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Section 10.2.4, from A. Rajaraman,  J. Ullman, J. Leskovec 

 



Centrality Measures 

 Not all nodes are equally important 

 Centrality Analysis:  

 Find out the most important nodes in one network 

 

 Commonly-used Measures 

 Degree Centrality 

 Closeness Centrality 

 Betweenness Centrality 

 Eigenvector Centrality 



Degree Centrality 
 The importance of a node is determined by the number of 

nodes adjacent to it 
 The larger the degree, the more import the node is 

 Only a small number of nodes have high degrees in many real-life 
networks 

 Degree Centrality 

 

 Normalized Degree Centrality:   

 
For node 1, degree centrality is 3; 
Normalized degree centrality is  

3/(9-1)=3/8. 
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Degree Centrality (normalized) 



Freeman’s general formula for centralization (can use other metrics, e.g. gini 
coefficient or standard deviation): 
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How much variation is there in the centrality scores among the 
nodes? 

maximum value in the network 

Degree Centralization: how equal 
are the nodes? 



CD = 0.167 

CD = 0.167 

CD = 1.0 

Degree Centralization 



example financial trading networks 

high centralization: one node 
trading with many others 

low centralization: trades are 
more evenly distributed 

Degree Centralization 



when degree isn’t everything 
In what ways does degree fail to capture centrality in the 
following graphs? 



Closeness Centrality 

 “Central” nodes are important, as they can reach the whole 
network more quickly than non-central nodes 

 Importance measured  by how close a node is to other nodes 

 

 Average Distance: 

 

 Closeness Centrality  
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Closeness Centrality Example 

Node 4 is more central than node 3 11 
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Closeness Centrality Example 



Closeness Centrality Example 



Betweenness Centrality 

 Node betweenness counts the number of shortest paths that pass one 
node 

 Nodes with high betweenness are important in communication and 
information diffusion 

 

 Betweenness Centrality 

 

 

 The number of shortest paths between s and t 

The number of shortest paths between s and t that pass vi 
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Betweenness Centrality Example 

The number of shortest paths between s and t 

The number of shortest paths between s and t that pass vi 

What’s the betweenness centrality  for node 5? 
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Blue (max) 
Red (0) 

Betweenness Centrality Example 



Eigenvector Centrality 

 One’s importance is determined by one’s friends 

 If one has many important friends, one should be important 
as well.  

 

 

 

 

 The centrality corresponds to the top eigenvector of the 
adjacency matrix A.  

 A variant of this eigenvector centrality is the PageRank score. 
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Betweenness and Graph Partitioning 

Graph partitioning: 
Given a network dataset, how to identity densely connected 
groups of nodes within it 

Co-authorship network of physicists and applied 
mathematicians 

Karate club 



Betweenness and Graph Partitioning 

 Divisive methods: try to identify and remove the “spanning 
links” between densely-connected regions 
 Agglomerative methods: Find nodes that are likely to belong 
to the same region and merge them together (bottom-up) 



Girvan and Newman 

 Divisive method 

Finding bridges and local bridges? 
 
Which one to choose? 



Girvan and Newman 

There is no local bridge 



Edge Betweenness 
Betweenness of an edge (a, b): number of pairs of nodes x and y such that the edge (a, b) 
lies on the shortest path between x and y - since there can be several such  shortest paths 
edge (a, b) is credited with the fraction of those shortest paths that include (a, b). 

7x7 = 49 

3x11 = 33 

1 

1x12 = 12 

Edges that have a high probability to occur on a randomly chosen shortest path between 
two randomly chosen nodes have a high betweenness. 

Traffic (unit of flow) 
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Girvan and Newman 

1. The betweenness of all existing edges in the network is calculated 
first. 
2. The edge with the highest betweenness is removed. 
 If this separates the  graph -> partition. 
3. The betweenness of all edges affected by the removal is recalculated. 
 
Steps 2 and 3 are repeated until no edges remain. 



Girvan Newman method: An example 

Betweenness(7, 8)= 7x7 = 49 

Betweenness(3, 7)=Betweenness(6-7)=Betweenness(8, 9) = Betweenness(8, 12)= 3X11=33 

Betweenness(1, 3) = 1X12=12 



Girvan Newman method: An example 

Betweenness(3,7)=Betweenness(6,7)=Betweenness(8-9) = Betweenness(8,12)= 3X4=12 

Betweenness(1, 3) = 1X5=5 



Girvan Newman method: An example 

Betweenness of every edge = 1 



Girvan Newman method: An example 



Another example 

5X5=25 



Another example 

5X6=30 5X6=30 



Another example 



Girvan and Newman 

34 president  
1 instructor 
Correct but node 9 (attached it to 34) – why? 3 weeks away 
from getting a black belt 

Minimum cut approach – the same outcome 



Computing Betweenness 

1. Perform a BFS starting from A 
2. Determine the shortest path from A to each other node 
3. Based on these numbers, determine the amount of flow 

from A to all other nodes that uses each edge 



Step 1 

Initial network BFS on A 



Step 2 

Count how many shortest paths 
from A to a specific node 

Level 1 

Level 3 

Level 2 

Level 4 
Top-down 



Step 3 

For each edge e: calculate the sum over 
all nodes Y of the fraction of shortest 
paths from the root A to Y that go 
through e. 
 
Each edge (X, Y) participates in the 
shortest-paths from the root to Y and 
to nodes (at levels) below Y -> Bottom 
up calculation 

e 



Step 3 

Count the flow through each 
edge 
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Portion of the 
shortest paths to K 
that go through (I, K) 
= 3/6 = 1/2 

Portion of the shortest paths 
to  I that go through (F, I) = 2/3 
+   
Portion of the shortest paths 
to K that go through (F, I) 
(1/2)(2/3) = 1/3 
= 1 
 

1/3+(1/3)1/2 = 1/2 



Step 3: formula 

(X, Y) 
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Computing Betweenness 

Repeat the process for all nodes 
 
Sum over all BFSs 



Example 



Example 



Computing Betweenness 

Issues 
 
 Test for connectivity? 

 
 Re-compute all paths, or only those affected 
 
 Parallel computation 
 
 “Sampling 



Other approaches to graph 
partitioning 

• The general problem 

– Input: a graph G=(V,E) 
• edge (u,v) denotes similarity between u and v 

• weighted graphs: weight of edge captures the degree of similarity 

– Partitioning as an optimization problem:  
• Partition the nodes in the graph such that nodes within clusters 

are well interconnected (high edge weights), and nodes across 
clusters are sparsely interconnected (low edge weights) 

• most graph partitioning problems are NP hard 



Measuring connectivity 

• What does it mean that a set of nodes are well or sparsely 
interconnected? 

 

• min-cut: the min number of edges such that when removed 
cause the graph to become disconnected 
– small min-cut implies sparse connectivity 

–   

U V-U 

    
 


Ui UVj

U
ji,AUVU,E min

This problem can be solved in polynomial time 
 
Min-cut/Max-flow algorithm 



Measuring connectivity 

• What does it mean that a set of nodes are well 
interconnected? 

 

• min-cut: the min number of edges such that when removed 
cause the graph to become disconnected 
– not always a good idea! 

U U V-U V-U 



A bad example 



Graph expansion 

• Normalize the cut by the size of the smallest 
component 

• Cut ratio: 

 

• Graph expansion: 

 

 

• Other Normalized Cut Ratio: 
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𝛽 =  
E(U,V−U)

𝑉𝑜𝑙(𝑈)
 + 

E(U,V−U)

𝑉𝑜𝑙(𝑉−𝑈)
 

Vol(U) = number of edges with one endpoint in U 
            = total degree of nodes in U 



Spectral analysis 

• The Laplacian matrix L = D – A where 

– A = the adjacency matrix 

– D = diag(d1,d2,…,dn) 

• di = degree of node i 

 

• Therefore 

– L(i,i) = di 

– L(i,j) = -1, if there is an edge (i,j) 



Laplacian Matrix properties 

• The matrix L is symmetric and positive semi-
definite 

– all eigenvalues of L are positive 

 

• The matrix L has 0 as an eigenvalue, and 
corresponding eigenvector w1 = (1,1,…,1) 

– λ1 = 0 is the smallest eigenvalue 



The second smallest eigenvalue 

• The second smallest eigenvalue (also known 
as Fielder value) λ2 satisfies 

 

 

• The eigenvector for eigenvalue λ2 is called the 
Fielder vector. It minimizes  

Lxxminλ T

1x,wx
2

1 


 





Ej)(i,

2

ji
0x

2 xxminλ where   
i i 0x



Spectral ordering 

• The values of x minimize 

 

 

• For weighted matrices 

 

 

• The ordering according to the xi values will group similar 
(connected) nodes together 

 

• Physical interpretation: The stable state of springs placed on 
the edges of the graph   
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Spectral partition 

• Partition the nodes according to the ordering induced 
by the Fielder vector 

• If u = (u1,u2,…,un) is the Fielder vector, then split 
nodes according to a threshold value s 

– bisection: s is the median value in u 

– ratio cut: s is the value that minimizes α 

– sign: separate positive and negative values (s=0) 

– gap: separate according to the largest gap in the values of u 

• This works well (provably for special cases) 



Fielder Value 

• The value λ2 is a good approximation of the graph expansion 
 
 
 
 
 
 

• For the minimum ratio cut of the Fielder vector we have that 
 
 
 
 

• If the max degree d is bounded we obtain a good approximation of the 
minimum expansion cut 

α(G)λ
2d

α(G)
2

2

2

 22
2 λ2dλα(G)

2

λ


d = maximum degree 

α(G)λ
2d

α
2

2

2



NETWORKS AND SURROUNDING 
CONTEXTS 

Chapter 4, from D. Easley and J. Kleinberg book 

 



Introduction 

Surrounding context: factors other than node and edges that 
affect how the network structure evolves 

Homophily: people tend to be similar to their friends 
Αριστοτέλης love those who are like themselves 
Πλάτωνα Όμοιος ομοίω αεί πελάζει (similarity begets friendship) 
Birds of a feather flock together 

Factors intrinsic to the network (introduced by a common friend) and contextual 
factors (eg attend the same school)  



Homophily 
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Measuring Homophily 

If the fraction of cross-gender edges is 
significantly less than expected, then there is 
evidence for homophily  

gender male with probability p 
gender female with probability q 
 

Probability of cross-gender edge?  

pq
edges

edgesgendercross
2

#

__#




Measuring Homophily 

 “significantly” less than 
 Inverse homophily 
 Characteristics with more than two values: 

 Number of heterogeneous edges (edge between 
two nodes that are different) 



Mechanisms Underlying Homophily: 

Selection and Social Influence 

Selection: tendency of people to form friendships with 
others who are like then 

Socialization or Social Influence: the existing social 
connections in a network are influencing the individual 
characteristics of the individuals 

Social Influence as the inverse of Selection 

Mutable & immutable characteristics 



The Interplay of Selection and Social 
Influence 

Longitudinal studies in which the social connections and 
the behaviors within a group are tracked over a period of 
time 

Why? 
- Study teenagers, scholastic achievements/drug use 
(peer pressure and selection)  
- Relative impact? 
- Effect of possible interventions (example, drug use) 



Christakis and Fowler on obesity, 12,000 people over a period of 32-years 
 
People more similar on obesity status to the network neighbors than if 
assigned randomly 
 
Why? 
(i) Because of selection effects, choose friends of similar obesity status, 
(ii) Because of confounding effects of homophily according to other 
characteristics that correlate with obesity 
(iii) Because changes in the obesity status of person’s friends was exerting 
an influence that affected her 
 
(iii) As well -> “contagion” in a social sense 

The Interplay of Selection and Social 
Influence 



Tracking Link Formation in Online Data: interplay 
between selection and social influence 

 Underlying social network 
 Measure for behavioral similarity 

Wikipedia 
Node: Wikipedia editor who maintains a user account and user talk page 
Link: if they have communicated with one writing on the user talk page of the other 
 
Editor’s behavior:  set of articles she has edited  
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Neighborhood overlap in the bipartite affiliation network 
of editors and articles consisting only of edges between 
editors and the articles they have edited 

FACT: Wikipedia editors who have communicated are significantly more similar in their 
behavior than pairs of Wikipedia editors who have not (homomphily), why? 
Selection (editors form connections with those have edited the same articles) vs Social 
Influence (editors are led  to the articles of people they talk to) 



Tracking Link Formation in Online Data: interplay 
between selection and social influence 

Actions in Wikipedia are time-stamped 
For each pair of editors A and B who have ever communicated,   

o Record their similarity over time 
o Time 0 when they first communicated -- Time moves in discrete units, advancing by one “tick” 
whenever either A or B performs an action on Wikipedia 
o Plot one curve for each pair of editors 

Average, single plot: average level of similarity relative to the time of first interaction 

Similarity is clearly increasing both before 
and after the moment of first interaction 
(both selection and social influence) 
Not symmetric around time 0 (particular 
role on similarity): Significant increase 
before they meet 
Blue line shows similarity of  a random 
pair (non-interacting) 


