_{1}, \mathrm{~S}_{2}$ Only 40\% Similar

- Probability S_{1}, S_{2} identical in any one particular band:

$$
(0.4)^{5}=0.01
$$

- Probability S_{1}, S_{2} identical in at least 1 of 20 bands:

$$
\leq 20^{*} 0.01=0.2
$$

- But false positives much lower for similarities << 40\%.

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.

Locality-sensitive hashing (LSH)

- Big Picture: Construct hash functions $\mathrm{h}: \mathrm{R}^{\mathrm{d}} \rightarrow \mathrm{U}$ such that for any pair of points p, q, for distance function D we have:
- If $\mathrm{D}(\mathrm{p}, \mathrm{q}) \leq \mathrm{r}$, then $\operatorname{Pr}[\mathrm{h}(\mathrm{p})=\mathrm{h}(\mathrm{q})] \geq \alpha$ is high
- If $\mathrm{D}(\mathrm{p}, \mathrm{q}) \geq \mathrm{cr}$, then $\operatorname{Pr}[\mathrm{h}(\mathrm{p})=\mathrm{h}(\mathrm{q})] \leq \beta$ is small
- Then, we can find close pairs by hashing
- LSH is a general framework: for a given distance function D we need to find the right h
- h is ($r, c r, \alpha, \beta$)-sensitive

LSH for Cosine Distance

- For cosine distance, there is a technique analogous to minhashing for generating a $\left(d_{1}, d_{2},\left(1-d_{1} / 180\right),\left(1-d_{2} / 180\right)\right)$ - sensitive family for any d_{1} and d_{2}.
- Called random hyperplanes.

Random Hyperplanes

- Pick a random vector v, which determines a hash function h_{v} with two buckets.
$-h_{v}(x)=+1$ if $v . x>0 ;=-1$ if $v . x<0$.
- LS-family $\mathbf{H}=$ set of all functions derived from any vector.
- Claim:
- $\operatorname{Prob}[h(x)=h(y)]=1-($ angle between x and $y) / 180$

Proof of Claim

 Look in the plane of x and y.For a random vector v the values of the

$h_{v}(x) \neq h_{v}(y)$ when v falls into the shaded area.
What is the probability of this for a randomly chosen vector v?
y

$$
\begin{aligned}
& P\left[h_{v}(x) \neq h_{v}(y)\right]=2 \theta / 360=\theta / 180 \\
& P\left[h_{v}(x)=h_{v}(y)\right]=1-\theta / 180
\end{aligned}
$$

Signatures for Cosine Distance

- Pick some number of vectors, and hash your data for each vector.
- The result is a signature (sketch) of +1 's and 1's that can be used for LSH like the minhash signatures for Jaccard distance.

Simplification

- We need not pick from among all possible vectors v to form a component of a sketch.
- It suffices to consider only vectors v consisting of +1 and -1 components.

