
DATA MINING

LECTURE 9
Classification

 Decision Trees

 Evaluation

Illustrating Classification Task

Apply

Model

Induction

Deduction

Learn

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Learning
algorithm

Training Set

Examples of Classification Task

• Predicting tumor cells as benign or malignant

• Classifying credit card transactions as legitimate or
fraudulent

• Categorizing news stories as finance,
weather, entertainment, sports, etc

• Identifying spam email, spam web pages, adult
content

• Categorizing web users, and web queries

Evaluation of classification models

• Counts of test records that are correctly (or

incorrectly) predicted by the classification model

• Confusion matrix

Class = 1 Class = 0

Class = 1 f11 f10

Class = 0 f01 f00

Predicted Class

A
c
tu

a
l

C
la

s
s

00011011

0011

sprediction of # total

spredictioncorrect #
Accuracy

ffff

ff






00011011

0110

sprediction of # total

sprediction wrong#
 rateError

ffff

ff






Example of a Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Refund

MarSt

TaxInc

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Splitting Attributes

Training Data Model: Decision Tree

Apply Model to Test Data

Refund

MarSt

TaxInc

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Start from the root of tree.

Apply Model to Test Data

Refund

MarSt

TaxInc

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Apply Model to Test Data

Refund

MarSt

TaxInc

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Apply Model to Test Data

Refund

MarSt

TaxInc

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Apply Model to Test Data

Refund

MarSt

TaxInc

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Apply Model to Test Data

Refund

MarSt

TaxInc

YES NO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital
Status

Taxable
Income Cheat

No Married 80K ?
10

Test Data

Assign Cheat to “No”

Decision Tree Classification Task

Apply

Model

Induction

Deduction

Learn

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
10

Tid Attrib1 Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?
10

Test Set

Tree

Induction

algorithm

Training Set

Decision

Tree

Decision Tree Induction

• Many Algorithms:

• Hunt’s Algorithm (one of the earliest)

• CART

• ID3, C4.5

• SLIQ,SPRINT

General Structure of Hunt’s Algorithm

• Let Dt be the set of training
records that reach a node t

• General Procedure:

• If Dt contains records that
belong the same class yt, then
t is a leaf node labeled as yt

• If Dt is an empty set, then t is a
leaf node labeled by the default
class, yd

• If Dt contains records that
belong to more than one class,
use an attribute test to split the
data into smaller subsets.

• Recursively apply the procedure
to each subset.

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Dt

?

Constructing decision-trees (pseudocode)

GenDecTree(Sample S, Features F)

1. If stopping_condition(S,F) = true then

a. leaf = createNode()

b. leaf.label= Classify(S)

c. return leaf

2. root = createNode()

3. root.test_condition = findBestSplit(S,F)

4. V = {v| v a possible outcome of root.test_condition}

5. for each value vєV:

a. Sv: = {s | root.test_condition(s) = v and s є S};

b. child = TreeGrowth(Sv ,F) ;

c. Add child as a descent of root and label the edge (rootchild) as v

6. return root

Tree Induction

• Greedy strategy.

• At each node pick the best split

• How to determine the best split?

• Find the split that minimizes impurity

• How to decide when to stop splitting?

How to determine the Best Split

• Greedy approach:

• Nodes with homogeneous class distribution are

preferred

• Need a measure of node impurity:

C0: 5

C1: 5

C0: 9

C1: 1

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Measuring Node Impurity

• p(i|t): fraction of records associated with node t

belonging to class i





c

i

tiptipt
1

)|(log)|()(Entropy

 



c

i

tipt
1

2
)|(1)(Gini

 )|(max1)(errortion Classifica tipt i

Gain

• Gain of an attribute split: compare the impurity

of the parent node with the impurity of the child

nodes

• Maximizing the gain  Minimizing the weighted

average impurity measure of children nodes

• If I() = Entropy(), then Δinfo is called information

gain





k

j

j

j
vI

N

vN
parentI

1

)(
)(

)(

Splitting based on impurity

• Impurity measures favor attributes with large

number of values

• A test condition with large number of outcomes

may not be desirable

• # of records in each partition is too small to make

predictions

Gain Ratio

• Gain Ratio:

Parent Node, p is split into k partitions

ni is the number of records in partition i

• Adjusts Information Gain by the entropy of the
partitioning (SplitINFO). Higher entropy partitioning
(large number of small partitions) is penalized!

• Used in C4.5

• Designed to overcome the disadvantage of Information
Gain

SplitINFO

GAIN
GainRATIO Split

split
 




k

i

ii

n

n

n

n
SplitINFO

1

log

Comparison among Splitting Criteria
For a 2-class problem:

The different impurity measures are consistent

Stopping Criteria for Tree Induction

• Stop expanding a node when all the records

belong to the same class

• Stop expanding a node when all the records have

similar attribute values

• Early termination (to be discussed later)

Decision Tree Based Classification

• Advantages:

• Inexpensive to construct

• Extremely fast at classifying unknown records

• Easy to interpret for small-sized trees

• Accuracy is comparable to other classification

techniques for many simple data sets

Example: C4.5

• Simple depth-first construction.

• Uses Information Gain

• Sorts Continuous Attributes at each node.

• Needs entire data to fit in memory.

• Unsuitable for Large Datasets.

• Needs out-of-core sorting.

• You can download the software from:
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

Other Issues

• Data Fragmentation

• Search Strategy

• Expressiveness

• Tree Replication

Data Fragmentation

• Number of instances gets smaller as you traverse

down the tree

• Number of instances at the leaf nodes could be

too small to make any statistically significant

decision

Search Strategy

• Finding an optimal decision tree is NP-hard

• The algorithm presented so far uses a greedy,

top-down, recursive partitioning strategy to

induce a reasonable solution

• Other strategies?

• Bottom-up

• Bi-directional

Expressiveness

• Decision tree provides expressive representation for
learning discrete-valued function

• But they do not generalize well to certain types of
Boolean functions
• Example: parity function:

• Class = 1 if there is an even number of Boolean attributes with truth
value = True

• Class = 0 if there is an odd number of Boolean attributes with truth
value = True

• For accurate modeling, must have a complete tree

• Not expressive enough for modeling continuous variables

• Particularly when test condition involves only a single
attribute at-a-time

Decision Boundary

y < 0.33?

 : 0

 : 3

 : 4

 : 0

y < 0.47?

 : 4

 : 0

 : 0

 : 4

x < 0.43?

Yes

Yes

No

No Yes No

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

• Border line between two neighboring regions of different classes is known

as decision boundary

• Decision boundary is parallel to axes because test condition involves a

single attribute at-a-time

• The type of decision boundary of the classifier captures the expressiveness

of the classifier

Oblique Decision Trees

x + y < 1

Class = + Class =

• Test condition may involve multiple attributes

• More expressive representation

• Finding optimal test condition is computationally expensive

Tree Replication
P

Q R

S 0 1

0 1

Q

S 0

0 1

• Same subtree appears in multiple branches

Practical Issues of Classification

• Underfitting and Overfitting

• Missing Values

• Costs of Classification

Underfitting and Overfitting (Example)

500 circular and 500

triangular data points.

Circular points:

0.5  sqrt(x1
2+x2

2)  1

Triangular points:

sqrt(x1
2+x2

2) > 0.5 or

sqrt(x1
2+x2

2) < 1

Underfitting and Overfitting

Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting due to Noise

Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult to

predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision

tree to predict the test examples using other training records that are

irrelevant to the classification task

Notes on Overfitting

• Overfitting results in decision trees that are more

complex than necessary

• Training error no longer provides a good estimate

of how well the tree will perform on previously

unseen records

• The model does not generalize well

• Need new ways for estimating errors

Estimating Generalization Errors

• Re-substitution errors: error on training ( e(t))

• Generalization errors: error on testing ( e’(t))

• Methods for estimating generalization errors:

• Optimistic approach: e’(t) = e(t)

• Pessimistic approach:
• For each leaf node: e’(t) = (e(t)+0.5)

• Total errors: e’(T) = e(T) + N  0.5 (N: number of leaf nodes)

• For a tree with 30 leaf nodes and 10 errors on training
 (out of 1000 instances):
 Training error = 10/1000 = 1%

 Generalization error = (10 + 300.5)/1000 = 2.5%

• Reduced error pruning (REP):
• uses validation dataset to estimate generalization

 error

• Validation set reduces the amount of training data.

Occam’s Razor

• Given two models of similar generalization errors,

one should prefer the simpler model over the

more complex model

• For complex models, there is a greater chance

that it was fitted accidentally by errors in data

• Therefore, one should include model complexity

when evaluating a model

Minimum Description Length (MDL)

• Cost(Model,Data) = Cost(Data|Model) + Cost(Model)

• Cost is the number of bits needed for encoding.

• Search for the least costly model.

• Cost(Data|Model) encodes the misclassification errors.

• Cost(Model) uses node encoding (number of children)
plus splitting condition encoding.

A B

A?

B?

C?

10

0

1

Yes No

B1 B2

C1 C2

X y

X1 1

X2 0

X3 0

X4 1

… …
Xn 1

X y

X1 ?

X2 ?

X3 ?

X4 ?

… …
Xn ?

How to Address Overfitting

• Pre-Pruning (Early Stopping Rule)

• Stop the algorithm before it becomes a fully-grown tree

• Typical stopping conditions for a node:

• Stop if all instances belong to the same class

• Stop if all the attribute values are the same

• More restrictive conditions:

• Stop if number of instances is less than some user-specified

threshold

• Stop if class distribution of instances are independent of the available

features (e.g., using  2 test)

• Stop if expanding the current node does not improve impurity

 measures (e.g., Gini or information gain).

How to Address Overfitting…

• Post-pruning

• Grow decision tree to its entirety

• Trim the nodes of the decision tree in a bottom-up

fashion

• If generalization error improves after trimming, replace

sub-tree by a leaf node.

• Class label of leaf node is determined from majority

class of instances in the sub-tree

• Can use MDL for post-pruning

Example of Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10

Error = 10/30

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

 = (9 + 4  0.5)/30 = 11/30

 PRUNE!

Class = Yes 8

Class = No 4

Class = Yes 3

Class = No 4

Class = Yes 4

Class = No 1

Class = Yes 5

Class = No 1

Handling Missing Attribute Values

• Missing values affect decision tree construction in

three different ways:

• Affects how impurity measures are computed

• Affects how to distribute instance with missing value to

child nodes

• Affects how a test instance with missing value is

classified

Computing Impurity Measure

Tid Refund Marital
Status

Taxable
Income Class

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 ? Single 90K Yes
10

Class
= Yes

Class
= No

Refund=Yes 0 3

Refund=No 2 4

Refund=? 1 0

Split on Refund:

 Entropy(Refund=Yes) = 0

 Entropy(Refund=No)

 = -(2/6)log(2/6) – (4/6)log(4/6) = 0.9183

 Entropy(Children)

 = 0.3 (0) + 0.6 (0.9183) = 0.551

Gain = 0.9  (0.8813 – 0.551) = 0.3303

Missing

value

Before Splitting:

 Entropy(Parent)

 = -0.3 log(0.3)-(0.7)log(0.7) = 0.8813

Distribute Instances

Tid Refund Marital
Status

Taxable
Income Class

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No
10

Refund
Yes No

Class=Yes 0

Class=No 3

Cheat=Yes 2

Cheat=No 4

Refund
Yes

Tid Refund Marital
Status

Taxable
Income Class

10 ? Single 90K Yes
10

No

Class=Yes 2 + 6/9

Class=No 4

Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with

weight = 3/9 and to the right child with

weight = 6/9

Class=Yes 0 + 3/9

Class=No 3

Classify Instances

Refund

MarSt

TaxInc

YES NO

NO

NO

Yes
No

Married
Single,

Divorced

< 80K > 80K

Married Single Divorced Total

Class=No 3 1 0 4

Class=Yes 6/9 1 1 2.67

Total 3.67 2 1 6.67

Tid Refund Marital
Status

Taxable
Income Class

11 No ? 85K ?
10

New record:

Probability that Marital Status

= Married is 3.67/6.67

Probability that Marital Status

={Single,Divorced} is 3/6.67

Model Evaluation

• Metrics for Performance Evaluation

• How to evaluate the performance of a model?

• Methods for Performance Evaluation

• How to obtain reliable estimates?

• Methods for Model Comparison

• How to compare the relative performance among

competing models?

Model Evaluation

• Metrics for Performance Evaluation

• How to evaluate the performance of a model?

• Methods for Performance Evaluation

• How to obtain reliable estimates?

• Methods for Model Comparison

• How to compare the relative performance among

competing models?

Metrics for Performance Evaluation

• Focus on the predictive capability of a model

• Rather than how fast it takes to classify or build models,

scalability, etc.

• Confusion Matrix:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation…

• Most widely-used metric:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a

(TP)

b

(FN)

Class=No c

(FP)

d

(TN)

FNFPTNTP

TNTP

dcba

da









Accuracy

Limitation of Accuracy

• Consider a 2-class problem

• Number of Class 0 examples = 9990

• Number of Class 1 examples = 10

• If model predicts everything to be class 0,

accuracy is 9990/10000 = 99.9 %

• Accuracy is misleading because model does not detect

any class 1 example

Cost Matrix

 PREDICTED CLASS

ACTUAL

CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost

Matrix

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) + -

+ -1 100

- 1 0

Model

M1

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 150 40

- 60 250

Model

M2

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 250 45

- 5 200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost vs Accuracy

Count PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

Cost PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes p q

Class=No q p

N = a + b + c + d

Accuracy = (a + d)/N

Cost = p (a + d) + q (b + c)

 = p (a + d) + q (N – a – d)

 = q N – (q – p)(a + d)

 = N [q – (q-p)  Accuracy]

Accuracy is proportional to cost if

1. C(Yes|No)=C(No|Yes) = q

2. C(Yes|Yes)=C(No|No) = p

Cost-Sensitive Measures

FNFPTP

TP

cba

a

pr

rp

FNTP

TP

ba

a

FPTP

TP

ca

a






















2

2

2

22
(F) measure-F

(r) Recall

 (p)Precision

 Precision is biased towards C(Yes|Yes) & C(Yes|No)

 Recall is biased towards C(Yes|Yes) & C(No|Yes)

 F-measure is biased towards all except C(No|No)

dwcwbwaw

dwaw

4321

41Accuracy Weighted





Model Evaluation

• Metrics for Performance Evaluation

• How to evaluate the performance of a model?

• Methods for Performance Evaluation

• How to obtain reliable estimates?

• Methods for Model Comparison

• How to compare the relative performance among

competing models?

Methods for Performance Evaluation

• How to obtain a reliable estimate of

performance?

• Performance of a model may depend on other

factors besides the learning algorithm:

• Class distribution

• Cost of misclassification

• Size of training and test sets

Dealing with class Imbalance

• If the class we are interested in is very rare, then

the classifier will ignore it.

• The class imbalance problem

• Solution

• We can modify the optimization criterion by using a cost

sensitive metric

• We can balance the class distribution

• Sample from the larger class so that the size of the two classes

is the same

• Replicate the data of the class of interest so that the classes are

balanced

• Over-fitting issues

Learning Curve

 Learning curve shows

how accuracy changes

with varying sample size

 Requires a sampling

schedule for creating

learning curve

Effect of small sample size:

- Bias in the estimate

- Variance of estimate

Methods of Estimation

• Holdout

• Reserve 2/3 for training and 1/3 for testing

• Random subsampling

• Repeated holdout

• Cross validation

• Partition data into k disjoint subsets

• k-fold: train on k-1 partitions, test on the remaining one

• Leave-one-out: k=n

• Bootstrap

• Sampling with replacement

Model Evaluation

• Metrics for Performance Evaluation

• How to evaluate the performance of a model?

• Methods for Performance Evaluation

• How to obtain reliable estimates?

• Methods for Model Comparison

• How to compare the relative performance among

competing models?

ROC (Receiver Operating Characteristic)

• Developed in 1950s for signal detection theory to
analyze noisy signals
• Characterize the trade-off between positive hits and

false alarms

• ROC curve plots TPR (on the y-axis) against FPR
(on the x-axis)

FNTP

TP
TPR




TNFP

FP
FPR




PREDICTED CLASS

Actual

Yes No

Yes a

(TP)

b

(FN)

No c

(FP)

d

(TN)

ROC (Receiver Operating Characteristic)

• Performance of each classifier represented as a
point on the ROC curve
• changing the threshold of algorithm, sample distribution

or cost matrix changes the location of the point

ROC Curve

At threshold t:

TP=0.5, FN=0.5, FP=0.12, FN=0.88

- 1-dimensional data set containing 2 classes (positive and negative)

- any points located at x > t is classified as positive

ROC Curve

(TP,FP):

• (0,0): declare everything

 to be negative class

• (1,1): declare everything

 to be positive class

• (1,0): ideal

• Diagonal line:

• Random guessing

• Below diagonal line:

• prediction is opposite of

the true class

PREDICTED CLASS

Actual

Yes No

Yes a

(TP)

b

(FN)

No c

(FP)

d

(TN)

Using ROC for Model Comparison
 No model consistently

outperform the other

 M1 is better for

small FPR

 M2 is better for

large FPR

 Area Under the ROC

curve (AUC)

 Ideal: Area = 1

 Random guess:

 Area = 0.5

How to Construct an ROC curve

Instance P(+|A) True Class

1 0.95 +

2 0.93 +

3 0.87 -

4 0.85 -

5 0.85 -

6 0.85 +

7 0.76 -

8 0.53 +

9 0.43 -

10 0.25 +

• Use classifier that produces

posterior probability for each

test instance P(+|A)

• Sort the instances according

to P(+|A) in decreasing order

• Apply threshold at each

unique value of P(+|A)

• Count the number of TP, FP,

 TN, FN at each threshold

• TP rate, TPR = TP/(TP+FN)

• FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve
Class + - + - - - + - + +

P
0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00

TP 5 4 4 3 3 3 3 2 2 1 0

FP 5 5 4 4 3 2 1 1 0 0 0

TN 0 0 1 1 2 3 4 4 5 5 5

FN 0 1 1 2 2 2 2 3 3 4 5

TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0

FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0

Threshold >=

ROC Curve:

ROC curve vs Precision-Recall curve

Area Under the Curve (AUC) as a single number for evaluation

Test of Significance

• Given two models:

• Model M1: accuracy = 85%, tested on 30 instances

• Model M2: accuracy = 75%, tested on 5000 instances

• Can we say M1 is better than M2?

• How much confidence can we place on accuracy of M1

and M2?

• Can the difference in performance measure be explained

as a result of random fluctuations in the test set?

Confidence Interval for Accuracy

• Prediction can be regarded as a Bernoulli trial
• A Bernoulli trial has 2 possible outcomes

• Possible outcomes for prediction: correct or wrong

• Collection of Bernoulli trials has a Binomial distribution:

• x  Bin(N, p) x: number of correct predictions

• e.g: Toss a fair coin 50 times, how many heads would turn up?

 Expected number of heads = Np = 50  0.5 = 25

• Given x (# of correct predictions) or equivalently,

acc=x/N, and N (# of test instances),

 Can we predict p (true accuracy of model)?

Confidence Interval for Accuracy

• For large test sets (N > 30),

• acc has a normal distribution

with mean p and variance

p(1-p)/N

• Confidence Interval for p:















1

)
/)1(

(
2/12/

Z
Npp

pacc
ZP

Area = 1 - 

Z/2 Z1-  /2

)(2

442
2

2/

22

2/

2

2/





ZN

accNaccNZZaccN
p






Confidence Interval for Accuracy

• Consider a model that produces an accuracy of

80% when evaluated on 100 test instances:

• N=100, acc = 0.8

• Let 1- = 0.95 (95% confidence)

• From probability table, Z/2=1.96

1- Z

0.99 2.58

0.98 2.33

0.95 1.96

0.90 1.65

N 50 100 500 1000 5000

p(lower) 0.670 0.711 0.763 0.774 0.789

p(upper) 0.888 0.866 0.833 0.824 0.811

Comparing Performance of 2 Models

• Given two models, say M1 and M2, which is

better?

• M1 is tested on D1 (size=n1), found error rate = e1

• M2 is tested on D2 (size=n2), found error rate = e2

• Assume D1 and D2 are independent

• If n1 and n2 are sufficiently large, then

• Approximate:

 

 222

111

,~

,~





Ne

Ne

i

ii

i

n

ee)1(
ˆ




Comparing Performance of 2 Models

• To test if performance difference is statistically

significant: d = e1 – e2

• d ~ N(dt,t) where dt is the true difference

• Since D1 and D2 are independent, their variance adds

up:

• At (1-) confidence level,

2

)21(2

1

)11(1

ˆˆ
2

2

2

1

2

2

2

1

2

n

ee

n

ee

t







 

tt
Zdd 


ˆ

2/


An Illustrative Example

• Given: M1: n1 = 30, e1 = 0.15
 M2: n2 = 5000, e2 = 0.25

• d = |e2 – e1| = 0.1 (2-sided test)

• At 95% confidence level, Z/2=1.96

=> Interval contains 0 => difference may not be
 statistically significant

0043.0
5000

)25.01(25.0

30

)15.01(15.0
ˆ 







d


128.0100.00043.096.1100.0 
t

d

