DATA MINING LECTURE 11

Classification

Support Vector Machines

Logistic Regression

Naïve Bayes Classifier

Supervised Learning

Illustrating Classification Task

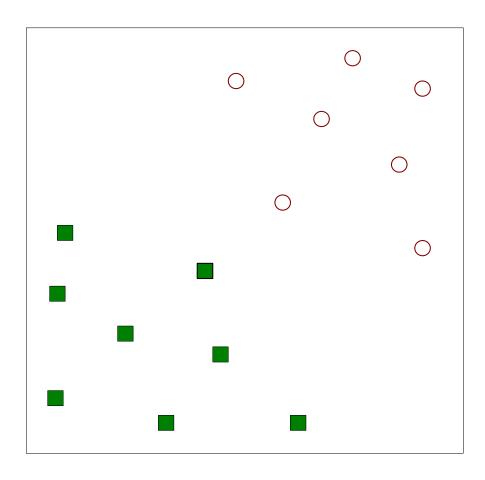
Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

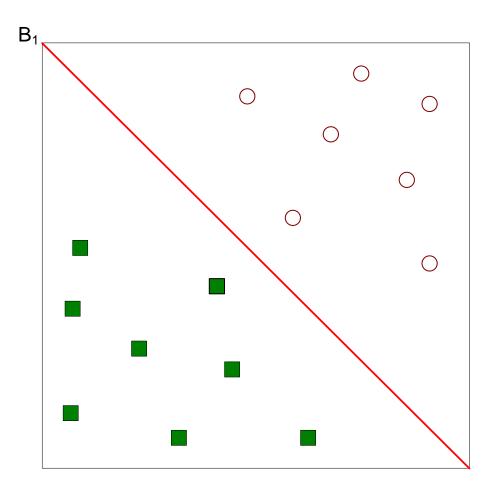
Test Set



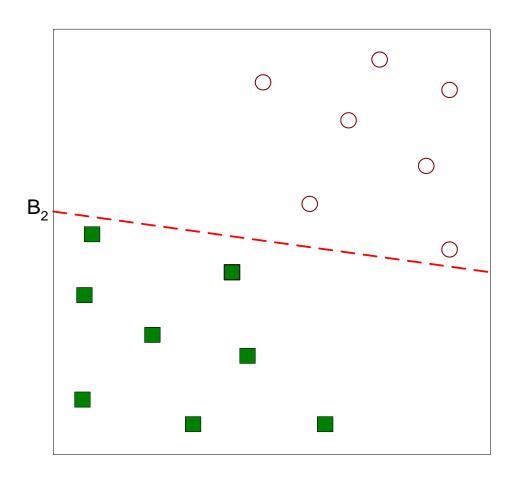
SUPPORT VECTOR MACHINES



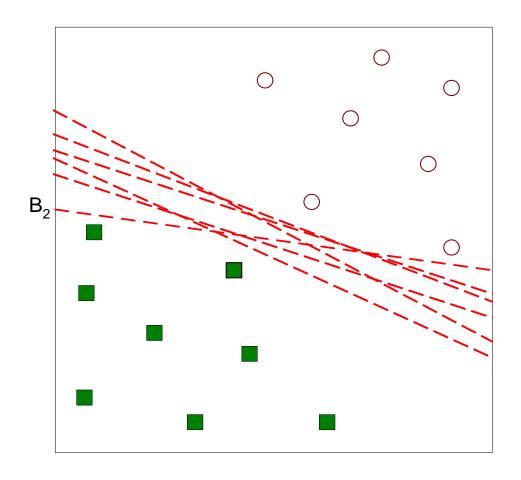
Find a linear hyperplane (decision boundary) that will separate the data



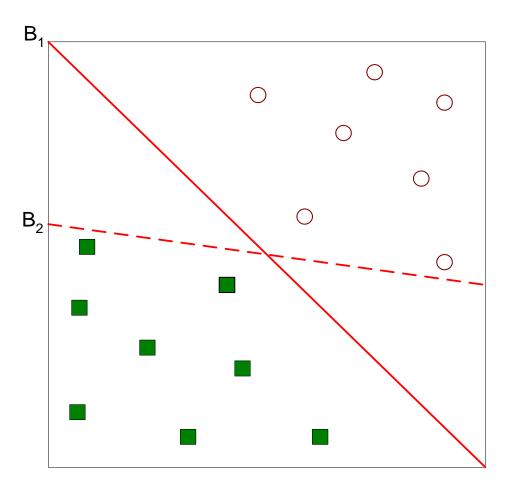
One Possible Solution



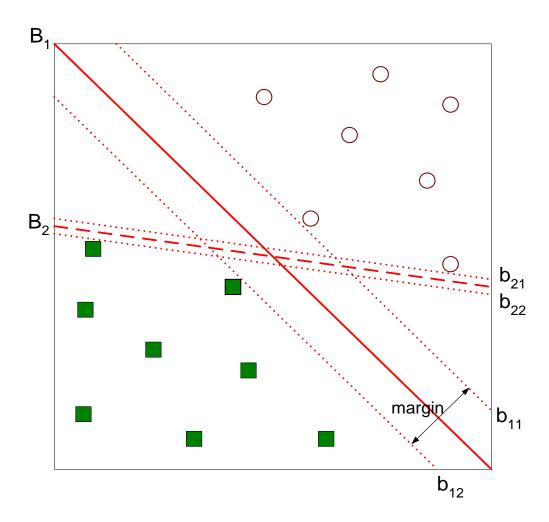
Another possible solution



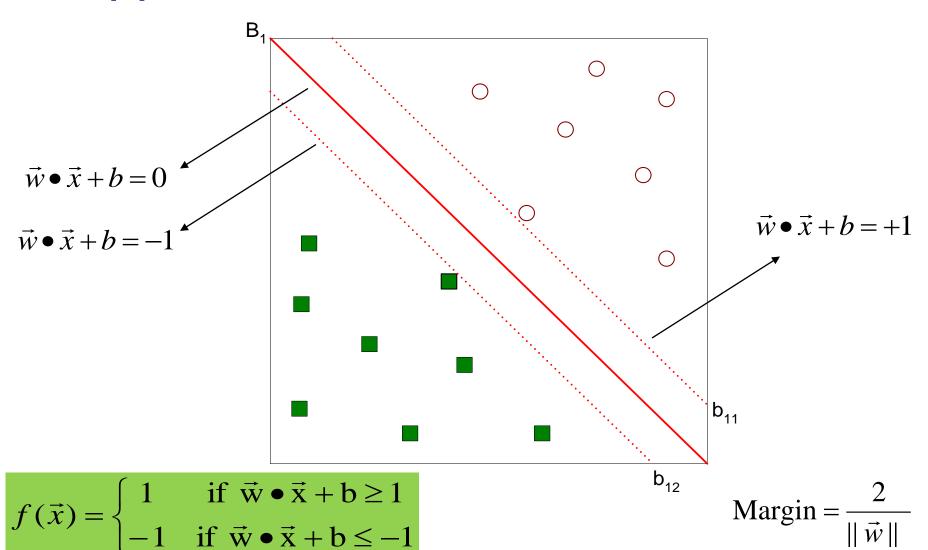
Other possible solutions



- Which one is better? B1 or B2?
- How do you define better?



Find hyperplane maximizes the margin => B1 is better than B2



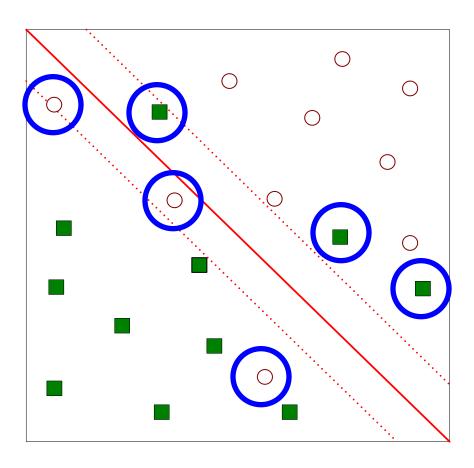
- We want to maximize: Margin = $\frac{2}{\|\vec{w}\|}$
 - Which is equivalent to minimizing: $L(w) = \frac{\|\vec{w}\|^2}{2}$
 - But subjected to the following constraints:

$$\overrightarrow{w} \cdot \overrightarrow{x_i} + b \ge 1 \text{ if } y_i = 1$$

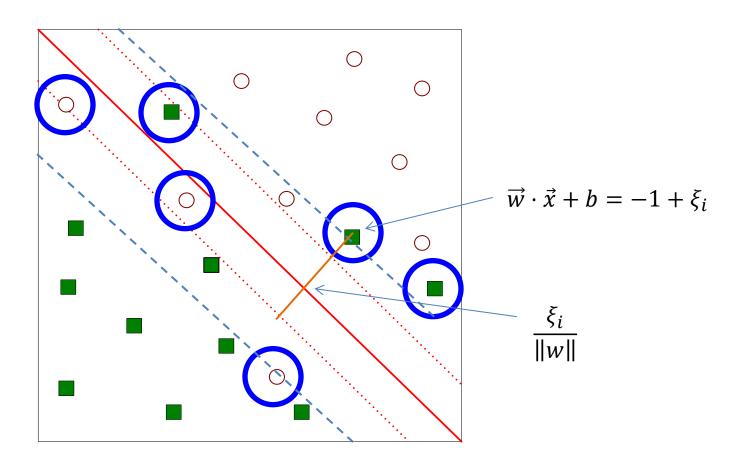
 $\overrightarrow{w} \cdot \overrightarrow{x_i} + b \le -1 \text{ if } y_i = -1$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

What if the problem is not linearly separable?



What if the problem is not linearly separable?



- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^{N} \xi_i^k\right)$$

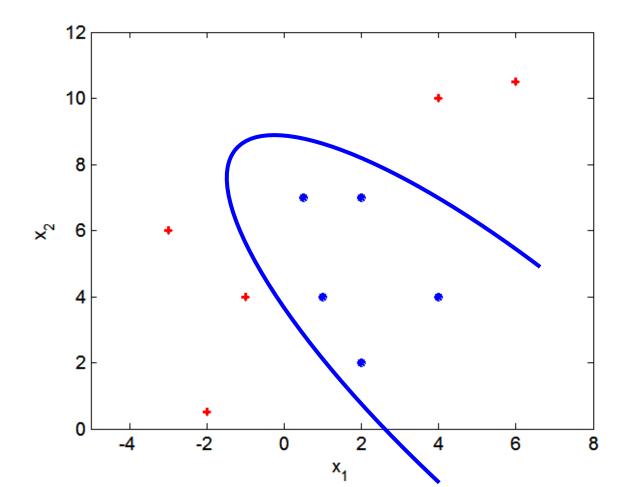
Subject to:

$$\overrightarrow{w} \cdot \overrightarrow{x_i} + b \ge 1 - \xi_i \text{ if } y_i = 1$$

$$\overrightarrow{w} \cdot \overrightarrow{x_i} + b \le -1 + \xi_i \text{ if } y_i = -1$$

Nonlinear Support Vector Machines

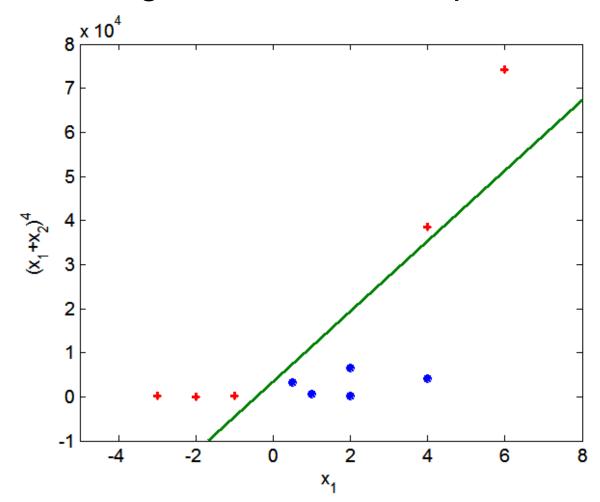
What if decision boundary is not linear?



Nonlinear Support Vector Machines

Transform data into higher dimensional space

Use the Kernel Trick



LOGISTIC REGRESSION

Classification via regression

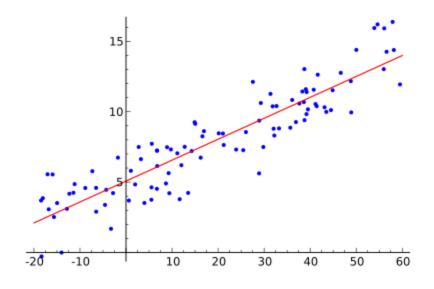
- Instead of predicting the class of an record we want to predict the probability of the class given the record
- The problem of predicting continuous values is called regression problem
- General approach: find a continuous function that models the continuous points.

Example: Linear regression

- Given a dataset of the form $\{(x_1, y_1), ..., (x_n, y_n)\}$ find a linear function that given the vector x_i predicts the y_i value as $y_i' = w^T x_i$
 - Find a vector of weights w that minimizes the sum of square errors

$$\sum_{i} (y_i' - y_i)^2$$

 Several techniques for solving the problem.



Classification via regression

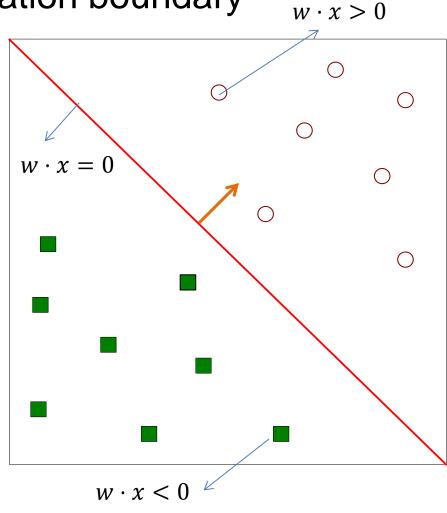
Assume a linear classification boundary

For the positive class the bigger the value of $w \cdot x$, the further the point is from the classification boundary, the higher our certainty for the membership to the positive class

• Define $P(C_+|x)$ as an increasing function of $w \cdot x$

For the negative class the smaller the value of $w \cdot x$, the further the point is from the classification boundary, the higher our certainty for the membership to the negative class

Define P(C₋|x) as a decreasing function of w · x



Logistic Regression

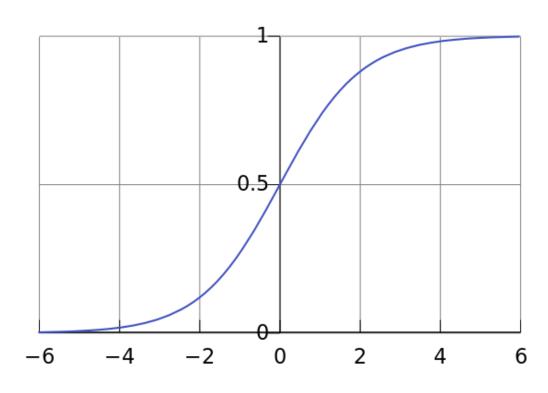
The logistic function

$$f(t) = \frac{1}{1 + e^{-t}}$$

$$P(C_+|x) = \frac{1}{1 + e^{-w \cdot x}}$$

$$P(C_{-}|x) = \frac{e^{-w \cdot x}}{1 + e^{-w \cdot x}}$$

$$\log \frac{P(C_{+}|x)}{P(C_{-}|x)} = w \cdot x$$



Logistic Regression: Find the vector w that maximizes the probability of the observed data

Linear regression on the log-odds ratio

Logistic Regression

- Produces a probability estimate for the class membership which is often very useful.
- The weights can be useful for understanding the feature importance.
- Works for relatively large datasets
- Fast to apply.

NAÏVE BAYES CLASSIFIER

Bayes Classifier

- A probabilistic framework for solving classification problems
- A, C random variables
- Joint probability: Pr(A=a,C=c)
- Conditional probability: Pr(C=c | A=a)
- Relationship between joint and conditional probability distributions

$$Pr(C, A) = Pr(C \mid A) \times Pr(A) = Pr(A \mid C) \times Pr(C)$$

• Bayes Theorem: $P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$

Bayesian Classifiers

How to classify the new record X = ('Yes', 'Single', 80K)

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Find the class with the highest probability given the vector values.

Maximum Aposteriori Probability estimate:

 Find the value c for class C that maximizes P(C=c| X)

How do we estimate P(C|X) for the different values of C?

- We want to estimate P(C=Yes| X)
- and P(C=No| X)

Bayesian Classifiers

- In order for probabilities to be well defined:
 - Consider each attribute and the class label as random variables
 - Probabilities are determined from the data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Evade C

Event space: {Yes, No}

P(C) = (0.3, 0.7)

Refund A₁

Event space: {Yes, No}

 $P(A_1) = (0.3, 0.7)$

Martial Status A₂

Event space: {Single, Married, Divorced}

 $P(A_2) = (0.4, 0.4, 0.2)$

Taxable Income A₃

Event space: R

 $P(A_3) \sim Normal(\mu, \sigma^2)$

 μ = 104:sample mean, σ^2 =1874:sample var

Bayesian Classifiers

- Approach:
 - compute the posterior probability P(C | A₁, A₂, ..., A_n) using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

Maximizing

$$P(C | A_1, A_2, ..., A_n)$$

is equivalent to maximizing

$$P(A_1, A_2, ..., A_n | C) P(C)$$

- The value $P(A_1, ..., A_n)$ is the same for all values of C.
- How to estimate $P(A_1, A_2, ..., A_n \mid C)$?

Naïve Bayes Classifier

- Assume conditional independence among attributes A_i when class C is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C) P(A_2 | C) \cdots P(A_n | C)$
 - We can estimate $P(A_i | C)$ from the data.
 - New point $X = (A_1 = \alpha_1, ... A_n = \alpha_n)$ is classified to class c if

$$P(C = c|X) = P(C = c) \prod_{i} P(A_i = \alpha_i|c)$$

is maximum over all possible values of C.

Example

- Record
 - X = (Refund = Yes, Status = Single, Income = 80K)
- For the class C = 'Evade', we want to compute:
 P(C = Yes|X) and P(C = No| X)
- We compute:

			-	
Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Class Prior Probability:

$$P(C=c)=\frac{N_C}{N}$$

 $P(C = c) = \frac{N_c}{N}$ Numb N_c: Number of records with class c

N = Number of records

$$P(C = No) = 7/10$$

 $P(C = Yes) = 3/10$

			~	
Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

TidRefund StatusMarital IncomeTaxable IncomeEvade1YesSingle125KNo2NoMarried100KNo3NoSingle70KNo4YesMarried120KNo5NoDivorced95KYes6NoMarried60KNo7YesDivorced220KNo8NoSingle85KYes9NoMarried75KNo10NoSingle90KYes					
2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No	Tid	Refund			Evade
3 No Single 70K No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No	1	Yes	Single	125K	No
4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No	2	No	Married	100K	No
5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No	3	No	Single	70K	No
6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No	4	Yes	Married	120K	No
7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No	5	No	Divorced	95K	Yes
8 No Single 85K Yes 9 No Married 75K No	6	No	Married	60K	No
9 No Married 75K No	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
10 No Single 90K Yes	9	No	Married	75K	No
	10	No	Single	90K	Yes

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

$$P(Refund = Yes|No) = 3/7$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

$$P(Refund = Yes|Yes) = 0$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

$$P(Status=Single|No) = 2/7$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

$$P(Status=Single|Yes) = 2/3$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_i = a \mid c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(a-\mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each (a, c) pair
- For Class=No
 - sample mean $\mu = 110$
 - sample variance σ²= 2975
- For Income = 80

$$P(Income = 80 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{-\frac{(80-110)^2}{2(2975)}} = 0.0062$$

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_i = a \mid c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(a-\mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each (a, c) pair
- For Class=Yes
 - sample mean µ = 90
 - sample variance $\sigma^2 = 2975$
- For Income = 80

$$P(Income = 80 \mid Yes) = \frac{1}{\sqrt{2\pi}(5)} e^{-\frac{(80-90)^2}{2(25)}} = 0.01$$

Example

Record

```
X = (Refund = Yes, Status = Single, Income = 80K)
```

• We compute:

Example of Naïve Bayes Classifier

 Creating a Naïve Bayes Classifier, essentially means to compute counts:

Total number of records: N = 10

Class No:

Number of records: 7

Attribute Refund:

Yes: 3

No: 4

Attribute Marital Status:

Single: 2

Divorced: 1

Married: 4

Attribute Income:

mean: 110 variance: 2975

Class Yes:

Number of records: 3

Attribute Refund:

Yes: 0

No: 3

Attribute Marital Status:

Single: 2

Divorced: 1

Married: 0

Attribute Income:

mean: 90

variance: 25

Example of Naïve Bayes Classifier

Given a Test Record:

```
X = (Refund = Yes, Status = Single, Income = 80K)
```

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single | No) = 2/7
P(Marital Status=Divorced | No)=1/7
P(Marital Status=Married | No) = 4/7
P(Marital Status=Single | Yes) = 2/7
P(Marital Status=Divorced | Yes)=1/7
P(Marital Status=Married | Yes) = 0
For taxable income:
If class=No:
              sample mean=110
```

```
sample variance=2975
```

sample mean=90 If class=Yes:

sample variance=25

```
P(X|Class=No) = P(Refund=Yes|Class=No)
                × P(Married| Class=No)
                × P(Income=120K| Class=No)
              = 3/7 * 2/7 * 0.0062 = 0.00075
```

```
P(X|Class=Yes) = P(Refund=No| Class=Yes)
                 × P(Married| Class=Yes)
                 × P(Income=120K| Class=Yes)
               = 0 * 2/3 * 0.01 = 0
```

```
P(No) = 0.3, P(Yes) = 0.7
Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
      => Class = No
```

Naïve Bayes Classifier

 If one of the conditional probability is zero, then the entire expression becomes zero

Laplace Smoothing:

$$P(A_i = a | C = c) = \frac{N_{ac} + 1}{N_c + N_i}$$

N_i: number of attribute values for attribute A_i

Example of Naïve Bayes Classifier

Given a Test Record:

With Laplace Smoothing

```
X = (Refund = Yes, Status = Single, Income = 80K)
```

naive Bayes Classifier:

```
P(Refund=Yes|No) = 4/9
P(Refund=No|No) = 5/9
P(Refund=Yes|Yes) = 1/5
P(Refund=No|Yes) = 4/5
```

P(Marital Status=Single|No) = 3/10 P(Marital Status=Divorced|No)=2/10 P(Marital Status=Married|No) = 5/10 P(Marital Status=Single|Yes) = 3/6 P(Marital Status=Divorced|Yes)=2/6 P(Marital Status=Married|Yes) = 1/6

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
• P(X|Class=No) = P(Refund=No|Class=No)
 \times P(Married|Class=No)
 \times P(Income=120K|Class=No)
 = 4/9 \times 3/10 \times 0.0062 = 0.00082
```

```
    P(X|Class=Yes) = P(Refund=No| Class=Yes)
    × P(Married| Class=Yes)
    × P(Income=120K| Class=Yes)
    = 1/5 × 3/6 × 0.01 = 0.001
```

- P(No) = 0.7, P(Yes) = 0.3
- P(X|No)P(No) = 0.0005
- P(X|Yes)P(Yes) = 0.0003

Implementation details

- Computing the conditional probabilities involves multiplication of many very small numbers
 - Numbers get very close to zero, and there is a danger of numeric instability
- We can deal with this by computing the logarithm of the conditional probability

$$\log P(C|A) \sim \log P(A|C) + \log P(C)$$

$$= \sum_{i} \log P(A_{i}|C) + \log P(C)$$

Naïve Bayes for Text Classification

- Naïve Bayes is commonly used for text classification
- For a document with k terms $d = (t_1, ..., t_k)$

Fraction of documents in c
$$P(c|d) = P(c)P(d|c) = P(c) \prod_{t_i \in d} P(t_i|c)$$

• $P(t_i|c)$ = Fraction of terms from all documents in c that

```
are t_i. Number of times t_i appears in some document in c P(t_i|c) = \frac{N_{ic} + 1}{N_c + T} Laplace Smoothing Number of unique words (vocabulary size)
```

- Easy to implement and works relatively well
- Limitation: Hard to incorporate additional features (beyond words).
 - E.g., number of adjectives used.

Multinomial document model

• Probability of document $d = (t_1, ..., t_k)$ in class c:

$$P(d|c) = P(c) \prod_{t_i \in d} P(t_i|c)$$

- This formula assumes a multinomial distribution for the document generation:
 - If we have probabilities $p_1, ..., p_T$ for events $t_1, ..., t_T$ the probability of a subset of these is

$$P(d) = \frac{N}{N_{t_1}! N_{t_2}! \cdots N_{t_T}!} p_1^{N_{t_1}} p_2^{N_{t_2}} \cdots p_T^{N_{t_T}}$$

 Equivalently: There is an automaton spitting words from the above distribution

```
TrainMultinomialNB(\mathbb{C},\mathbb{D})
  1 V \leftarrow \text{EXTRACTVOCABULARY}(\mathbb{D})
  2 N \leftarrow \text{CountDocs}(\mathbb{D})
  3 for each c \in \mathbb{C}
  4 do N_c \leftarrow \text{COUNTDOCSINCLASS}(\mathbb{D}, c)
  5 prior[c] \leftarrow N_c/N
  6 text_c \leftarrow CONCATENATETEXTOFALLDOCSINCLASS(\mathbb{D}, c)
  7 for each t \in V
         do T_{ct} \leftarrow \text{COUNTTOKENSOFTERM}(text_c, t)
  9 for each t \in V
         do condprob[t][c] \leftarrow \frac{T_{ct}+1}{\sum_{l'}(T_{cl'}+1)}
10
11
      return V , prior , cond prob
APPLYMULTINOMIALNB(\mathbb{C}, V, prior, condprob, d)
   W \leftarrow \text{EXTRACTTOKENSFROMDOC}(V, d)
2 for each c \in \mathbb{C}
3 do score[c] \leftarrow log prior[c]
4 for each t \in W
        do score[c] += log cond prob[t][c]
   return arg max_{c \in \mathbb{C}} score[c]
```

► Figure 13.2 Naive Bayes algorithm (multinomial model): Training and testing.

Example

News titles for Politics and Sports

Politics

documents

"Obama meets Merkel"
"Obama elected again"
"Merkel visits Greece again"

$$P(p) = 0.5$$

terms

Vocabulary size: 14

obama:2, meets:1, merkel:2, elected:1, again:2, visits:1, greece:1

Total terms: 10

Sports

"OSFP European basketball champion"
"Miami NBA basketball champion"
"Greece basketball coach?"

$$P(s) = 0.5$$

OSFP:1, european:1, basketball:3, champion:2, miami:1, nba:1, greece:1, coach:1

Total terms: 11

New title: X = "Obama likes basketball"

$$P(Politics|X) \sim P(p)*P(obama|p)*P(likes|p)*P(basketball|p)$$

= 0.5 * 3/(10+14) *1/(10+14) * 1/(10+14) = 0.000108

$$P(Sports|X) \sim P(s)*P(obama|s)*P(likes|s)*P(basketball|s)$$

= 0.5 * 1/(11+14) *1/(11+14) * 4/(11+14) = 0.000128

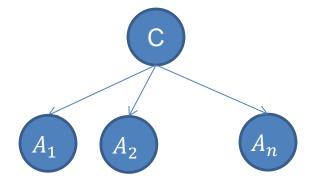
Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)
- Naïve Bayes can produce a probability estimate, but it is usually a very biased one
 - Logistic Regression is better for obtaining probabilities.

Generative vs Discriminative models

- Naïve Bayes is a type of a generative model
 - Generative process:
 - First pick the category of the record
 - Then given the category, generate the attribute values from the distribution of the category

Conditional independence given C



 We use the training data to learn the distribution of the values in a class

Generative vs Discriminative models

- Logistic Regression and SVM are discriminative models
 - The goal is to find the boundary that discriminates between the two classes from the training data

- In order to classify the language of a document, you can
 - Either learn the two languages and find which is more likely to have generated the words you see
 - Or learn what differentiates the two languages.

SUPERVISED LEARNING

Learning

- Supervised Learning: learn a model from the data using labeled data.
 - Classification and Regression are the prototypical examples of supervised learning tasks. Other are possible (e.g., ranking)
- Unsupervised Learning: learn a model extract structure from unlabeled data.
 - Clustering and Association Rules are prototypical examples of unsupervised learning tasks.
- Semi-supervised Learning: learn a model for the data using both labeled and unlabeled data.

Supervised Learning Steps

Model the problem

 What is you are trying to predict? What kind of optimization function do you need? Do you need classes or probabilities?

Extract Features

 How do you find the right features that help to discriminate between the classes?

Obtain training data

 Obtain a collection of labeled data. Make sure it is large enough, accurate and representative. Ensure that classes are well represented.

Decide on the technique

What is the right technique for your problem?

Apply in practice

 Can the model be trained for very large data? How do you test how you do in practice? How do you improve?

Modeling the problem

- Sometimes it is not obvious. Consider the following three problems
 - Detecting if an email is spam
 - Categorizing the queries in a search engine
 - Ranking the results of a web search

Feature extraction

- Feature extraction, or feature engineering is the most tedious but also the most important step
 - How do you separate the players of the Greek national team from those of the Swedish national team?
- One line of thought: throw features to the classifier and the classifier will figure out which ones are important
 - More features, means that you need more training data
- Another line of thought: Feature Selection: Select carefully the features using various functions and techniques
 - Computationally intensive

Training data

- An overlooked problem: How do you get labeled data for training your model?
 - E.g., how do you get training data for ranking?
- Usually requires a lot of manual effort and domain expertise and carefully planned labeling
 - Results are not always of high quality (lack of expertise)
 - And they are not sufficient (low coverage of the space)
- Recent trends:
 - Find a source that generates the labeled data for you.
 - Crowd-sourcing techniques

Dealing with small amount of labeled data

- Semi-supervised learning techniques have been developed for this purpose.
- Self-training: Train a classifier on the data, and then feed back the high-confidence output of the classifier as input
- Co-training: train two "independent" classifiers and feed the output of one classifier as input to the other.
- Regularization: Treat learning as an optimization problem where you define relationships between the objects you want to classify, and you exploit these relationships
 - Example: Image restoration

Technique

- The choice of technique depends on the problem requirements (do we need a probability estimate?) and the problem specifics (does independence assumption hold? do we think classes are linearly separable?)
- For many cases finding the right technique may be trial and error
- For many cases the exact technique does not matter.

Big Data Trumps Better Algorithms

- If you have enough data then the algorithms are not so important
- The web has made this possible.
 - Especially for text-related tasks
 - Search engine uses the collective human intelligence

Google lecture: Theorizing from the Data

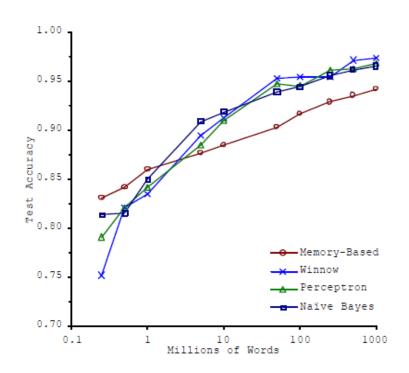


Figure 1. Learning Curves for Confusion Set Disambiguation

Apply-Test

- How do you scale to very large datasets?
 - Distributed computing map-reduce implementations of machine learning algorithms (Mahut, over Hadoop)
- How do you test something that is running online?
 - You cannot get labeled data in this case
 - A/B testing
- How do you deal with changes in data?
 - Active learning