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Absorbing Random Walks

Link Prediction



Why does the Power Method work?

If a matrix R is real and symmetric, it has real eigenvalues and
eigenvectors: (A, w;), (1, wy), ..., (1, W)
— ris the rank of the matrix

— |4lz |42 = - = |4

The vector space of R is the set of vectors that can be written as a linear
combination of its rows (or columns)

The eigenvectors wq, w,, ..., W,. of R define a basis of the vector space
— For any vector x, Rx = aywy + a,w, + -+ a,.w,

After t multiplications we have:

— Rtx = Ag_lalwl + /’lg_la2W2 + -+ Ag_larWr

Normalizing leaves only the term wy.



ABSORBING RANDOM WALKS
LABEL PROPAGATION

OPINION FORMATION ON SOCIAL
NETWORKS



Random walk with absorbing nodes

 What happens if we do a random walk on this
graph? What is the stationary distribution?

(%/‘\ \:‘

* All the probability mass on the red sink node:
— The red node is an absorbing node



Random walk with absorbing nodes

 What happens if we do a random walk on this graph?
What is the stationary distribution?

Y,

 There are two absorbing nodes: the red and the blue.
* The probability mass will be divided between the two



Absorption probability

* |f there are more than one absorbing nodes in
the graph a random walk that starts from a
non-absorbing node will be absorbed in one

of them with some probability
— The probability of absorption gives an estimate of

how close the node is to red or blue
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Absorption probability

 Computing the probability of being absorbed:

— The absorbing nodes have probability 1 of being absorbed
in themselves and zero of being absorbed in another node.

— For the non-absorbing nodes, take the (weighted) average
of the absorption probabilities of your neighbors

* if one of the neighbors is the absorbing node, it has probability 1
— Repeat until convergence (= very small change in probs)

2 1
P(Red|Pink) = §P(Red| ) + §P(Red|
1
P(Red| ) = ZP(RedI )+ -
2
P(Redl ) — §




Absorption probability

 Computing the probability of being absorbed:

— The absorbing nodes have probability 1 of being absorbed
in themselves and zero of being absorbed in another node.

— For the non-absorbing nodes, take the (weighted) average
of the absorption probabilities of your neighbors

* if one of the neighbors is the absorbing node, it has probability 1
— Repeat until convergence (= very small change in probs)

2 1
P(Blue|Pink) = §P(Blue| ) + §P(Blue|
1 1
P(Bluel ) = = P(Blue] )+ =
4 2
1
P(Blue| ) = 3




Why do we care?

 Why do we care to compute the absorbtion probability
to sink nodes?

e Given a graph (directed or undirected) we can choose
to make some nodes absorbing.

— Simply direct all edges incident on the chosen nodes
towards them.

 The absorbing random walk provides a measure of
oroximity of non-absorbing nodes to the chosen nodes.
— Useful for understanding proximity in graphs

— Useful for propagation in the graph

* E.g, on a social network some nodes have high income, some have
low income, to which income class is a non-absorbing node closer?



Example

* |n this undirected graph we want to learn the
proximity of nodes to the red and blue nodes




Example

* Make the nodes absorbing




Absorption probability

 Compute the absorbtion probabilities for red

and blue
2 1
P(Red|Pink) = Z P(Red| ) + 3 P(Red| )
1 1 1
P(Red] ) = P(Red] ) + ¢ P(Red|Pink) + 2
1 1 1
P(Red| ) = gP(RedI )+§P(Red|Pink) +3
P(Blue|Pink) =1 — P(Red|Pink)
P(Blue] ) =1— P(Red| )

P(Bluel ) =1— P(Red| )




Penalizing long paths

 The orange node has the same probability of
reaching red and blue as the yellow one

0.57
0.43

P(Red|Orange) = P(Red|

P(Blue|Orange) = P(Blue]|

* Intuitively though it is further away



Penalizing long paths

 Add an universal absorbing node to which
each node gets absorbed with probability a.

With probability a the random walk dies

With probability (1-a) the random walk
continues as before

The longer the path from a node to an
absorbing node the more likely the random
walk dies along the way, the lower the
absorbtion probability

P(Red| )=1-a) <§P(Red| ) + %P(Releink) +



Propagating values

* Assume that Red has a positive value and Blue a negative
value

— Positive/Negative class, Positive/Negative opinion
 We can compute a value for all the other nodes in the same
way
— This is the expected value for the node

| 2 1
V(Pink) = §V( ) + §V( )

B 1 1 Pinlk 1 2
V( )—gV( )+§V( n )-l-g—g

1 1 1 1
V( ) = EV( )+§V(Pink)+§ -2




Electrical networks and random walks

* Our graph corresponds to an electrical network

 There is a positive voltage of +1 at the Red node, and a negative
voltage -1 at the Blue node

 There are resistances on the edges inversely proportional to the
weights (or conductance proportional to the weights)

* The computed values are the voltages at the nodes

. 2 1
V(Pink) =§V( )+§V( )
1 1. 1 2
V(Green) = <V( )+ gV (Pink) + ¢ — <
1 1 1 1
V( ) = EV( )+§V(Pink)+§ -




Opinion formation

* The value propagation can be used as a model of opinion formation.

 Model:
— Opinions are values in [-1,1]
— Every user u has an internal opinion s,,, and expressed opinion z,,.
— The expressed opinion minimizes the personal cost of user u:

C(Zu) = (Su — Zu)z + z Wu(Zu - Zv)z
vivisafriend ofu

* Minimize deviation from your beliefs and conflicts with the society

* |f every user tries independently (selfishly) to minimize their personal cost
then the best thing to do is to set z,,to the average of all opinions:

7 = Su + Zv:v isa friend of u Wu4u
“ 1+ wy,

v:visafriend ofu

* Thisis the same as the value propagation we described before!



Example

e Social network with internal opinions

s =+0.5




Example

One absorbing node per user with s=+0.5
value the internal opinion of the user

One non-absorbing node per user that
links to the corresponding absorbing
node

The external opinion for each node is
computed using the value propagation we
described before

* Repeated averaging

z=-0.03
1

Intuitive model: my opinion is a
combination of what | believe and what s=-0.5 s=-0.1
my social network believes.




Transductive learning

If we have a graph of relationships and some |labels on some nodes
we can propagate them to the remaining nodes

— Make the labeled nodes to be absorbing and compute the probability
for the rest of the graph

— E.g., a social network where some people are tagged as spammers

— E.g., the movie-actor graph where some movies are tagged as action
or comedy.

This is a form of semi-supervised learning
— We make use of the unlabeled data, and the relationships

It is also called transductive learning because it does not produce a
model, but just labels the unlabeled data that is at hand.

— Contrast to inductive learning that learns a model and can label any
new example



Implementation details

* Implementation is in many ways similar to the
PageRank implementation

— For an edge (u, v)instead of updating the value of
v we update the value of u.

* The value of a node is the average of its neighbors
— We need to check for the case that a node u is

absorbing, in which case the value of the node is
not updated.

— Repeat the updates until the change in values is
very small.



LINK PREDICTION



The Problem

Link prediction problem: Given the links in a social network at
time t, predict which edges that will be added to the network

= Which features to use?
User characteristics (profile), network interactions, topology

= Different from the problem of inferring missing (hidden) links (there

is a temporal aspect, uses a static snapshot)
To save experimental effort in the laboratory or in the field



Applications

" Recommending new friends on online social networks.

= Predicting the participants or actors in events

= Suggesting interactions between the members of a
company/organization

" Predicting connections between members of terrorist
organizations who have not been directly observed to work
together

= Suggesting collaborations between researchers based on
co-authorship.

= Network evolution model



Link Prediction

Unsupervised (usually, assign scores based on similarity of endpoints)
Supervised (given some positive (created edges) and negative
examples (nonexistent edges)
Classification Problem

Problem: Class imbalance

Instead of 0/1, rank each edge by its probability to appear in the network



D. Liben-Nowell, D. and J. Kleinberg, The link-prediction problem for
social networks. Journal of the American Society for Information Science
and Technology, 58(7) 1019-1031 (2007)



The Problem

Link prediction problem: Given the links in a social network at
time t, predict the edges that will be added to the network
during the time interval from time t to a given future time t’

= \Which features to use?

Based solely on the topology of the network (social proximity) (the
more general problem also considers attributes of the nodes and links)



Problem Formulation |

_________________________________________________________________________________________________________________________________

. Consider a social network G = (V, E) where each edge e = <y, v> € E represents an
' interaction between u and v that took place at a particular time t(e) '

(multiple interactions between two nodes as parallel edges with different timestamps)
G[t, t']: subgraph of G consisting of all edges with a timestamp between tand t’, t < t’, |

" For four times, t,<t'/,<t,<t’, |
: Given G[t,, t,], we wish to output a list of edges not in G[t,, t’ ;] that are predicted to |
' appear in G[t,, t’,]

_________________________________________________________________________________________________________________________________

v'[t, t',] training interval
v'[t, t’,] test interval



Problem Formulation I

What about new nodes (node not in the training interval)?

Two parameters: and k

training test

Core: all nodes that are incident to at least k., . edges in G[t,, t'],
and at least k.., edges in G[t,, t’;]

**Predict new edges between the nodes in Core



Example Dataset: co-authorship

training period Core
authors | papers | collaborations! || authors | |E ;1| | |Enew
astro-ph 5343 5816 41852 1561 6178 | 5751
cond-mat 5469 6700 19881 1253 1899 | 1150
gr-qc 2122 3287 5724 486 519 400
hep-ph H414 10254 47806 1790 6654 | 3294
hep-th 5241 9498 15842 1438 2311 | 1576

t,=1994, t', = 1996: training interval ->[1994, 1996]
t, =1997, t’; = 1999: test interval -> [1997, 1999]

= Gcollab = <A, E0|d> = G[1994, 1996]
- E..,,; authors in A that co-author a paper during the test interval but not during the

training interval

Kiraining = 3 Kiest = 3 Core consists of all authors who have written at least 3 papers
during the training period and at least 3 papers during the test period

Predict E .,



How to Evaluate the Prediction

Each link predictor p outputs a ranked list L, of pairsin Ax A - E, : predicted
new collaborations in decreasing order of confidence

Actual edges:
Exnew = E_,, N (Core x Core), N = |Ex

new |

Evaluation method: Size of the intersection of
= the first n edge predictions from L that are in Core x Core (predicted)
and
= the set Ex__. (actual)

new

**How many of the top-n predictions are correct (precision?)



Methods for Link Prediction

________________________________________________________________________________________________________________________

Assign a connection weight score(x, y) to each pair of nodes
<X, y> based on the input graph (G_,,,) and produce a
ranked list of decreasing order of score

________________________________________________________________________________________________________________________

How to assign the score between two nodes x and y?

v'Some form of similarity or node proximity

Most measures focus on the giant component



Methods for Link Prediction: Shortest
Path

Forx,yEAxA-E,q
score(x, y) = (negated) length of shortest path between x and y

v' If there are more than n pairs of nodes tied for the shortest path length,
order them at random.

Geodesic distance: number of edges in the shortest path



Methods for Link Prediction: Neighborhood-based

________________________________________________________________________________________________________________________________

The “larger” the overlap of the neighbors of two nodes, the more likely to be |
' linked in the future '

Let ['(x) denote the set of neighbors of xin G

collab

Common neighbors: A adjacency matrix ->A, 2
Number of different paths of
score(z,y) = [['(z) NT'(y)| length 2

Jaccard coefficient:
The probability that both x and y have

|T{z) NT(y)| a feature f, for a randomly selected
IT(z) UT(y)| feature that either x or y has

score(r,y) =



Methods for Link Prediction: Neighborhood-based

Adamic/Adar:
score(r,y) = Y —

zel{x)nl(y) IDE |F [:}l

v’ Assigns large weights to common neighbors z
of x and y which themselves have few neighbors
(weight rare features more heavily)

connections to “unpopular” nodes are more relevant



Methods for Link Prediction: Neighborhood-based

Preferential attachment:

the probability that a new edge has node x as its endpoint is proportional
to [T(x)], i.e., nodes like to form ties with ‘popular’ nodes

score(z, y) = |T'(z)||T(y)|

v Researchers found empirical evidence to

suggest that co-authorship is correlated with the
product of the neighborhood sizes



Methods for Link Prediction: based on the ensemble
of all paths

_____________________________________________________________________________________________________



Methods for Link Prediction: based on the ensemble
of all paths

KatzB measure:

score(z, y) Z ;3 paths

Y B'- Ipathsyy| = BAy + B2 (A + B> (A')y + - - -
=1

Sum over all paths of length /, B > 0 is a parameter of the predictor,

exponentially damped to count short paths more heavily
v'Small 8 predictions much like common neighbors

(I1—pay"' —

1. Unweighted version, in which path, ) = 1, if x and y have

collaborated, 0 otherwise
2. Weighted version, in which path, (!} = #times x and y have

collaborated



Methods for Link Prediction: based on the ensemble
of all paths

. Consider a random walk on G_,,,, that starts at x and iteratively moves to a |
' neighbor of x chosen uniformly at random from [(x). '

The Hitting Time H, , from x to y is the expected number of steps it takes for the
random walk starting at x to reach y.

score(x, y) = -H,,

(symmetric version) The Commute Time C, , from x to y is the expected number of
steps to travel from x to y and from y to x
score(x, y) = - (H,,+ H,,)

Can also consider stationary-normed versions:
score(x,y) =-H, 1,

score(x, y) = —-(H,, t, + H , 10,)



Methods for Link Prediction: based on the ensemble
of all paths

The hitting time and commute time measures are sensitive to parts of the graph far
away from x and y -> periodically reset the walk

Random walk on G, that starts at x and has a probability of a of returning to x at
each step.

Rooted (Personalized) Page Rank: Starts from x, with probability (1 — a) moves to
a random neighbor and with probability a returns to x

score(x, y) = stationary probability of y in a rooted PageRank



Methods for Link Prediction: based on the ensemble
of all paths

SimRank

D_acr(z) 2uber(y) SiMilarity(a, b)
T(z)| - [T (y)]

similarity(z, y) ==~ -

score(x, y) = similarity(x, y)

The expected value of y/ where [ is a random variable giving the time at which
random walks started from x and y first meet



Methods for Link Prediction: High-level approaches

Low rank approximations
A adjacency matrix
Apply SVD (singular value decomposition)

The rank-k matrix that best approximates A



Methods for Link Prediction: High-level approaches

Unseen Bigrams
Unseen bigrams: pairs of word that co-occur in a test corpus, but not in the
corresponding training corpus

Not just score(x, y) but score(z, y) for nodes z that are similar to x

S, the 6 nodes most related to x

{z:2e€T(y) NS}

* . —
Scnreunweighrﬂd (E, y) L

score:ueighted(xv y) = Z () score(z, z)
z€l(y)NSz



Methods for Link Prediction: High-level approaches

Clustering

= Compute score(x, y) for al edges in E_4

" Delete the (1-p) fraction of these edges for which the score is the
lowest, for some parameter p

= Recompute score(x, y) for all pairs in the subgraph



Evaluation: baseline

Baseline: random predictor
Randomly select pairs of authors who did not collaborate in the training
interval

Probability that a random prediction is correct,

Number of Corr('ect- Encul
possible (ICOrEI) _|E predictions |Enew|

. .. 2 GEEE' (|Cﬂre|) o |E |
predictions 2 old

In the datasets, from 0.15% (cond-mat) to 0.48% (astro-ph)



Evaluation: Factor improvement over random

predictor astro-ph | cond-mat gr-qc | hep-ph | hep-th
probability that a random prediction is correct 0.475% 0.147% | 0.341% | 0.207% | 0.153%
graph distance (all distance-two pairs) 9.4 25.1 21.3 12.0 29.0
common neighbors 15.0 40.8 27.1 26.9 46.9
preferential attachment 4.7 6.0 7.5 15.2 7.4
Adamic/Adar 16.8 54.4 30.1 33.2 50.2
Jaccard 16.4 42.0 19.8 27.6 41.5
SimRank ~ =038 115 30.0 22.7 26.0 1.5
hitting time 6.4 23.7 24.9 3.8 13.3
hitting time—mnormed by stationary distribution 5.3 23.7 11.0 11.3 21.2
commute time 5.2 15.4 33.0 17.0 23.2
commute time—mnormed by stationary distribution 5.3 16.0 11.0 11.3 16.2
rooted PageRank a = 0.01 10.8 27.8 33.0 18.7 29.1
a = 0.05 13.8 39.6 35.2 24.5 41.1

a=0.15 16.6 40.8 271 27.5 42.3

a = 0.30 17.1 42.0 24.9 29.8 46.5

a = 0.50 16.8 40.8 24.2 30.6 46.5

Katz (weighted) 3 =0.05 3.0 21.3 19.8 24 12.9
3 = 0.005 13.4 54.4 30.1 24.0 51.9

5 = 0.0005 14.5 53.8 30.1 32.5 51.5

Katz (unweighted) 5 =005 10.9 41.4 37.4 187 47.7
# = 0.005 16.8 41.4 37.4 24.1 49.4

3 = 0.0005 16.7 41.4 37.4 24.8 49.4




Evaluation: Factor improvement over random

predictor astro-ph | cond-mat gr-qc | hep-ph | hep-th
probability that a random prediction is correct 0.475% 0.147% | 0.341% | 0.207% | 0.153%
graph distance (all distance-two pairs) 9.4 25.1 21.3 12.0 29.0
common neighbors 18.0 40.8 271 26.9 46.9
Low-rank approximation: rank = 1024 15.2 53.8 29.3 34.8 49.8
Inner product rank = 256 14.6 46.7 29.3 32.3 46.9
rank = 64 13.0 44.4 271 30.7 47.3

rank = 16 10.0 21.3 31.5 27.8 35.3

rank = 4 8.8 15.4 42.5 19.5 22.8

rank = 1 6.9 5.9 44.7 17.6 14.5

Low-rank approximation: rank = 1024 8.2 16.6 6.6 18.5 21.6
Matrix entry rank = 256 15.4 36.1 3.1 26.2 37.4
rank = 64 137 46.1 16.9 28.1 40.7

rank = 16 0.1 21.3 26.4 23.1 34.0

rank = 4 8.8 15.4 39.6 20.0 22.4

rank = 1 6.9 5.9 44.7 17.6 14.5

Low-rank approximation: rank = 1024 11.4 27.2 30.1 27.0 32.0
Katz (3 = 0.005) rank = 256 15.4 42.0 11.0 34.2 38.6
rank = 64 13.1 45.0 19.1 32.2 41.1

rank = 16 9.2 21.3 271 24.8 34.9

rank = 4 7.0 15.4 41.1 19.7 22.8

rank = 1 0.4 5.0 44.7 17.6 14.5

unseen bigrams common neighbors, d = 8§ 13.5 36.7 30.1 15.6 46.9
(weighted) common neighbors, § = 16 13.4 39.6 38.9 18.5 48.6
Katz (3 = 0.005), § =8 16.8 37.9 24.9 24.1 51.1

Katz (5 =0.005), § = 16 16.5 39.6 35.2 247 50.6

unseen bigrams common neighbors, d = 8§ 14.1 40.2 27.9 22.2 39.4
{unweighted) common neighbors, § = 16 15.3 39.0 42.5 22.0 42.3
Katz (3 =0.005),§ =8 13.1 36.7 32.3 21.6 37.8

Katz (5 =0.005), § = 16 10.3 20.6 41.8 12.2 37.8

clustering: p=0.10 7.4 37.3 46.9 32.9 37.8
Katz (51 = 0.001, 32 = 0.1) p=0.15 12.0 46.1 46.9 21.0 44.0
p =020 4.6 34.3 19.8 21.2 35.7

p =025 33 27.2 20.5 19.4 17.4




Relative performance mtio versus random predictions

Evaluation: Average relevance performance (random)
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average ratio over the five datasets of
the given predictor's performance versus
a baseline predictor's performance.

The error bars indicate the minimum and
maximum of this ratio over the five
datasets.

The parameters for the starred
predictors are as follows: (1) for
weighted Katz, B= 0.005; (2) for Katz
clustering, B1 =0.001; p =0.15; B2 =0.1;
(3) for low-rank inner product, rank =
256; (4) for rooted Pagerank, a = 0.15;
(5) for unseen bigrams, unweighted
common neighbors with & = 8; and (6)
for SimRank, y = 0.8.



Evaluation: Average relevance performance (distance)
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Evaluation: Average relevance performance (neighbors)
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Evaluation: prediction overlap

** How much similar are the
predictions made by the
different methods (common
predictions)?
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Katz clusterimg
Jaceard s coeflicient
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Evaluation: datasets

** How much does the performance of the different methods depends on the
dataset?

al —

40 — —

Tmﬂh %W

1024
1024
1024 |

Relative perlormance ratio versis random predict ons

— D — R = — o o s — o0 —=aaa
— S e — — s e — —
o = = = =]
astro—ph cond-mat Er—-qc hep-ph hap-th

= (rank) On 4 of the 5 datasets best at an intermediate rank
On qgr-gc, best at rank 1, does it have a “simpler” structure”?
= On hep-ph, preferential attachment the best
= Why is astro-ph “difficult”?
The culture of physicists and physics collaboration



Evaluation: small world

The shortest path even in unrelated disciplines is often very short



Evaluation: restricting to distance three

Many pairs of authors separated by a
graph distance of 2 who will not
collaborate and many pairs who
collaborate at distance greater than 2

Disregard all distance 2 pairs

Proportion of distance-two pairs that form an edge:

GlGIGIGAC

Proportion of new edges that are between distance-two pairs:

GlGCIGCIGAG

astro-ph cond-mat gr-qc hep-ph hep-th
predictor astro—ph | cond-mat | gr-qc | hepph | hep-cth
raph distance (all distance three pairs) B X T i0 56
preferential attachment 3.2 2.6 8.6 7 1.4
astro-ph | cond-mat | gr-qc | hep-ph | hep-th SimRank 7=08 59 3| 06| 76| 9io
hitting time 14 101 137 15 47
# pairs at distance two 33862 Sl45 935 ITGET 7345 g s normed by stationssy distribusion ot o Bl e
1 : s g r v} g commute time—normed by stationary distribution 26 0.8 1.1 18 47
# new collaborations at distance two 1533 190 ites 045 335 T P : T T T e T
7 " — - — " e a=0.0% 53 125 | 211 a7 16.6
# new collaborations 5751 1150 400 3204 15TH a—o1s s ns| wso| wr| s
a = 0.30 58 13.5 B84 116 199
a = 0.50 6.3 15.2 74 12.7 19.9
Katz (weighted) 8 =10.08 [} 59 11.6 23 27
A = 0.005 55 143 285 12 12.6
= 0.0005 6.2 13.5 78 1.2 12.6
Katz (unweighted) B=0.058 23 127 306 an 126
B =0.005 a1 118 2306 5.1 179
7 = 00005 492 118 306 51 1709
Low-rank approcimsation: rank = 1024 23 25 LR 40 60
Inner product rank = 256 18 59 53 9.9 106
rank = 64 18 127 53 7.1 11.3
rank = 16 53 6.7 6.3 6.8 153
rank =4 51 6.7 327 2.0 4.7
rank =1 61 25 nT 1.2 8.0
Low-rank appracimation: rank = 1024 11 6.7 63 50 133
Matrix entry rank = 256 18 &4 32 -5 199
rank = 64 29 118 21 1.0 10.0
rank = 16 14 84 42 59 16.6
rank =4 19 6.7 278 2.0 47
rank = | 6.1 2.5 2.7 1.2 8.0
Low-rank approcimation: rank = 1024 43 6.7 IR 59 133
Katz (§ = 0.005) rank = 256 36 84 22 a5 206
rank = 64 28 118 21 12 1.6
rank = 16 50 84 53 59 159
rank =4 52 6.7 285 2.0 4.7
rank = | 0.3 2.5 327 1.2 8.0
unsesn bigrams commaon neighbors, § = 8 58 6.7 148 12 239
(weighted) common neighbors, § = 16 79 93 2885 51 193
Katz (§=0005), § =& 52 101 2232 28 179
Katz (8 = 0.005), § = 16 6.6 10.1 206 a7 15.3
unseen bigrams common neighbors, § =8 54 5.1 137 45 213
{unweighted ) common neighbors, § = 16 63 84| 253 18 219
Katz (§=0.005), §=8 11 7.6 2232 20 173
Hatz (3= 0.005), § = 16 43 42 285 31 16.6
clustaring: p=010 12 42 3T 71 EXS
Katz (8 = 0001, 5 =0.1) p=0135 16 42 »n7 76 6.6
p=020 23 59 74 4.5 80
p=102% 20 118 6.3 6.8 53




Evaluation: the breadth of data

Three additional datasets

1. Proceedings of STOC and FOCS

2. Papers for Citeseer

3. Allfive of the arXiv sections

Common neighbors vs Random

STOC/FOCS

arXiv sections

combined arXiv sections

Citeseor

6.1

18.0—46.9

7.2

147.0




Future Directions

** Improve performance. Even the best (Katz clustering on gr-qc) correct on only
about 16% of its prediction

* Improve efficiency on very large networks (approximation of distances)

¢ Treat more recent collaborations as more important

s Additional information (paper titles, author institutions, etc)
To some extent latently presentin the graph



Future Directions

¢ Consider bipartite graph (e.g., some form of an affiliation network)

author paper
Coauthor graph

A
0

s

s Apply classification techniques from machine learning
A simple binary classification problem: given two nodes x and y
predict whether <x, y>is 1 or 0






Aaron Clauset, Cristopher Moore & M. E. J. Newman.
Nature, 453, 98-101 (2008)



. Dendrogram D a binary tree with n leaves
Graph G with n nodes Each internal node corresponds to the group of
nodes that descend from it

Each internal node r of the dendrogram is associated with a probability p, that a pair
of vertices in the left and right subtrees of that node are connected

Given two nodes i and j of G the probability p; that they are connected by an edge is
equal to p, where r is their lowest common ancestor
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graph Possible dendrogram

Assortativity (dense connections within groups of nodes and sparse between
them) -> probabilities p, decrease as we move up the tree

¢ Given D and the probabilities p, we can generate a graph, called a
hierarchical random graph

D: topological structure and parameters {p,}



Use to predict missing interactions in the network

= Given an observed but incomplete network, generate a set of
hierarchical random graphs (i.e., a dendrogam and the associated
probabilities) that fit the network (using statistical inference)

= Then look for pair of nodes that have a high probability of connection

Experiments show that link prediction works well for strongly
assortative networks (e.g, collaboration, citation) but not for
networks that exhibit more general structure (e.g., food webs)



r a node in dendrogram D

E, the number of edges in G whose endpoints
have r as their lowest common ancestor in D,
L, and R, the numbers of leaves in the left and
right subtrees rooted at r

Then the likelihood of the hierarchical
random graph is

f ~H.—E,
(D {p.}) = [ pF

J"cf}

If we fix the dendrogram D, it is easy to find the

probabilities {p,} that maximize L(D, {p,}). For eachr,

they are given by the fraction of potential edges
between the two subtrees of r that actually appear
in the graph G.

r = T.R,
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L(D1) = (1/9)(8/9)% = 0.0433..
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L(D2) = (1/3)(2/3)2(1/4)2(3/4)5 =0.0165 ..



Sample dendrograms D with probability proportional to their likelihood

v'Choose an internal node uniformly at random and consider one of the

two ways to reshuffle
v'Always accept the transition if it increases the likelihood else accept

with some probability




An undirected network G(V, E)

Predict Missing links (links not in E)

To test, randomly divide E into a training set ET and a probe (test) set EP
Apply standard techniques (k-fold cross validation)

Each time we randomly pick a missing link and a nonexistent link to compare
their scores

If among n independent comparisons, there are n’ times the missing link
having a higher score and n” times they have the same score, the AUC value is

n"+ 0.5n"
n

AUC =

= the probability that a randomly chosen missing link is given a higher score
than a randomly chosen nonexistent link

= |f all the scores are generated from an independent and identical distribution,
the AUC value should be about 0.5.



Whaole graph Training graph

Algorithm assigns scores of all non-observed links as
s12=0.4,s13=0.5,s14=0.6, s34 =0.5 and s45 = 0.6.

To calculate AUC, compare the scores of a probe (missing) link and a nonexistent
link.

(n=) 6 pairs: s13 >s12,s13 <s14, s13 =534, s45 > s12, s45 =514, s45 > s34,
AUC=(3x1+2x0.5)/6=0.67.



