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Illustrating Classification Task 

Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning 
algorithm

Training Set



Examples of Classification Task 

• Predicting tumor cells as benign or malignant 
 

• Classifying credit card transactions as legitimate or 
fraudulent 

 

• Categorizing news stories as finance,  
weather, entertainment, sports, etc 

 

• Identifying spam email, spam web pages, adult 
content 

 

• Categorizing web users, and web queries 

 



Evaluation of classification models 

• Counts of test records that are correctly (or 

incorrectly) predicted by the classification model 

• Confusion matrix 
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Example of a Decision Tree 

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund 

MarSt 

TaxInc 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 

Splitting Attributes 

Training Data Model:  Decision Tree 



Apply Model to Test Data 

Refund 

MarSt 

TaxInc 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data 

Start from the root of tree. 



Apply Model to Test Data 

Refund 

MarSt 

TaxInc 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data 



Apply Model to Test Data 
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YES NO 

NO 

NO 
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No Married 80K ? 
10 

 

Test Data 



Apply Model to Test Data 

Refund 

MarSt 

TaxInc 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 
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Income Cheat 

No Married 80K ? 
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Test Data 



Apply Model to Test Data 

Refund 

MarSt 

TaxInc 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data 



Apply Model to Test Data 

Refund 

MarSt 

TaxInc 

YES NO 

NO 

NO 

Yes No 

Married  Single, Divorced 

< 80K > 80K 

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data 

Assign Cheat to “No” 



Decision Tree Classification Task 

Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Tree

Induction

algorithm

Training Set

Decision 

Tree 



Decision Tree Induction 

• Many Algorithms: 

• Hunt’s Algorithm (one of the earliest) 

• CART 

• ID3, C4.5 

• SLIQ,SPRINT 



General Structure of Hunt’s Algorithm 

• Let Dt be the set of training 
records that reach a node t 

• General Procedure: 

• If Dt contains records that 
belong the same class yt, then 
t is a leaf node labeled as yt 

• If Dt is an empty set, then t is a 
leaf node labeled by the default 
class, yd 

• If Dt contains records that 
belong to more than one class, 
use an attribute test to split the 
data into smaller subsets.  

• Recursively apply the procedure 
to each subset. 

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Dt 

? 



Constructing decision-trees (pseudocode) 

GenDecTree(Sample S, Features F) 

1. If stopping_condition(S,F) = true then 

a. leaf = createNode() 

b. leaf.label= Classify(S) 

c. return leaf    

2. root = createNode() 

3. root.test_condition = findBestSplit(S,F) 

4. V = {v| v a possible outcome of root.test_condition} 

5. for each value vєV: 

a. Sv: = {s | root.test_condition(s) = v and s є S}; 

b. child = TreeGrowth(Sv ,F) ; 

c. Add child as a descent of root and label the edge (rootchild) as v  

6. return root 



Tree Induction 

• Greedy strategy. 

• At each node pick the best split 

 

• How to determine the best split? 

• Find the split that minimizes impurity 

• How to decide when to stop splitting? 

 



How to determine the Best Split 

• Greedy approach:  

• Nodes with homogeneous class distribution are 

preferred 

• Need a measure of node impurity: 

 
C0: 5

C1: 5

C0: 9

C1: 1

Non-homogeneous, 

High degree of impurity 

Homogeneous, 

Low degree of impurity 



Measuring Node Impurity 

• p(i|t): fraction of records associated with node t 

belonging to class i 
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Gain 

• Gain of an attribute split: compare the impurity 

of the parent node with the impurity of the child 

nodes  

 

 

• Maximizing the gain  Minimizing the weighted 

average impurity measure of children nodes 

• If I() = Entropy(), then Δinfo is called information 

gain 
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Splitting based on impurity 

• Impurity measures favor attributes with large 

number of values 

 

• A test condition with large number of outcomes 

may not be desirable 

• # of records in each partition is too small to make 

predictions 



Gain Ratio 

• Gain Ratio:  

 

 
 

 

Parent Node, p is split into k partitions 

ni is the number of records in partition i 
 

• Adjusts Information Gain by the entropy of the 
partitioning (SplitINFO). Higher entropy partitioning 
(large number of small partitions) is penalized! 

• Used in C4.5 

• Designed to overcome the disadvantage of Information 
Gain 

SplitINFO
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Comparison among Splitting Criteria 
For a 2-class problem: 

The different impurity measures are consistent 



Stopping Criteria for Tree Induction 

• Stop expanding a node when all the records 

belong to the same class 

 

• Stop expanding a node when all the records have 

similar attribute values 

 

• Early termination (to be discussed later) 



Decision Tree Based Classification 

• Advantages: 

• Inexpensive to construct 

• Extremely fast at classifying unknown records 

• Easy to interpret for small-sized trees 

• Accuracy is comparable to other classification 

techniques for many simple data sets 

 



Example: C4.5 

• Simple depth-first construction. 

• Uses Information Gain 

• Sorts Continuous Attributes at each node. 

• Needs entire data to fit in memory. 

• Unsuitable for Large Datasets. 

• Needs out-of-core sorting. 

 

• You can download the software from: 
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz 

 

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz


Other Issues 

• Data Fragmentation 

• Search Strategy 

• Expressiveness 

• Tree Replication 

 

 



Data Fragmentation 

• Number of instances gets smaller as you traverse 

down the tree 

 

• Number of instances at the leaf nodes could be 

too small to make any statistically significant 

decision 



Search Strategy 

• Finding an optimal decision tree is NP-hard 
 

• The algorithm presented so far uses a greedy, 

top-down, recursive partitioning strategy to 

induce a reasonable solution 
 

• Other strategies? 

• Bottom-up 

• Bi-directional 



Expressiveness 

• Decision tree provides expressive representation for 
learning discrete-valued function 

• But they do not generalize well to certain types of 
Boolean functions 
•  Example: parity function:  

• Class = 1 if there is an even number of Boolean attributes with truth 
value = True 

• Class = 0 if there is an odd number of Boolean attributes with truth 
value = True 

•  For accurate modeling, must have a complete tree 

 

• Not expressive enough for modeling continuous variables 

• Particularly when test condition involves only a single 
attribute at-a-time 



Decision Boundary 
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• Border line between two neighboring regions of different classes is known 

as decision boundary 

• Decision boundary is parallel to axes because test condition involves a 

single attribute at-a-time 

• The type of decision boundary of the classifier captures the expressiveness 

of the classifier 



Oblique Decision Trees 

x + y < 1 

Class = +  Class =      

• Test condition may involve multiple attributes 

• More expressive representation 

• Finding optimal test condition is computationally expensive 



Tree Replication 
P

Q R

S 0 1

0 1

Q

S 0

0 1

• Same subtree appears in multiple branches 



Practical Issues of Classification 

• Underfitting and Overfitting 

 

• Missing Values 

 

• Costs of Classification 



Underfitting and Overfitting (Example) 

500 circular and 500 

triangular data points. 

 

Circular points: 

0.5  sqrt(x1
2+x2

2)  1 

 

Triangular points: 

sqrt(x1
2+x2

2) > 0.5 or 

sqrt(x1
2+x2

2) < 1 



Underfitting and Overfitting 

Overfitting 

Underfitting: when model is too simple, both training and test errors are large  



Overfitting due to Noise  

Decision boundary is distorted by noise point 



Overfitting due to Insufficient Examples 

Lack of data points in the lower half of the diagram makes it difficult to 

predict correctly the class labels of that region  

- Insufficient number of training records in the region causes the decision 

tree to predict the test examples using other training records that are 

irrelevant to the classification task 



Notes on Overfitting 

• Overfitting results in decision trees that are more 

complex than necessary 

 

• Training error no longer provides a good estimate 

of how well the tree will perform on previously 

unseen records 

• The model does not generalize well 

 

• Need new ways for estimating errors 



Estimating Generalization Errors 

• Re-substitution errors: error on training ( e(t) ) 

• Generalization errors: error on testing ( e’(t)) 
 

• Methods for estimating generalization errors: 

• Optimistic approach:  e’(t) = e(t) 

• Pessimistic approach:  
•   For each leaf node: e’(t) = (e(t)+0.5)  

•   Total errors: e’(T) = e(T) + N  0.5 (N: number of leaf nodes) 

•   For a tree with 30 leaf nodes and 10 errors on training  
    (out of 1000 instances): 
          Training error = 10/1000 = 1% 

          Generalization error = (10 + 300.5)/1000 = 2.5% 

• Reduced error pruning (REP): 
•  uses validation dataset to estimate generalization 

    error 

• Validation set reduces the amount of training data. 



Occam’s Razor 

• Given two models of similar generalization errors,  

one should prefer the simpler model over the 

more complex model 

 

•  For complex models, there is a greater chance 

that it was fitted accidentally by errors in data 

 

•  Therefore, one should include model complexity 

when evaluating a model 



Minimum Description Length (MDL) 

• Cost(Model,Data) = Cost(Data|Model) + Cost(Model) 

• Cost is the number of bits needed for encoding. 

• Search for the least costly model. 

• Cost(Data|Model) encodes the misclassification errors. 

• Cost(Model) uses node encoding (number of children) 
plus splitting condition encoding. 

A B

A?

B?

C?
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0

1

Yes No

B1 B2

C1 C2

X y

X1 1

X2 0

X3 0

X4 1

… …
Xn 1

X y

X1 ?

X2 ?

X3 ?

X4 ?

… …
Xn ?



How to Address Overfitting 

• Pre-Pruning (Early Stopping Rule) 

• Stop the algorithm before it becomes a fully-grown tree 

• Typical stopping conditions for a node: 

•  Stop if all instances belong to the same class 

•  Stop if all the attribute values are the same 

• More restrictive conditions: 

•  Stop if number of instances is less than some user-specified 

threshold 

•  Stop if class distribution of instances are independent of the available 

features (e.g., using  2 test) 

•  Stop if expanding the current node does not improve impurity 

    measures (e.g., Gini or information gain). 



How to Address Overfitting… 

• Post-pruning 

• Grow decision tree to its entirety 

• Trim the nodes of the decision tree in a bottom-up 

fashion 

• If generalization error improves after trimming, replace 

sub-tree by a leaf node. 

• Class label of leaf node is determined from majority 

class of instances in the sub-tree 

• Can use MDL for post-pruning 



Example of Post-Pruning 

A?

A1

A2 A3

A4

Class = Yes 20 

Class = No 10 

Error = 10/30 

Training Error (Before splitting) = 10/30 

Pessimistic error = (10 + 0.5)/30 = 10.5/30 

Training Error (After splitting) = 9/30 

Pessimistic error (After splitting) 

 = (9 + 4  0.5)/30 = 11/30 

 PRUNE! 

Class = Yes 8 

Class = No 4 

Class = Yes 3 

Class = No 4 

Class = Yes 4 

Class = No 1 

Class = Yes 5 

Class = No 1 



Handling Missing Attribute Values 

• Missing values affect decision tree construction in 

three different ways: 

• Affects how impurity measures are computed 

• Affects how to distribute instance with missing value to 

child nodes 

• Affects how a test instance with missing value is 

classified 



Computing Impurity Measure 

Tid Refund Marital 
Status 

Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 ? Single 90K Yes 
10 

 

 
Class 
= Yes 

Class 
= No 

Refund=Yes 0 3 

Refund=No 2 4 
 

Refund=? 1 0 
 

Split on Refund: 

    Entropy(Refund=Yes) = 0 

    Entropy(Refund=No)  

    = -(2/6)log(2/6) – (4/6)log(4/6) = 0.9183 

    Entropy(Children)  

    = 0.3 (0) + 0.6 (0.9183) = 0.551 

Gain = 0.9  (0.8813 – 0.551) = 0.3303 

Missing 

value 

Before Splitting: 

    Entropy(Parent)  

    = -0.3 log(0.3)-(0.7)log(0.7) = 0.8813 



Distribute Instances 

Tid Refund Marital 
Status 

Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 
10 

 

Refund 
Yes No 

Class=Yes 0 

Class=No 3 
 

 

Cheat=Yes 2 

Cheat=No 4 
 

 

Refund 
Yes 

Tid Refund Marital 
Status 

Taxable 
Income Class 

10 ? Single 90K Yes 
10 

 

No 

Class=Yes 2 + 6/9 

Class=No 4 
 

 

Probability that Refund=Yes is 3/9 

Probability that Refund=No is 6/9 

Assign record to the left child with 

weight = 3/9 and to the right child with 

weight = 6/9 

Class=Yes 0 + 3/9 

Class=No 3 
 

 



Classify Instances 

Refund 

MarSt 

TaxInc 

YES NO 

NO 

NO 

Yes 
No 

Married  
Single,  

Divorced 

< 80K > 80K 

Married Single Divorced Total 

Class=No 3 1 0 4 

Class=Yes 6/9 1 1 2.67 

Total 3.67 2 1 6.67 

Tid Refund Marital 
Status 

Taxable 
Income Class 

11 No ? 85K ? 
10 

 

New record: 

Probability that Marital Status  

= Married is 3.67/6.67 

Probability that Marital Status 

={Single,Divorced} is 3/6.67 



Model Evaluation 

• Metrics for Performance Evaluation 

• How to evaluate the performance of a model? 

 

• Methods for Performance Evaluation 

• How to obtain reliable estimates? 

 

• Methods for Model Comparison 

• How to compare the relative performance among 

competing models? 

 



Model Evaluation 

• Metrics for Performance Evaluation 

• How to evaluate the performance of a model? 

 

• Methods for Performance Evaluation 

• How to obtain reliable estimates? 

 

• Methods for Model Comparison 

• How to compare the relative performance among 

competing models? 

 



Metrics for Performance Evaluation 

• Focus on the predictive capability of a model 

• Rather than how fast it takes to classify or build models, 

scalability, etc. 

• Confusion Matrix: 

PREDICTED CLASS 

 

 

ACTUAL 

CLASS 

Class=Yes Class=No 

Class=Yes a b 

Class=No c d 

a: TP (true positive) 

b: FN (false negative) 

c: FP (false positive) 

d: TN (true negative) 



Metrics for Performance Evaluation… 

 

 

 

 

 

 

• Most widely-used metric: 

 

PREDICTED CLASS 

 

 

ACTUAL 

CLASS 

Class=Yes Class=No 

Class=Yes a 

(TP) 

b 

(FN) 

Class=No c 

(FP) 

d 

(TN) 

FNFPTNTP

TNTP

dcba

da
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Limitation of Accuracy 

• Consider a 2-class problem 

• Number of Class 0 examples = 9990 

• Number of Class 1 examples = 10 

 

• If model predicts everything to be class 0, 

accuracy is 9990/10000 = 99.9 % 

• Accuracy is misleading because model does not detect 

any class 1 example 

 

 



Cost Matrix 

      PREDICTED CLASS 

 

 

ACTUAL 

CLASS 

C(i|j) Class=Yes Class=No 

Class=Yes C(Yes|Yes) C(No|Yes) 

Class=No C(Yes|No) C(No|No) 

C(i|j): Cost of misclassifying class j example as class i 



Computing Cost of Classification 

Cost 

Matrix 

PREDICTED CLASS 

 
ACTUAL 

CLASS 

C(i|j) + - 

+ -1 100 

- 1 0 

Model 

M1 

PREDICTED CLASS 

 
ACTUAL 

CLASS 

+ - 

+ 150 40 

- 60 250 

Model 

M2 

PREDICTED CLASS 

 
ACTUAL 

CLASS 

+ - 

+ 250 45 

- 5 200 

Accuracy = 80% 

Cost = 3910 

Accuracy = 90% 

Cost = 4255 



Cost vs Accuracy 

Count PREDICTED CLASS 

 

 

ACTUAL 

CLASS 

Class=Yes Class=No 

Class=Yes a b 

Class=No c d 

Cost PREDICTED CLASS 

 

 

ACTUAL 

CLASS 

Class=Yes Class=No 

Class=Yes p q 

Class=No q p 

N = a + b + c + d 

 

Accuracy = (a + d)/N 

 

Cost = p (a + d) + q (b + c) 

        = p (a + d) + q (N – a – d) 

        = q N – (q – p)(a + d) 

        = N [q – (q-p)  Accuracy]  

 

Accuracy is proportional to cost if 

1. C(Yes|No)=C(No|Yes) = q  

2. C(Yes|Yes)=C(No|No) = p 



Cost-Sensitive Measures 

FNFPTP

TP

cba

a

pr

rp

FNTP

TP

ba

a

FPTP

TP

ca

a






















2

2

2

22
(F) measure-F

(r) Recall

 (p)Precision 

 Precision is biased towards C(Yes|Yes) & C(Yes|No) 

 Recall is biased towards C(Yes|Yes) & C(No|Yes) 

 F-measure is biased towards all except C(No|No) 
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Model Evaluation 

• Metrics for Performance Evaluation 

• How to evaluate the performance of a model? 

 

• Methods for Performance Evaluation 

• How to obtain reliable estimates? 

 

• Methods for Model Comparison 

• How to compare the relative performance among 

competing models? 

 



Methods for Performance Evaluation 

• How to obtain a reliable estimate of 

performance? 

 

• Performance of a model may depend on other 

factors besides the learning algorithm: 

• Class distribution 

• Cost of misclassification 

• Size of training and test sets 

 

 



Dealing with class Imbalance 

• If the class we are interested in is very rare, then 

the classifier will ignore it. 

• The class imbalance problem 

• Solution 

• We can modify the optimization criterion by using a cost 

sensitive metric 

• We can balance the class distribution 

• Sample from the larger class so that the size of the two classes 

is the same 

• Replicate the data of the class of interest so that the classes are 

balanced  

• Over-fitting issues 



Learning Curve 

 Learning curve shows 

how accuracy changes 

with varying sample size 

 

 Requires a sampling 

schedule for creating 

learning curve 

 

Effect of small sample size: 

- Bias in the estimate 

- Variance of estimate 



Methods of Estimation 

• Holdout 

• Reserve 2/3 for training and 1/3 for testing  

• Random subsampling 

• Repeated holdout 

• Cross validation 

• Partition data into k disjoint subsets 

• k-fold: train on k-1 partitions, test on the remaining one 

• Leave-one-out: k=n 

• Bootstrap 

• Sampling with replacement 



Model Evaluation 

• Metrics for Performance Evaluation 

• How to evaluate the performance of a model? 

 

• Methods for Performance Evaluation 

• How to obtain reliable estimates? 

 

• Methods for Model Comparison 

• How to compare the relative performance among 

competing models? 

 



ROC (Receiver Operating Characteristic) 

• Developed in 1950s for signal detection theory to 
analyze noisy signals  
• Characterize the trade-off between positive hits and 

false alarms 

• ROC curve plots TPR (on the y-axis) against FPR 
(on the x-axis) 

 

 
FNTP

TP
TPR
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PREDICTED CLASS 

 

 

Actual 

Yes No 

Yes a 

(TP) 

b 

(FN) 

No c 

(FP) 

d 

(TN) 



ROC (Receiver Operating Characteristic) 

• Performance of each classifier represented as a 
point on the ROC curve 
• changing the threshold of algorithm, sample distribution 

or cost matrix changes the location of the point 

 



ROC Curve 

At threshold t: 

TP=0.5, FN=0.5, FP=0.12, FN=0.88 

- 1-dimensional data set containing 2 classes (positive and negative) 

- any points located at x > t is classified as positive 



ROC Curve 

(TP,FP): 

• (0,0): declare everything 

          to be negative class 

• (1,1): declare everything 

         to be positive class 

• (1,0): ideal 

 

• Diagonal line: 

• Random guessing 

• Below diagonal line: 

•  prediction is opposite of 

the true class 

PREDICTED CLASS 

 

 

Actual 

Yes No 

Yes a 

(TP) 

b 

(FN) 

No c 

(FP) 

d 

(TN) 



Using ROC for Model Comparison 
 No model consistently 

outperform the other 

 M1 is better for 

small FPR 

 M2 is better for 

large FPR 
 

 Area Under the ROC 

curve (AUC) 

 Ideal:  Area = 1 

 Random guess: 

 Area = 0.5 



How to Construct an ROC curve 

Instance P(+|A) True Class 

1 0.95 + 

2 0.93 + 

3 0.87 - 

4 0.85 - 

5 0.85 - 

6 0.85 + 

7 0.76 - 

8 0.53 + 

9 0.43 - 

10 0.25 + 

• Use classifier that produces 

posterior probability for each 

test instance P(+|A) 

• Sort the instances according 

to P(+|A) in decreasing order 

• Apply threshold at each 

unique value of P(+|A) 

• Count the number of TP, FP,  

  TN, FN at each threshold 

• TP rate, TPR = TP/(TP+FN) 

• FP rate, FPR = FP/(FP + TN) 



How to construct an ROC curve 
Class + - + - - - + - + +  

P 
0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00 

TP 5 4 4 3 3 3 3 2 2 1 0 

FP 5 5 4 4 3 2 1 1 0 0 0 

TN 0 0 1 1 2 3 4 4 5 5 5 

FN 0 1 1 2 2 2 2 3 3 4 5 

TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0 

FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0 

 

Threshold >=  

ROC Curve: 



ROC curve vs Precision-Recall curve 

Area Under the Curve (AUC) as a single number for evaluation 



Test of Significance 

• Given two models: 

• Model M1: accuracy = 85%, tested on 30 instances 

• Model M2: accuracy = 75%, tested on 5000 instances 

 

• Can we say M1 is better than M2? 

• How much confidence can we place on accuracy of M1 

and M2? 

• Can the difference in performance measure be explained 

as a result of random fluctuations in the test set? 



Confidence Interval for Accuracy 

• Prediction can be regarded as a Bernoulli trial 
• A Bernoulli trial has 2 possible outcomes 

• Possible outcomes for prediction: correct or wrong 

• Collection of Bernoulli trials has a Binomial distribution: 

•  x  Bin(N, p)      x: number of correct predictions 

•  e.g:   Toss a fair coin 50 times, how many heads would turn up? 

      Expected number of heads = Np = 50  0.5 = 25 

 

• Given x (# of correct predictions) or equivalently, 

acc=x/N, and N (# of test instances), 

 

 Can we predict p (true accuracy of model)? 



Confidence Interval for Accuracy 

• For large test sets (N > 30),  

• acc has a normal distribution  

with mean p and variance  

p(1-p)/N 

 

 

 
 

• Confidence Interval for p: 
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Confidence Interval for Accuracy 

• Consider a model that produces an accuracy of 

80% when evaluated on 100 test instances: 

• N=100, acc = 0.8 

• Let 1- = 0.95 (95% confidence) 

• From probability table, Z/2=1.96  

 

1- Z 

0.99 2.58 

0.98 2.33 

0.95 1.96 

0.90 1.65 

N 50 100 500 1000 5000 

p(lower) 0.670 0.711 0.763 0.774 0.789 

p(upper) 0.888 0.866 0.833 0.824 0.811 



Comparing Performance of 2 Models 

• Given two models, say M1 and M2, which is 

better? 

• M1 is tested on D1 (size=n1), found error rate = e1 

• M2 is tested on D2 (size=n2), found error rate = e2 

• Assume D1 and D2 are independent 

• If n1 and n2 are sufficiently large, then 

 

 

 

• Approximate: 
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Comparing Performance of 2 Models 

• To test if performance difference is statistically 

significant:  d = e1 – e2 

• d ~ N(dt,t)   where dt is the true difference 

• Since D1 and D2 are independent, their variance adds 

up:    

 

 

 

 

 

• At (1-) confidence level,  
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An Illustrative Example 

• Given: M1: n1 = 30, e1 = 0.15 
     M2: n2 = 5000, e2 = 0.25 

• d = |e2 – e1| = 0.1   (2-sided test) 

 

 

 

• At 95% confidence level, Z/2=1.96 
 
 
 
=> Interval contains 0 => difference may not be 
           statistically significant 
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