
Online Social Networks and
Media

Absorbing Random Walks

Link Prediction

Why does the Power Method work?

• If a matrix R is real and symmetric, it has real eigenvalues and
eigenvectors: 𝜆1, 𝑤1 , 𝜆2, 𝑤2 , … , (𝜆𝑟 , 𝑤𝑟)
– r is the rank of the matrix

– |𝜆1 ≥ |𝜆2 ≥ ⋯ ≥ 𝜆𝑟

• The vector space of R is the set of vectors that can be written as a linear
combination of its rows (or columns)

• The eigenvectors 𝑤1, 𝑤2, … , 𝑤𝑟 of R define a basis of the vector space
– For any vector 𝑥, 𝑅𝑥 = 𝛼1𝑤1 + 𝑎2𝑤2 +⋯+ 𝑎𝑟𝑤𝑟

• After t multiplications we have:

– 𝑅𝑡𝑥 = 𝜆1
𝑡−1𝛼1𝑤1 + 𝜆2

𝑡−1𝑎2𝑤2 +⋯+ 𝜆2
𝑡−1𝑎𝑟𝑤𝑟

• Normalizing leaves only the term 𝑤1.

ABSORBING RANDOM WALKS
LABEL PROPAGATION
OPINION FORMATION ON SOCIAL
NETWORKS

Random walk with absorbing nodes

• What happens if we do a random walk on this
graph? What is the stationary distribution?

• All the probability mass on the red sink node:
– The red node is an absorbing node

Random walk with absorbing nodes

• What happens if we do a random walk on this graph?
What is the stationary distribution?

• There are two absorbing nodes: the red and the blue.

• The probability mass will be divided between the two

Absorption probability

• If there are more than one absorbing nodes in
the graph a random walk that starts from a
non-absorbing node will be absorbed in one
of them with some probability

– The probability of absorption gives an estimate of
how close the node is to red or blue

Absorption probability

• Computing the probability of being absorbed:
– The absorbing nodes have probability 1 of being absorbed

in themselves and zero of being absorbed in another node.
– For the non-absorbing nodes, take the (weighted) average

of the absorption probabilities of your neighbors
• if one of the neighbors is the absorbing node, it has probability 1

– Repeat until convergence (= very small change in probs)

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
2

3

2

2

1

1

1
2

1

Absorption probability

• Computing the probability of being absorbed:
– The absorbing nodes have probability 1 of being absorbed

in themselves and zero of being absorbed in another node.
– For the non-absorbing nodes, take the (weighted) average

of the absorption probabilities of your neighbors
• if one of the neighbors is the absorbing node, it has probability 1

– Repeat until convergence (= very small change in probs)

𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝐵𝑙𝑢𝑒|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

2

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

3

2

2

1

1

1
2

1

Why do we care?

• Why do we care to compute the absorbtion probability
to sink nodes?

• Given a graph (directed or undirected) we can choose
to make some nodes absorbing.
– Simply direct all edges incident on the chosen nodes

towards them.

• The absorbing random walk provides a measure of
proximity of non-absorbing nodes to the chosen nodes.
– Useful for understanding proximity in graphs
– Useful for propagation in the graph

• E.g, on a social network some nodes have high income, some have
low income, to which income class is a non-absorbing node closer?

Example

• In this undirected graph we want to learn the
proximity of nodes to the red and blue nodes

2

2

1

1

1
2

1

Example

• Make the nodes absorbing

2

2

1

1

1
2

1

Absorption probability

• Compute the absorbtion probabilities for red
and blue

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

3

0.52
0.48

0.42
0.58

0.57
0.43 2

2

1

1

1
2

1
𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 = 1 − 𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 = 1 − 𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 = 1 − 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤

Penalizing long paths

• The orange node has the same probability of
reaching red and blue as the yellow one

• Intuitively though it is further away 0.52
0.48

0.42
0.58

0.57
0.43 2

2

1

1

1
2

1𝑃 𝐵𝑙𝑢𝑒 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 1

𝑃 𝑅𝑒𝑑 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤

0.57
0.43

Penalizing long paths

• Add an universal absorbing node to which
each node gets absorbed with probability α.

1-α
α

α

α α

1-α
1-α

1-α

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 = (1 − 𝛼)
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

With probability α the random walk dies

With probability (1-α) the random walk
continues as before

The longer the path from a node to an
absorbing node the more likely the random
walk dies along the way, the lower the
absorbtion probability

Propagating values

• Assume that Red has a positive value and Blue a negative
value
– Positive/Negative class, Positive/Negative opinion

• We can compute a value for all the other nodes in the same
way
– This is the expected value for the node

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
−
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
−
1

6

+1

-1

0.05 -0.16

0.16 2

2

1

1

1
2

1

Electrical networks and random walks

• Our graph corresponds to an electrical network
• There is a positive voltage of +1 at the Red node, and a negative

voltage -1 at the Blue node
• There are resistances on the edges inversely proportional to the

weights (or conductance proportional to the weights)
• The computed values are the voltages at the nodes

+1

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
−
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
−
1

6

+1

-1
2

2

1

1

1
2

1

0.05 -0.16

0.16

Opinion formation

• The value propagation can be used as a model of opinion formation.
• Model:

– Opinions are values in [-1,1]
– Every user 𝑢 has an internal opinion 𝑠𝑢, and expressed opinion 𝑧𝑢.
– The expressed opinion minimizes the personal cost of user 𝑢:

𝑐 𝑧𝑢 = 𝑠𝑢 − 𝑧𝑢
2 +

𝑣:𝑣 is a friend of 𝑢

𝑤𝑢 𝑧𝑢 − 𝑧𝑣
2

• Minimize deviation from your beliefs and conflicts with the society

• If every user tries independently (selfishly) to minimize their personal cost
then the best thing to do is to set 𝑧𝑢to the average of all opinions:

𝑧𝑢 =
𝑠𝑢 + 𝑣:𝑣 is a friend of 𝑢𝑤𝑢𝑧𝑢
1 + 𝑣:𝑣 is a friend of 𝑢𝑤𝑢

• This is the same as the value propagation we described before!

Example

• Social network with internal opinions

2

2

1

1

1
2

1

s = +0.5

s = -0.3

s = -0.1s = +0.2

s = +0.8

Example

2

2

1

1

1
2

1

1

1

1 1

1

s = +0.5

s = -0.3

s = -0.1s = -0.5

s = +0.8

The external opinion for each node is
computed using the value propagation we
described before

• Repeated averaging

Intuitive model: my opinion is a
combination of what I believe and what
my social network believes.

One absorbing node per user with
value the internal opinion of the user

One non-absorbing node per user that
links to the corresponding absorbing
node

z = +0.22z = +0.17

z = -0.03
z = 0.04

z = -0.01

Transductive learning

• If we have a graph of relationships and some labels on some nodes
we can propagate them to the remaining nodes
– Make the labeled nodes to be absorbing and compute the probability

for the rest of the graph
– E.g., a social network where some people are tagged as spammers
– E.g., the movie-actor graph where some movies are tagged as action

or comedy.

• This is a form of semi-supervised learning
– We make use of the unlabeled data, and the relationships

• It is also called transductive learning because it does not produce a
model, but just labels the unlabeled data that is at hand.
– Contrast to inductive learning that learns a model and can label any

new example

Implementation details

• Implementation is in many ways similar to the
PageRank implementation
– For an edge (𝑢, 𝑣)instead of updating the value of

v we update the value of u.
• The value of a node is the average of its neighbors

– We need to check for the case that a node u is
absorbing, in which case the value of the node is
not updated.

– Repeat the updates until the change in values is
very small.

LINK PREDICTION

Link prediction problem: Given the links in a social network at
time t, predict which edges that will be added to the network

Which features to use?
User characteristics (profile), network interactions, topology

 Different from the problem of inferring missing (hidden) links (there
is a temporal aspect, uses a static snapshot)

To save experimental effort in the laboratory or in the field

The Problem

Applications

 Recommending new friends on online social networks.
 Predicting the participants or actors in events
 Suggesting interactions between the members of a
company/organization
 Predicting connections between members of terrorist
organizations who have not been directly observed to work
together
 Suggesting collaborations between researchers based on
co-authorship.

 Network evolution model

Link Prediction

Unsupervised (usually, assign scores based on similarity of endpoints)

Supervised (given some positive (created edges) and negative
examples (nonexistent edges)

Classification Problem

Problem: Class imbalance

Instead of 0/1, rank each edge by its probability to appear in the network

D. Liben-Nowell, D. and J. Kleinberg, The link-prediction problem for
social networks. Journal of the American Society for Information Science
and Technology, 58(7) 1019–1031 (2007)

Link prediction problem: Given the links in a social network at
time t, predict the edges that will be added to the network
during the time interval from time t to a given future time t’

Which features to use?

Based solely on the topology of the network (social proximity) (the
more general problem also considers attributes of the nodes and links)

The Problem

Problem Formulation I

Consider a social network G = (V, E) where each edge e = <y, v> E represents an
interaction between u and v that took place at a particular time t(e)

(multiple interactions between two nodes as parallel edges with different timestamps)

G[t, t′]: subgraph of G consisting of all edges with a timestamp between t and t′, t < t′,

 For four times, t0 < t′0 < t1 < t′1,
Given G[t0, t′0], we wish to output a list of edges not in G[t0, t′ 0] that are predicted to
appear in G[t1, t′1]

[t0, t′0] training interval
[t1, t′1] test interval

Problem Formulation II

What about new nodes (node not in the training interval)?

Two parameters: κtraining and κtest

Core: all nodes that are incident to at least κtraining edges in G[t0, t′0],
and at least κtest edges in G[t1, t′1]

Predict new edges between the nodes in Core

Example Dataset: co-authorship

t0 = 1994, t′0 = 1996: training interval -> [1994, 1996]
t1 = 1997, t′1 = 1999: test interval -> [1997, 1999]

- Gcollab = <A, Eold> = G[1994, 1996]
- Enew: authors in A that co-author a paper during the test interval but not during the
training interval

κtraining = 3, κtest = 3: Core consists of all authors who have written at least 3 papers
during the training period and at least 3 papers during the test period

Predict Enew

How to Evaluate the Prediction

Each link predictor p outputs a ranked list Lp of pairs in A × A − Eold : predicted
new collaborations in decreasing order of confidence

Actual edges:

E∗new = Enew ∩ (Core × Core), n = |E∗new|

How many of the top-n predictions are correct (precision?)

Evaluation method: Size of the intersection of
 the first n edge predictions from Lp that are in Core × Core (predicted)
and
 the set E∗new (actual)

Methods for Link Prediction

Assign a connection weight score(x, y) to each pair of nodes
<x, y> based on the input graph (Gcollab) and produce a
ranked list of decreasing order of score

How to assign the score between two nodes x and y?

Some form of similarity or node proximity

Most measures focus on the giant component

Methods for Link Prediction: Shortest
Path

For x, y ∈ A × A − Eold,
score(x, y) = (negated) length of shortest path between x and y

 If there are more than n pairs of nodes tied for the shortest path length,
order them at random.

Geodesic distance: number of edges in the shortest path

Methods for Link Prediction: Neighborhood-based

Let Γ(x) denote the set of neighbors of x in Gcollab

The “larger” the overlap of the neighbors of two nodes, the more likely to be
linked in the future

Common neighbors:

Jaccard coefficient:
The probability that both x and y have
a feature f, for a randomly selected
feature that either x or y has

A adjacency matrix -> Ax,y
2

Number of different paths of
length 2

Methods for Link Prediction: Neighborhood-based

Adamic/Adar:

 Assigns large weights to common neighbors z
of x and y which themselves have few neighbors
(weight rare features more heavily)

connections to “unpopular” nodes are more relevant

Methods for Link Prediction: Neighborhood-based

Preferential attachment:

 Researchers found empirical evidence to
suggest that co-authorship is correlated with the
product of the neighborhood sizes

the probability that a new edge has node x as its endpoint is proportional
to |Γ(x)|, i.e., nodes like to form ties with ‘popular’ nodes

Methods for Link Prediction: based on the ensemble
of all paths

Not just the shortest, but all paths between two nodes

Methods for Link Prediction: based on the ensemble
of all paths

Katzβ measure:

Sum over all paths of length l, β > 0 is a parameter of the predictor,
exponentially damped to count short paths more heavily
Small β predictions much like common neighbors

1. Unweighted version, in which pathx,y
(1) = 1, if x and y have

collaborated, 0 otherwise
2. Weighted version, in which pathx,y

(1) = #times x and y have
collaborated

Methods for Link Prediction: based on the ensemble
of all paths

Consider a random walk on Gcollab that starts at x and iteratively moves to a
neighbor of x chosen uniformly at random from Γ(x).

The Hitting Time Hx,y from x to y is the expected number of steps it takes for the
random walk starting at x to reach y.

score(x, y) = −Hx,y

(symmetric version) The Commute Time Cx,y from x to y is the expected number of
steps to travel from x to y and from y to x

score(x, y) = − (Hx,y + Hy,x)

Can also consider stationary-normed versions:
score(x, y) = − Hx,y πy

score(x, y) = −(Hx,y πy + Hy,x πx)

Methods for Link Prediction: based on the ensemble
of all paths

The hitting time and commute time measures are sensitive to parts of the graph far
away from x and y -> periodically reset the walk

score(x, y) = stationary probability of y in a rooted PageRank

Random walk on Gcollab that starts at x and has a probability of α of returning to x at
each step.

Rooted (Personalized) Page Rank: Starts from x, with probability (1 – a) moves to
a random neighbor and with probability a returns to x

Methods for Link Prediction: based on the ensemble
of all paths

score(x, y) = similarity(x, y)

SimRank

The expected value of γl where l is a random variable giving the time at which
random walks started from x and y first meet

Methods for Link Prediction: High-level approaches

Low rank approximations

A adjacency matrix

Apply SVD (singular value decomposition)

The rank-k matrix that best approximates A

Methods for Link Prediction: High-level approaches

Unseen Bigrams

Unseen bigrams: pairs of word that co-occur in a test corpus, but not in the
corresponding training corpus
Not just score(x, y) but score(z, y) for nodes z that are similar to x

Sx
(δ) the δ nodes most related to x

Methods for Link Prediction: High-level approaches

Clustering

 Compute score(x, y) for al edges in Eold

 Delete the (1-p) fraction of these edges for which the score is the
lowest, for some parameter p

 Recompute score(x, y) for all pairs in the subgraph

Evaluation: baseline

Baseline: random predictor
Randomly select pairs of authors who did not collaborate in the training
interval

Probability that a random prediction is correct,

In the datasets, from 0.15% (cond-mat) to 0.48% (astro-ph)

Number of
possible
predictions

Correct
predictions

Evaluation: Factor improvement over random

Evaluation: Factor improvement over random

Evaluation: Average relevance performance (random)

average ratio over the five datasets of
the given predictor's performance versus
a baseline predictor's performance.

The error bars indicate the minimum and
maximum of this ratio over the five
datasets.

The parameters for the starred
predictors are as follows: (1) for
weighted Katz, β= 0.005; (2) for Katz
clustering, β1 = 0.001; ρ = 0.15; β2 = 0.1;
(3) for low-rank inner product, rank =
256; (4) for rooted Pagerank, α = 0.15;
(5) for unseen bigrams, unweighted
common neighbors with δ = 8; and (6)
for SimRank, γ = 0.8.

Evaluation: Average relevance performance (distance)

Evaluation: Average relevance performance (neighbors)

Evaluation: prediction overlap

correct

 How much similar are the
predictions made by the
different methods (common
predictions)?

Why?

Evaluation: datasets

 How much does the performance of the different methods depends on the
dataset?

 (rank) On 4 of the 5 datasets best at an intermediate rank
On qr-qc, best at rank 1, does it have a “simpler” structure”?

 On hep-ph, preferential attachment the best
 Why is astro-ph “difficult”?
The culture of physicists and physics collaboration

Evaluation: small world

The shortest path even in unrelated disciplines is often very short

Evaluation: restricting to distance three

Many pairs of authors separated by a
graph distance of 2 who will not
collaborate and many pairs who
collaborate at distance greater than 2

Disregard all distance 2 pairs

Evaluation: the breadth of data

Three additional datasets
1. Proceedings of STOC and FOCS
2. Papers for Citeseer
3. All five of the arXiv sections

Common neighbors vs Random

Future Directions

 Improve performance. Even the best (Katz clustering on gr-qc) correct on only
about 16% of its prediction

 Improve efficiency on very large networks (approximation of distances)

 Treat more recent collaborations as more important

 Additional information (paper titles, author institutions, etc)
To some extent latently present in the graph

Future Directions

 Consider bipartite graph (e.g., some form of an affiliation network)

Coauthor graph
author paper

 Apply classification techniques from machine learning
A simple binary classification problem: given two nodes x and y
predict whether <x, y> is 1 or 0

Aaron Clauset, Cristopher Moore & M. E. J. Newman. Hierarchical structure
and the prediction of missing links in network, Nature, 453, 98-101 (2008)

Hierarchical Random Graphs

Graph G with n nodes

Given two nodes i and j of G the probability pij that they are connected by an edge is
equal to pr where r is their lowest common ancestor

Each internal node r of the dendrogram is associated with a probability pr that a pair
of vertices in the left and right subtrees of that node are connected

Dendrogram D a binary tree with n leaves
Each internal node corresponds to the group of
nodes that descend from it

Hierarchical Random Graphs

 Given D and the probabilities pr, we can generate a graph, called a
hierarchical random graph

D: topological structure and parameters {pr}

Assortativity (dense connections within groups of nodes and sparse between
them) -> probabilities pr decrease as we move up the tree

Example

graph Possible dendrogram

Hierarchical Random Graphs

Use to predict missing interactions in the network

 Given an observed but incomplete network, generate a set of
hierarchical random graphs (i.e., a dendrogam and the associated
probabilities) that fit the network (using statistical inference)

 Then look for pair of nodes that have a high probability of connection

Is this better than link prediction?

Experiments show that link prediction works well for strongly
assortative networks (e.g, collaboration, citation) but not for
networks that exhibit more general structure (e.g., food webs)

A rough idea of how to generate the
model

r a node in dendrogram D
Er the number of edges in G whose endpoints
have r as their lowest common ancestor in D,
Lr and Rr the numbers of leaves in the left and
right subtrees rooted at r

If we fix the dendrogram D, it is easy to find the
probabilities {pr} that maximize L(D, {pr}). For each r,
they are given by the fraction of potential edges
between the two subtrees of r that actually appear
in the graph G.

Then the likelihood of the hierarchical
random graph is

L(D2) = (1/3)(2/3)2(1/4)2(3/4)6 = 0.0165 ..

L(D1) = (1/9)(8/9)8 = 0.0433..

A rough idea of how to generate the
model

Sample dendrograms D with probability proportional to their likelihood

Choose an internal node uniformly at random and consider one of the
two ways to reshuffle
Always accept the transition if it increases the likelihood else accept
with some probability

How to Evaluate the Prediction (other)

An undirected network G(V, E)
Predict Missing links (links not in E)
To test, randomly divide E into a training set ET and a probe (test) set EP

Apply standard techniques (k-fold cross validation)

 the probability that a randomly chosen missing link is given a higher score
than a randomly chosen nonexistent link
 If all the scores are generated from an independent and identical distribution,
the AUC value should be about 0.5.

Each time we randomly pick a missing link and a nonexistent link to compare
their scores
If among n independent comparisons, there are n′ times the missing link
having a higher score and n′′ times they have the same score, the AUC value is

How to Evaluate the Prediction (other)

Algorithm assigns scores of all non-observed links as
s12 = 0.4, s13 = 0.5, s14 = 0.6, s34 = 0.5 and s45 = 0.6.

To calculate AUC, compare the scores of a probe (missing) link and a nonexistent
link.
(n=) 6 pairs: s13 > s12, s13 < s14, s13 = s34, s45 > s12, s45 = s14, s45 > s34.
AUC = (3 × 1 + 2 × 0.5)/6 ≈ 0.67.

