DATA MINING LECTURE 13

Absorbing Random walks

Coverage

Random Walks on Graphs

- Random walk:
- Start from a node chosen uniformly at random with probability $\frac{1}{n}$.
- Pick one of the outgoing edges uniformly at random
- Move to the destination of the edge
- Repeat.

Random walk

- Question: what is the probability p_{i}^{t} of being at node i after t steps?
$p_{1}^{0}=\frac{1}{5}$
$p_{1}^{t}=\frac{1}{3} p_{4}^{t-1}+\frac{1}{2} p_{5}^{t-1}$
$p_{2}^{0}=\frac{1}{5}$
$p_{2}^{t}=\frac{1}{2} p_{1}^{t-1}+p_{3}^{t-1}+\frac{1}{3} p_{4}^{t-1}$
$p_{3}^{0}=\frac{1}{5}$
$p_{3}^{t}=\frac{1}{2} p_{1}^{t-1}+\frac{1}{3} p_{4}^{t-1}$
$p_{4}^{0}=\frac{1}{5}$
$p_{4}^{t}=\frac{1}{2} p_{5}^{t-1}$

$p_{5}^{0}=\frac{1}{5}$
$p_{5}^{t}=p_{2}^{t-1}$

Stationary distribution

- After many many steps ($t \rightarrow \infty$) the probabilities converge (updating the probabilities does not change the numbers)
- The converged probabilities define the stationary distribution of a random walk π
- The probability π_{i} is the fraction of times that we visited state i as $t \rightarrow \infty$
- Markov Chain Theory: The random walk converges to a unique stationary distribution independent of the initial vector if the graph is strongly connected, and not bipartite.

Random walk with Restarts

- This is the random walk used by the PageRank algorithm
- At every step with probability 1-a do a step of the random walk (follow a random link)
- With probability a restart the random walk from a randomly selected node.
- The effect of the restart is that paths followed are never too long.
- In expectation paths have length $1 / \alpha$
- Restarts can also be from a specific node in the graph (always start the random walk from there)
-What is the effect of that?
- The nodes that are close to the starting node have higher probability to be visited.

ABSORBING RANDOM WALKS

Random walk with absorbing nodes

- What happens if we do a random walk on this graph? What is the stationary distribution?

- All the probability mass on the red sink node:
- The red node is an absorbing node

Random walk with absorbing nodes

-What happens if we do a random walk on this graph? What is the stationary distribution?

- There are two absorbing nodes: the red and the blue.
- The probability mass will be divided between the two

Absorption probability

- If there are more than one absorbing nodes in the graph a random walk that starts from a nonabsorbing node will be absorbed in one of them with some probability
- The probability of absorption gives an estimate of how close the node is to red or blue

Absorption probability

- Computing the probability of being absorbed:
- The absorbing nodes have probability 1 of being absorbed in themselves and zero of being absorbed in another node.
- For the non-absorbing nodes, take the (weighted) average of the absorption probabilities of your neighbors
- if one of the neighbors is the absorbing node, it has probability 1
- Repeat until convergence (= very small change in probs)

$$
\begin{aligned}
& P(\text { Red } \mid \text { Pink })=\frac{2}{3} P(\text { Red } \mid \text { Yellow })+\frac{1}{3} P(\text { Red } \mid \text { Green }) \\
& P(\text { Red } \mid \text { Green })=\frac{1}{4} P(\text { Red } \mid \text { Yellow })+\frac{1}{4} \\
& P(\text { Red } \mid \text { Yellow })=\frac{2}{3}
\end{aligned}
$$

Absorption probability

- Computing the probability of being absorbed:
- The absorbing nodes have probability 1 of being absorbed in themselves and zero of being absorbed in another node.
- For the non-absorbing nodes, take the (weighted) average of the absorption probabilities of your neighbors
- if one of the neighbors is the absorbing node, it has probability 1
- Repeat until convergence (= very small change in probs)
$P($ Blue \mid Pink $)=\frac{2}{3} P($ Blue \mid Yellow $)+\frac{1}{3} P($ Blue \mid Green $)$
$P($ Blue \mid Green $)=\frac{1}{4} P($ Blue \mid Yellow $)+\frac{1}{2}$
$P($ Blue \mid Yellow $)=\frac{1}{3}$

Why do we care?

- Why do we care to compute the absorption probability to sink nodes?
- Given a graph (directed or undirected) we can choose to make some nodes absorbing.
- Simply direct all edges incident on the chosen nodes towards them and remove outgoing edges.
- The absorbing random walk provides a measure of proximity of non-absorbing nodes to the chosen nodes.
- Useful for understanding proximity in graphs
- Useful for propagation in the graph
- E.g, some nodes have positive opinions for an issue, some have negative, to which opinion is a non-absorbing node closer?

Example

- In this undirected graph we want to learn the proximity of nodes to the red and blue nodes

Example

- Make the nodes absorbing

Absorption probability

- Compute the absorbtion probabilities for red and blue

$$
\begin{aligned}
& P(\text { Red } \mid \text { Pink })=\frac{2}{3} P(\text { Red } \mid \text { Yellow })+\frac{1}{3} P(\text { Red } \mid \text { Green }) \\
& P(\text { Red } \mid \text { Green })=\frac{1}{5} P(\text { Red } \mid \text { Yellow })+\frac{1}{5} P(\text { Red } \mid \text { Pink })+\frac{1}{5} \\
& P(\text { Red } \mid \text { Yellow })=\frac{1}{6} P(\text { Red } \mid \text { Green })+\frac{1}{3} P(\text { Red } \mid \text { Pink })+\frac{1}{3} \\
& P(\text { Blue } \mid \text { Pink })=1-P(\text { Red } \mid \text { Pink }) \\
& P(\text { Blue } \mid \text { Green })=1-P(\text { Red } \mid \text { Green }) \\
& P(\text { Blue } \mid \text { Yellow })=1-P(\text { Red } \mid \text { Yellow })
\end{aligned}
$$

Penalizing long paths

- The orange node has the same probability of reaching red and blue as the yellow one

Penalizing long paths

- Add an universal absorbing node to which each node gets absorbed with probability α.

With probability α the random walk dies
With probability ($1-\alpha$) the random walk continues as before

The longer the path from a node to an absorbing node the more likely the random walk dies along the way, the lower the absorbtion probability

$\begin{aligned} & \text { e.g. } \\ & P(\text { Red } \mid \text { Green })\end{aligned}=(1-\alpha)\left(\frac{1}{5} P(\right.$ Red \mid Yellow $)+\frac{1}{5} P($ Red \mid Pink $\left.)+\frac{1}{5}\right)$

Random walk with restarts

- Adding a jump with probability a to a universal absorbing node seems similar to Pagerank
- Random walk with restart:
- Start a random walk from node u
- At every step with probability a, jump back to u
- The probability of being at node v after large number of steps defines again a similarity between u, v
- The Random Walk With Restarts (RWS) and Absorbing Random Walk (ARW) are similar but not the same
- RWS computes the probability of paths from the starting node u to a node v, while AWR the probability of paths from a node v, to the absorbing node u.
- RWS defines a distribution over all nodes, while AWR defines a probability for each node
- An absorbing node blocks the random walk, while restarts simply bias towards starting nodes
- Makes a difference when having multiple (and possibly competing) absorbing nodes

Propagating values

- Assume that Red has a positive value and Blue a negative value
- Positive/Negative class, Positive/Negative opinion
- We can compute a value for all the other nodes by repeatedly averaging the values of the neighbors
- The value of node u is the expected value at the point of absorption for a random walk that starts from u

$$
\begin{aligned}
& V(\text { Pink })=\frac{2}{3} V(\text { Yellow })+\frac{1}{3} V(\text { Green }) \\
& V(\text { Green })=\frac{1}{5} V(\text { Yellow })+\frac{1}{5} V(\text { Pink })+\frac{1}{5}-\frac{2}{5} \\
& V(\text { Yellow })=\frac{1}{6} V(\text { Green })+\frac{1}{3} V(\text { Pink })+\frac{1}{3}-\frac{1}{6}
\end{aligned}
$$

Electrical networks and random walks

- Our graph corresponds to an electrical network
- There is a positive voltage of +1 at the Red node, and a negative voltage -1 at the Blue node
- There are resistances on the edges inversely proportional to the weights (or conductance proportional to the weights)
- The computed values are the voltages at the nodes

$$
\begin{aligned}
& V(\text { Pink })=\frac{2}{3} V(\text { Yellow })+\frac{1}{3} V(\text { Green }) \\
& V(\text { Green })=\frac{1}{5} V(\text { Yellow })+\frac{1}{5} V(\text { Pink })+\frac{1}{5}-\frac{2}{5} \\
& V(\text { Yellow })=\frac{1}{6} V(\text { Green })+\frac{1}{3} V(\text { Pink })+\frac{1}{3}-\frac{1}{6}
\end{aligned}
$$

Opinion formation

- The value propagation can be used as a model of opinion formation.
- Model:
- Opinions are values in [-1,1]
- Every user u has an internal opinion s_{u}, and expressed opinion z_{u}.
- The expressed opinion minimizes the personal cost of user u :

$$
c\left(z_{u}\right)=\left(s_{u}-z_{u}\right)^{2}+\sum_{v: v \text { is a friend of } u} w_{u}\left(z_{u}-z_{v}\right)^{2}
$$

- Minimize deviation from your beliefs and conflicts with the society
- If every user tries independently (selfishly) to minimize their personal cost then the best thing to do is to set z_{u} to the average of all opinions:

$$
z_{u}=\frac{s_{u}+\sum_{v: v} \text { is a friend of } u w_{u} z_{u}}{1+\sum_{v: v \text { is a friend of } u} w_{u}}
$$

This is the same as the value propagation we described before!

Example

- Social network with internal opinions

Example

One absorbing node per user with value the internal opinion of the user

One non-absorbing node per user that links to the corresponding absorbing node

The external opinion for each node is computed using the value propagation we described before

- Repeated averaging

Intuitive model: my opinion is a combination of what I believe and
 what my social network believes.

Hitting time

- A related quantity: Hitting time $\mathrm{H}(\mathrm{u}, \mathrm{v})$
- The expected number of steps for a random walk starting from node u to end up in v for the first time
- Make node v absorbing and compute the expected number of steps to reach v
- Assumes that the graph is strongly connected, and there are no other absorbing nodes.
- Commute time $\mathrm{H}(\mathrm{u}, \mathrm{v})+\mathrm{H}(\mathrm{v}, \mathrm{u})$: often used as a distance metric
- Proportional to the total resistance between nodes u, and v

Transductive learning

- If we have a graph of relationships and some labels on some nodes we can propagate them to the remaining nodes
- Make the labeled nodes to be absorbing and compute the probability for the rest of the graph
- E.g., a social network where some people are tagged as spammers
- E.g., the movie-actor graph where some movies are tagged as action or comedy.
- This is a form of semi-supervised learning
- We make use of the unlabeled data, and the relationships
- It is also called transductive learning because it does not produce a model, but just labels the unlabeled data that is at hand.
- Contrast to inductive learning that learns a model and can label any new example

Implementation details

- Implementation is in many ways similar to the PageRank implementation
- For an edge (u, v) instead of updating the value of v we update the value of u.
- The value of a node is the average of its neighbors
- We need to check for the case that a node u is absorbing, in which case the value of the node is not updated.
- Repeat the updates until the change in values is very small.

COVERAGE

Example

- Promotion campaign on a social network
- We have a social network as a graph.
- People are more likely to buy a product if they have a friend who has the product.
- We want to offer the product for free to some people such that every person in the graph is covered: they have a friend who has the product.
- We want the number of free products to be as small as possible

Example

- Promotion campaign on a social network
- We have a social network as a graph.
- People are more likely to buy a product if they have a friend who has the product.
- We want to offer the product for free to some people such that every person in the graph is covered: they have a friend who has the product.
- We want the number of free products to be as small as possible

Example

- Promotion campaign on a social network
- We have a social network as a graph.
- People are more likely to buy a product if they have a friend who has the product.
- We want to offer the product for free to some people such that every person in the graph is covered: they have a friend who has the product.
- We want the number of free products to be as small as possible

Dominating set

- Our problem is an instance of the dominating set problem
- Dominating Set: Given a graph $G=(V, E)$, a set of vertices $D \subseteq V$ is a dominating set if for each node u in V, either u is in D, or u has a neighbor in D.
- The Dominating Set Problem: Given a graph $G=(V, E)$ find a dominating set of minimum size.

Set Cover

- The dominating set problem is a special case of the Set Cover problem
- The Set Cover problem:
- We have a universe of elements $U=\left\{x_{1}, \ldots, x_{N}\right\}$
- We have a collection of subsets of $U, S=\left\{S_{1}, \ldots, S_{n}\right\}$, such that $\cup_{i} S_{i}=U$
- We want to find the smallest sub-collection $C \subseteq S$ of S, such that $\cup_{S_{i} \in C} S_{i}=U$
- The sets in C cover the elements of U

Applications

- Suppose that we want to create a catalog (with coupons) to give to customers of a store:
- We want for every customer, the catalog to contain a product bought by the customer (this is a small store)
- How can we model this as a set cover problem?

Applications

- The universe U of elements is the set of customers of a store.
- Each set corresponds to a product p sold in the store: $S_{p}=\{$ customers that bought $p\}$
- Set cover: Find the minimum number of products (sets) that cover all the customers (elements of the universe)

Applications

- The universe U of elements is the set of customers of a store.
- Each set corresponds to a product p sold in the store: $S_{p}=\{$ customers that bought $p\}$
- Set cover: Find the minimum number of products (sets) that cover all the customers (elements of the universe)

Applications

- The universe U of elements is the set of customers of a store.
- Each set corresponds to a product p sold in the store: $S_{p}=\{$ customers that bought $p\}$
- Set cover: Find the minimum number of products (sets) that cover all the customers (elements of the universe)

Applications

- Dominating Set (or Promotion Campaign) as Set Cover:
- The universe U is the set of nodes V
- Each node u defines a set S_{u} consisting of the node u and all of its neighbors
- We want the minimum number of sets S_{u} (nodes) that cover all the nodes in the graph.
- Many more...

Best selection variant

- Suppose that we have a budget K of how big our set cover can be
- We only have K products to give out for free.
- We want to cover as many customers as possible.
- Maximum-Coverage Problem: Given a universe of elements U, a collection of S of subsets of U, and a budget K, find a sub-collection $C \subseteq S$ of size K, such that the number of covered elements $\cup_{S_{i} \in C} S_{i}$ is maximized.

Complexity

- Both the Set Cover and the Maximum Coverage problems are NP-complete
- What does this mean?
-Why do we care?
- There is no algorithm that can guarantee to find the best solution in polynomial time
- Can we find an algorithm that can guarantee to find a solution that is close to the optimal?
- Approximation Algorithms.

Approximation Algorithms

- For an (combinatorial) optimization problem, where:
- X is an instance of the problem,
- $\operatorname{OPT}(X)$ is the value of the optimal solution for X,
- $A L G(X)$ is the value of the solution of an algorithm ALG for X

ALG is a good approximation algorithm if the ratio of $O P T(X)$ and $A L G(X)$ is bounded for all input instances X

- Minimum set cover: $X=G$ is the input graph, OPT(G) is the size of minimum set cover, $A L G(G)$ is the size of the set cover found by an algorithm ALG.
- Maximum coverage: $X=(G, k)$ is the input instance, OPT (G, k) is the coverage of the optimal algorithm, $\operatorname{ALG}(\mathrm{G}, \mathrm{k})$ is the coverage of the set found by an algorithm ALG.

Approximation Algorithms

- For a minimization problem, the algorithm ALG is an α-approximation algorithm, for $\alpha>1$, if for all input instances X ,

$$
A L G(X) \leq \alpha O P T(X)
$$

- α is the approximation ratio of the algorithm - we want α to be as close to 1 as possible
- Best case: $\alpha=1+\epsilon$ and $\epsilon \rightarrow 0$, as $n \rightarrow \infty$ (e.g., $\epsilon=\frac{1}{n}$)
- Good case: $\alpha=O(1)$ is a constant
- OK case: $\alpha=0(\log n)$
- Bad case $\alpha=0\left(n^{\epsilon}\right)$

Approximation Algorithms

- For a maximization problem, the algorithm ALG is an α-approximation algorithm, for $\alpha<1$, if for all input instances X ,

$$
\operatorname{ALG}(X) \geq \alpha O P T(X)
$$

- α is the approximation ratio of the algorithm - we want α to be as close to 1 as possible
- Best case: $\alpha=1-\epsilon$ and $\epsilon \rightarrow 0$, as $n \rightarrow \infty$ (e.g., $\epsilon=\frac{1}{n}$)
- Good case: $\alpha=O(1)$ is a constant
- OK case: $\alpha=O\left(\frac{1}{\log n}\right)$
- Bad case $\alpha=0\left(n^{-\epsilon}\right)$

A simple approximation ratio for set cover

- Any algorithm for set cover has approximation ratio $\alpha=\left|S_{\text {max }}\right|$, where $S_{\text {max }}$ is the set in S with the largest cardinality
- Proof:
- OPT(X) $\geq \mathrm{N}\left|\mathrm{S}_{\text {max }}\right| \Rightarrow \mathrm{N} \leq\left|\mathrm{S}_{\text {max }}\right|$ OPT(X)
- $\operatorname{ALG}(\mathrm{X}) \leq \mathrm{N} \leq\left|\mathrm{S}_{\text {max }}\right|$ OPT (X)
- This is true for any algorithm.
- Not a good bound since it can be that $\left|\mathrm{S}_{\text {max }}\right|=\mathrm{O}(\mathrm{N})$

An algorithm for Set Cover

-What is the most natural algorithm for Set Cover?

- Greedy: each time add to the collection C the set S_{i} from S that covers the most of the remaining elements.

The GREEDY algorithm

GREEDY(U,S)

$X=U$
$C=\{ \}$
while X is not empty do
For all $S_{i} \in S$ let gain $\left(S_{i}\right)=\left|S_{i} \cap X\right|$
Let S_{*} be such that $\operatorname{gain}\left(S_{*}\right)$ is maximum $C=C \cup\left\{S_{*}\right\}$
$X=X \backslash$.
$S=S \backslash$.

Greedy is not always optimal

- Selecting Coke first forces us to pick coffee as well
- Milk and Coffee cover more customers together

Approximation ratio of GREEDY

- Good news: GREEDY has approximation ratio:

$$
\begin{aligned}
& \alpha=H\left(\left|S_{\max }\right|\right)=1+\ln \left|S_{\max }\right|, \quad H(n)=\sum_{k=1}^{n} \frac{1}{k} \\
& \operatorname{GREEDY}(X) \leq\left(1+\ln \left|S_{\max }\right|\right) O P T(X), \text { for all } X
\end{aligned}
$$

- The approximation ratio is tight up to a constant
- Tight means that we can find a counter example with this ratio

$$
\begin{aligned}
& \operatorname{OPT}(X)=2 \\
& \text { GREEDY }(X)=\log N \\
& \alpha=1 / 2 \log N
\end{aligned}
$$

Maximum Coverage

-What is a reasonable algorithm?

GREEDY(U,S,K)
 $X=U$
 $C=\{ \}$
 while $|C|<K$

For all $S_{i} \in S$ let gain $\left(S_{i}\right)=\left|S_{i} \cap X\right|$
Let S_{*} be such that $\operatorname{gain}\left(S_{*}\right)$ is maximum
$C=C \cup\left\{S_{*}\right\}$
$X=X \backslash S_{*}$
$S=S \backslash$.

Approximation Ratio for Max-K Coverage

- Better news! The GREEDY algorithm has approximation ratio $\alpha=1-\frac{1}{e}$

$$
\operatorname{GREEDY}(X) \geq\left(1-\frac{1}{e}\right) \operatorname{OPT}(X), \text { for all } \mathrm{X}
$$

- The coverage of the Greedy solution is at least 63% that of the optimal

Proof of approximation ratio

- For a collection C, let $F(C)=\left|\mathrm{U}_{S_{i} \in C} S_{i}\right|$ be the number of elements that are covered.
- The function F has two properties:
- F is monotone:

$$
F(A) \leq F(B) \text { if } A \subseteq B
$$

- F is submodular:

$$
F(A \cup\{S\})-F(A) \geq F(B \cup\{S\})-F(B) \text { if } A \subseteq B
$$

- The addition of set S to a set of nodes has greater effect (more new covered items) for a smaller set.
- The diminishing returns property

Optimizing submodular functions

- Theorem: A greedy algorithm that optimizes a monotone and submodular function F, each time adding to the solution C, the set S that maximizes the gain $F(C \cup\{S\})-F(C)$ has approximation ratio $\alpha=\left(1-\frac{1}{e}\right)$

Other variants of Set Cover

- Hitting Set: select a set of elements so that you hit all the sets (the same as the set cover, reversing the roles)
- Vertex Cover: Select a subset of vertices such that you cover all edges (an endpoint of each edge is in the set)
- There is a 2-approximation algorithm
- Edge Cover: Select a set of edges that cover all vertices (there is one edge that has endpoint the vertex)
- There is a polynomial algorithm

THIS IS THE END...

Parting thoughts

- In this class you saw a set of tools for analyzing data
- Frequent Itemsets, Association Rules
- Sketching
- Clustering
- Minimum Description Length
- Classification
- Link Analysis Ranking
- Random Walks
- Coverage
- All these are useful when trying to make sense of the data. A lot more tools exist.
- I hope that you found this interesting, useful and fun.

