DATA MINING LECTURE 2

Data Preprocessing
Exploratory Analysis
Post-processing

What is Data Mining?

- Data mining is the use of efficient techniques for the analysis of very large collections of data and the extraction of useful and possibly unexpected patterns in data.
- "Data mining is the analysis of (often large) observational data sets to find unsuspected relationships and to summarize the data in novel ways that are both understandable and useful to the data analyst" (Hand, Mannila, Smyth)
- "Data mining is the discovery of models for data" (Rajaraman, Ullman)
- We can have the following types of models
- Models that explain the data (e.g., a single function)
- Models that predict the future data instances.
- Models that summarize the data
- Models the extract the most prominent features of the data.

Why do we need data mining?

- Really huge amounts of complex data generated from multiple sources and interconnected in different ways
- Scientific data from different disciplines
- Weather, astronomy, physics, biological microarrays, genomics
- Huge text collections
- The Web, scientific articles, news, tweets, facebook postings.
- Transaction data
- Retail store records, credit card records
- Behavioral data
- Mobile phone data, query logs, browsing behavior, ad clicks
- Networked data
- The Web, Social Networks, IM networks, email network, biological networks.
- All these types of data can be combined in many ways
- Facebook has a network, text, images, user behavior, ad transactions.
- We need to analyze this data to extract knowledge
- Knowledge can be used for commercial or scientific purposes.
- Our solutions should scale to the size of the data

The data analysis pipeline

- Mining is not the only step in the analysis process

- Preprocessing: real data is noisy, incomplete and inconsistent. Data cleaning is required to make sense of the data
- Techniques: Sampling, Dimensionality Reduction, Feature selection.
- A dirty work, but it is often the most important step for the analysis.
- Post-Processing: Make the data actionable and useful to the user
- Statistical analysis of importance
- Visualization.
- Pre- and Post-processing are often data mining tasks as well

Data Quality

- Examples of data quality problems:
- Noise and outliers
- Missing values
- Duplicate data

A mistake or a millionaire?

```
Missing values
```

Inconsistent duplicate entries

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	NULL
8	No	Sinale	85K	Yes
9	No	Married	90K	No
9	No	Single	90K	No

Sampling

- Sampling is the main technique employed for data selection.
- It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Example: What is the average height of a person in loannina?
- We cannot measure the height of everybody
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.
- Example: We have 1M documents. What fraction has at least 100 words in common?
- Computing number of common words for all pairs requires 10^{12} comparisons
- Example: What fraction of tweets in a year contain the word "Greece"?
- 300M tweets per day, if 100 characters on average, 86.5TB to store all tweets

Sampling ...

- The key principle for effective sampling is the following:
- using a sample will work almost as well as using the entire data sets, if the sample is representative
- A sample is representative if it has approximately the same property (of interest) as the original set of data
- Otherwise we say that the sample introduces some bias
- What happens if we take a sample from the university campus to compute the average height of a person at loannina?

Types of Sampling

- Simple Random Sampling
- There is an equal probability of selecting any particular item
- Sampling without replacement
- As each item is selected, it is removed from the population
- Sampling with replacement
- Objects are not removed from the population as they are selected for the sample.
- In sampling with replacement, the same object can be picked up more than once. This makes analytical computation of probabilities easier
- E.g., we have 100 people, 51 are women $P(W)=0.51$, 49 men $P(M)=0.49$. If I pick two persons what is the probability $P(W, W)$ that both are women?
- Sampling with replacement: $P(W, W)=0.51^{2}$
- Sampling without replacement: $\mathrm{P}(\mathrm{W}, \mathrm{W})=51 / 100$ * 50/99

Types of Sampling

- Stratified sampling
- Split the data into several groups; then draw random samples from each group.
- Ensures that both groups are represented.
- Example 1. I want to understand the differences between legitimate and fraudulent credit card transactions. 0.1% of transactions are fraudulent. What happens if I select 1000 transactions at random?
- I get 1 fraudulent transaction (in expectation). Not enough to draw any conclusions. Solution: sample 1000 legitimate and 1000 fraudulent transactions
Probability Reminder: If an event has probability p of happening and I do N trials, the expected number of times the event occurs is pN
- Example 2. I want to answer the question: Do web pages that are linked have on average more words in common than those that are not? I have 1 M pages, and 1 M links, what happens if I select 10 K pairs of pages at random?
- Most likely I will not get any links. Solution: sample 10K random pairs, and 10K links

Sample Size

8000 points

2000 Points

Sample Size

What sample size is necessary to get at least one object from each of $\mathbf{1 0}$ groups.

A data mining challenge

- You have N integers and you want to sample one integer uniformly at random. How do you do that?
- The integers are coming in a stream: you do not know the size of the stream in advance, and there is not enough memory to store the stream in memory. You can only keep a constant amount of integers in memory
- How do you sample?
- Hint: if the stream ends after reading n integers the last integer in the stream should have probability $1 / n$ to be selected.
- Reservoir Sampling:
- Standard interview question for many companies

Reservoir sampling

- Algorithm: With probability $1 / n$ select the n-th item of the stream and replace the previous choice.
- Claim: Every item has probability $1 / \mathrm{N}$ to be selected after N items have been read.
- Proof
-What is the probability of the n-the item to be selected?
- $\frac{1}{n}$
- What is the probability of the n-th item to survive for N -n rounds?

$$
\text { - }\left(1-\frac{1}{n+1}\right)\left(1-\frac{1}{n+2}\right) \cdots\left(1-\frac{1}{N}\right)
$$

A (detailed) data preprocessing example

- Suppose we want to mine the comments/reviews of people on Yelp and Foursquare.

Data Collection

- Today there is an abundance of data online
- Facebook, Twitter, Wikipedia, Web, City data etc...
- We can extract interesting information from this data, but first we need to collect it
- Customized crawlers, use of public APIs
- Additional cleaning/processing to parse out the useful parts
- JSON is the typical format these days
- Respect of crawling etiquette

Mining Task

- Collect all reviews for the top-10 most reviewed restaurants in NY in Yelp
- (thanks to Hady Law)
- Find few terms that best describe the restaurants.
-Algorithm?

Example data

I heard so many good things about this place so I was pretty juiced to try it. I'm from Cali and I heard Shake Shack is comparable to IN-N-OUT and I gotta say, Shake Shake wins hands down. Surprisingly, the line was short and we waited about 10 MIN. to order. I ordered a regular cheeseburger, fries and a black/white shake. So yummerz. I love the location too! It's in the middle of the city and the view is breathtaking. Definitely one of my favorite places to eat in NYC.

I'm from California and I must say, Shake Shack is better than IN-N-OUT, all day, err'day.

Would I pay $\$ 15+$ for a burger here? No. But for the price point they are asking for, this is a definite bang for your buck (though for some, the opportunity cost of waiting in line might outweigh the cost savings) Thankfully, I came in before the lunch swarm descended and I ordered a shake shack (the special burger with the patty + fried cheese \& portabella topping) and a coffee milk shake. The beef patty was very juicy and snugly packed within a soft potato roll. On the downside, I could do without the fried portabella-thingy, as the crispy taste conflicted with the juicy, tender burger. How does shake shack compare with in-and-out or 5 -guys? I say a very close tie, and I think it comes down to personal affliations. On the shake side, true to its name, the shake was well churned and very thick and luscious. The coffee flavor added a tangy taste and complemented the vanilla shake well. Situated in an open space in NYC, the open air sitting allows you to munch on your burger while watching people zoom by around the city. It's an oddly calming experience, or perhaps it was the food coma I was slowly falling into. Great place with food at a great price.

First cut

- Do simple processing to "normalize" the data (remove punctuation, make into lower case, clear white spaces, other?)
- Break into words, keep the most popular words

the 27514	the 16710	the 16010	the 14241
and 14508	and 9139	and 9504	and 8237
i 13088	a 8583	i 7966	a 8182
a 12152	i 8415	to 6524	i 7001
to 10672	to 7003	a 6370	to 6727
of 8702	in 5363	it 5169	of 4874
ramen 8518	it 4606	of 5159	you 4515
was 8274	of 4365	is 4519	it 4308
is 6835	is 4340	sauce 4020	is 4016
it 6802	burger 432	in 3951	was 3791
in 6402	was 4070	this 3519	pastrami 3748
for 6145	for 3441	was 3453	in 3508
but 5254	but 3284	for 3327	for 3424
that 4540	shack 3278	you 3220	sandwich 2928
you 4366	shake 3172	that 2769	that 2728
with 4181	that 3005	but 2590	but 2715
pork 4115	you 2985	food 2497	on 2247
my 3841	my 2514	on 2350	this 2099
this 3487	line 2389	my 2311	my 2064
wait 3184	this 2242	cart 2236	with 2040
not 3016	fries 2240	chicken 2220	not 1655
we 2984	on 204	with 2195	your 1622
at 2980	are 2142	rice 2049	so 1610
on 2922	with 2095	so 1825	have 1585

First cut

- Do simple processing to "normalize" the data (remove punctuation, make into lower case, clear white spaces, other?)
- Break into words, keep the most popular words

```
the 27514
and 14508
i 13088
a 12152
to 10672
of }870
ramen }851
was }827
is 6835
it 6802
in 6402
for 6145
but 5254
that 4540
you 4366
with 4181
pork 4115
my 3841
this 3487
wait 3184
not }301
we 2984
at 2980
on 2922
the 16710
and 9139
a 8583
i 8415
to 7003
in 5363
it 4606
of 4365
is 4340
burger 432
was 4070
for 3441
but 3284
shack 3278
shake 3172
that 3005
you 2985
my 2514
line 2389
this 2242
fries 2240
on 2204
are 2142
with 2095
```

```
the 16010
and 9504
i 7966
to 6524
a 6370
it 5169
of 5159
is 4519
sauce 4020
in 3951
this 3519
was 3453
for }332
you 3220
that 2769
but 2590
food 2.497
```

```
the 14241
and }823
a }818
i 7001
to 6727
of 4874
you 4515
it 4308
is 4016
was }379
pastrami 3748
in 3508
for 3424
sandwich }292
that 2728
but }271
on 2247
```

Most frequent words are stop words

```
cart 2236
chicken }222
with 2195
rice 2049
so 1825
```

not 1655
your 1622
so 1610
have 1585

Second cut

- Remove stop words

- Stop-word lists can be found online.
a, about, above, after, again, against, all, am, an, and, any, are, aren't, as, at, be, be cause, been, before, being, below, between, both, but, by, can't, cannot, could, could n't,did, didn't,do,does, doesn't,doing, don't,down, during,each,few, for, from, f urther, had, hadn't,has,hasn't,have, haven't,having, he, he'd,he'll,he's, her, he re,here's,hers,herself,him,himself,his,how,how's,i,i'd,i'll,i'm,i've,if,in , into,is,isn't,it,it's,its,itself,let's,me,more,most,mustn't,my,myself,no, nor, not, of, off, on, once, only, or, other, ought, our, ours, ourselves, out, over, own , same, shan't, she, she'd,she'll,she's,should, shouldn't, so, some, such, than, tha t,that's,the, their, theirs, them, themselves, then, there, there's, these, they, th ey'd,they'll, they're, they've, this, those, through, to, too, under, until, up, very , was, wasn't,we,we'd,we'll,we're,we've, were, weren't, what, what's, when, when's , where, where's,which, while, who, who's,whom,why,why's,with, won't,would, would n't,you, you'd, you'll, you're, you've, your, yours, yourself, yourselves,

Second cut

- Remove stop words

- Stop-word lists can be found online.

```
ramen 8572
pork 4152
wait 3195
good 2867
place 2361
noodles 2279
ippudo 2261
buns 2251
broth 2041
like 1902
just 1896
get 1641
time 1613
one 1460
really 1437
go 1366
food 1296
bowl }127
can 1256
great 1172
best 1167
```

```
burger 4340
```

burger 4340
shack }329
shack }329
shake 3221
shake 3221
line 2397
line 2397
fries 2260
fries 2260
good 1920
good 1920
burgers 1643
burgers 1643
wait 1508
wait 1508
just 1412
just 1412
cheese 1307
cheese 1307
like 1204
like 1204
food 1175
food 1175
get }116
get }116
place 1159
place 1159
one 1118
one 1118
long 1013
long 1013
go 995
go 995
time 951
time 951
park 887
park 887
can 860
can 860
best }84

```
best }84
```

```
sauce 4023
food 2507
cart 2239
chicken 2238
rice 2052
hot 1835
white 1782
line 1755
good 1629
lamb 1422
halal 1343
just 1338
get }133
one 1222
like 1096
place 1052
go 965
can }87
night }83
time }79
long 792
people 790
```

```
pastrami 3782
sandwich 2934
place 1480
good 1341
get 1251
katz's 1223
just 1214
like 1207
meat }116
one 1071
deli 984
best 965
go 961
ticket 955
food 896
sandwiches }81
can }81
beef }76
order }72
pickles }69
time 662
```


Second cut

- Remove stop words

- Stop-word lists can be found online.

```
ramen 8572
pork 4152
wait 3195
good 2867
place 2361
noodles 2279
ippudo 2261
buns 2251
broth 2041
like 1902
just 1896
get 1641
time 1613
one 1460
really 1437
go 1366
food 1296
bowl }127
can 1256
great }117
best 1167
```

```
burger 4340
```

burger 4340
shack }329
shack }329
shake 3221
shake 3221
line 2397
line 2397
fries 2260
fries 2260
good 1920
good 1920
burgers 1643
burgers 1643
wait 1508
wait 1508
just 1412
just 1412
cheese 1307
cheese 1307
like 1204
like 1204
food 1175
food 1175
get }116
get }116
Commonly used words in reviews, not so interesting

```
```

Lully \perp U $~$	p 1 ace \perp UJく
go 995	go 965
time 951	can 878
park 887	night 832
can 860	time 794
best 849	long 792
	people 790

```
```

sauce 4023
food 2507
cart 2239
chicken 2238
rice 2052
hot 1835
white 1782
line 1755
good 1629
lamb }142
halal 1343
just 1338
get }133

```
```

pastrami 3782

```
pastrami 3782
sandwich 2934
sandwich 2934
place 1480
place 1480
good 1341
good 1341
get 1251
get 1251
katz's 1223
katz's 1223
just 1214
just 1214
like 1207
like 1207
meat }116
meat }116
one 1071
one 1071
deli 984
deli 984
best 965
best 965
00 961
```

00 961

```
```

awlches 81s

```
awlches 81s
can }81
can }81
beef }76
beef }76
order }72
order }72
pickles }69
pickles }69
time 662
```

time 662

```

\section*{IDF}
- Important words are the ones that are unique to the document (differentiating) compared to the rest of the collection
- All reviews use the word "like". This is not interesting
- We want the words that characterize the specific restaurant
- Document Frequency \(D F(w)\) : fraction of documents that contain word \(w\).
\[
\begin{array}{ll}
D F(w)=\frac{D(w)}{D} & \begin{array}{l}
D(w): \text { num of docs that contain word } w \\
D: \text { total number of documents }
\end{array}
\end{array}
\]
- Inverse Document Frequency IDF (w):
\[
\operatorname{IDF}(w)=\log \left(\frac{1}{D F(w)}\right)
\]
- Maximum when unique to one document : \(\operatorname{IDF}(w)=\log (D)\)
- Minimum when the word is common to all documents: \(\operatorname{IDF}(w)=0\)

\section*{TF-IDF}
- The words that are best for describing a document are the ones that are important for the document, but also unique to the document.
- TF (w,d): term frequency of word w in document d
- Number of times that the word appears in the document
- Natural measure of importance of the word for the document
- IDF(w): inverse document frequency
- Natural measure of the uniqueness of the word w
- \(\operatorname{TF}-\operatorname{IDF}(\mathrm{w}, \mathrm{d})=\operatorname{TF}(\mathrm{w}, \mathrm{d}) \times \operatorname{IDF}(\mathrm{w})\)

\section*{Third cut}

\section*{- Ordered by TF-IDF}
ramen 3057.4176194 akamaru 2353.24196 noodles 1579.68242 broth 1414.7133955 miso 1252.60629058 hirata 709.1962086 hakata 591.7643688 shiromaru 587.1591 noodle 581.8446147 tonkotsu 529.59457 ippudo 504.5275695 buns 502.296134008 ippudo's 453.60926 modern 394.8391629 egg 367.3680056967 shoyu 352.29551922 chashu 347.6903490 karaka 336.1774235 kakuni 276.3102111 ramens 262.4947006 bun 236.5122638036 wasabi 232.3667512 dama 221.048168927 brulee 201.1797390
fries 806.08537330 lamb 985.655290756243 custard 729.607519 halal 686.038812717726 shakes 628.4738038 shroom 515.7790608 burger 457.2646379 crinkle 398.347221 burgers 366.624854 madison 350.939350 shackburger 292.42 'shroom 287.823136 portobello 239.806 custards 211.83782 concrete 195.16992 bun 186.9621782983 milkshakes 174.996 concretes 165.7861 portabello 163.483 shack's 159.334353 patty 152.22603588 ss 149.66803104461 patties 148.068287 cam 105.9496067806 milkshake 103.9720 lamps 99.011158998

53rd 375.685771863491 gyro 305.809092298788 pita 304.984759446376 cart 235.902194557873 platter 139.45990308004 chicken/lamb 135.852520 carts 120.274374158359 hilton 84.2987473324223 lamb/chicken 82.8930633 yogurt 70.0078652365545 52nd 67.5963923222322
6th 60.79301753456589 4 am 55.45177444479565 yellow 54.4470265206673 tzatziki 52.95945713886 lettuce 51.323016802268 sammy's 50.656872045869 sw 50.56685778168933 platters 49.90659700031 falafel 49.479699521204 sober 49.2211422635451 moma 48.1589121730374
pastrami 1931.942509082986 katz's 1120.62356508209 4 rye \(1004.28925735888 \quad 2\) corned 906.1135447003992 pickles 640.487221580035 4 reuben 515.7790608306661 matzo 430.5834123898871 sally 428.1104847074712 harry 226.3238107729164 mustard 216.0792388530146 cutter \(209.535243462458 \quad 1\) carnegie 198.655512713779 3 katz 194.3878444466097 knish 184.206807439524 1 sandwiches 181.4157072188 brisket 131.9458653898784 fries 131.6130543133927 salami 127.621117258549 3 knishes 124.339595021678 1 delicatessen 117.4889676072 deli's 117.431839742696 1 carver 115.129254649702 1 brown's 109.441778045519 2 matzoh 108.22149937072 1

\section*{Third cut}
- TF-IDF takes care of stop words as well
- We do not need to remove the stopwords since they will get IDF(w) \(=0\)

\section*{Decisions, decisions...}
- When mining real data you often need to make some decisions
- What data should we collect? How much? For how long?
- Should we throw out some data that does not seem to be useful?
- Too frequent data (stop words), too infrequent (errors?), erroneous data, missing data, outliers
- How should we weight the different pieces of data?
- Most decisions are application dependent. Some information may be lost but we can usually live with it (most of the times)
- We should make our decisions clear since they affect our findings.
- Dealing with real data is hard...

\section*{Exploratory analysis of data}
- Summary statistics: numbers that summarize properties of the data
- Summarized properties include frequency, location and spread
- Examples: location - mean
spread - standard deviation
- Most summary statistics can be calculated in a single pass through the data

\section*{Frequency and Mode}
- The frequency of an attribute value is the percentage of time the value occurs in the data set
- For example, given the attribute 'gender' and a representative population of people, the gender 'female' occurs about \(50 \%\) of the time.
- The mode of a an attribute is the most frequent attribute value
- The notions of frequency and mode are typically used with categorical data

\section*{Percentiles}
- For continuous data, the notion of a percentile is more useful.

Given an ordinal or continuous attribute \(x\) and a number \(p\) between 0 and 100 , the \(p^{\text {th }}\) percentile is a value \(x_{p}\) of \(x\) such that \(p \%\) of the observed values of x are less than \(x_{p}\).
- For instance, the 80th percentile is the value \(x_{80 \%}\) that is greater than \(80 \%\) of all the values of \(x\) we have in our data.

\section*{Measures of Location: Mean and Median}
- The mean is the most common measure of the location of a set of points.
- However, the mean is very sensitive to outliers.
\[
\operatorname{mean}(x)=\bar{x}=\frac{1}{m} \sum_{i=1}^{m} x_{i}
\]
\[
\operatorname{median}(x)= \begin{cases}x_{(r+1)} & \text { if } m \text { is odd, i.e., } m=2 r+1 \\ \frac{1}{2}\left(x_{(r)}+x_{(r+1)}\right) & \text { if } m \text { is even, i.e., } m=2 r\end{cases}
\]
- Thus, the median or a trimmed mean is also commonly used.

\section*{Example}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Tid & Refund & \begin{tabular}{l} 
Marital \\
Status
\end{tabular} & \begin{tabular}{l} 
Taxable \\
Income
\end{tabular} & Cheat
\end{tabular}

\section*{Measures of Spread: Range and Variance}
- Range is the difference between the max and min

The variance or standard deviation is the most common measure of the spread of a set of points.
\[
\begin{gathered}
\operatorname{var}(x)=\frac{1}{m} \sum_{i=1}^{m}(x-\bar{x})^{2} \\
\sigma(x)=\sqrt{\operatorname{var}(x)}
\end{gathered}
\]

\section*{Normal Distribution}
- \(\phi(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}\)

- An important distribution that characterizes many quantities and has a central role in probabilities and statistics.
- Appears also in the central limit theorem
- Fully characterized by the mean \(\mu\) and standard deviation \(\sigma\)

\section*{Not everything is normally distributed}
- Plot of number of words with \(x\) number of occurrences

- If this was a normal distribution we would not have a frequency as large as 28 K

\section*{Power-law distribution}
- We can understand the distribution of words if we take the log-log plot

- Linear relationship in the log-log space
\[
p(x=k)=k^{-a}
\]

\section*{Zipf's law}
- Power laws can be detected also by a linear relationship in the log-log space for the rank-frequency plot

- \(f(r)\) : Frequency of the \(r\)-th most frequent word
\[
f(r)=r^{-\beta}
\]

\section*{Power-laws are everywhere}
- Incoming and outgoing links of web pages, number of friends in social networks, number of occurrences of words, file sizes, city sizes, income distribution, popularity of products and movies
- Signature of human activity?
- A mechanism that explains everything?
- Rich get richer process


\section*{The Long Tail}


\section*{Post-processing}
- Visualization
- The human eye is a powerful analytical tool
- If we visualize the data properly, we can discover patterns
- Visualization is the way to present the data so that patterns can be seen
- E.g., histograms and plots are a form of visualization
- There are multiple techniques (a field on its own)

\section*{Scatter Plot Array of Iris Attributes}


What do you see in these plots?
Class Separation

\section*{Contour Plot Example: SST Dec, 1998}


Celsius

\section*{Meaningfulness of Answers}
- A big data-mining risk is that you will "discover" patterns that are meaningless.
- Statisticians call it Bonferroni's principle: (roughly) if you look in more places for interesting patterns than your amount of data will support, you are bound to find crap.
- The Rhine Paradox: a great example of how not to conduct scientific research.

\section*{Rhine Paradox - (1)}
- Joseph Rhine was a parapsychologist in the 1950's who hypothesized that some people had Extra-Sensory Perception.
- He devised (something like) an experiment where subjects were asked to guess 10 hidden cards red or blue.
- He discovered that almost 1 in 1000 had ESP they were able to get all 10 right!

\section*{Rhine Paradox - (2)}
- He told these people they had ESP and called them in for another test of the same type.
- Alas, he discovered that almost all of them had lost their ESP.
- Why?
-What did he conclude?
- Answer on next slide.

\section*{Rhine Paradox - (3)}
- He concluded that you shouldn't tell people they have ESP; it causes them to lose it.```

