
DATA MINING 

LECTURE 8 
Sequence Segmentation 

Dimensionality Reduction 



SEQUENCE 

SEGMENTATION 



Why deal with sequential data? 

• Because all data is sequential  
• All data items arrive in the data store in some order 

 

• Examples 
• transaction data 

• documents and words 

 

• In some (many) cases the order does not matter 

 

• In many cases the order is of interest 



Time-series data 

 Financial time series, process monitoring… 



Sequence Segmentation 

• Goal: discover structure in the sequence and 

provide a concise summary 

 

• Given a sequence T, segment it into K contiguous 

segments that are as homogeneous as possible 

 

• Similar to clustering but now we require the  

points in the cluster to be contiguous 



Example 

t 

R 

t 

R 



Basic definitions 

• Sequence T = {t1,t2,…,tN}: an ordered set of N d-dimensional 
real points tiЄRd 

 

• A k-segmentation S: a partition of T into K contiguous 
segments {s1,s2,…,sK}.  
• Each segment sЄS is represented by a single value μsЄRd (the 

representative of the segment) 

 

• Error E(S): The error of replacing individual points with 
representatives 
• Sum of Squares Error (SSE): 

𝐸 𝑆 =    𝑡 − 𝜇𝑠
2

𝑡∈𝑠𝑠∈𝑆

 

 

• Representative for SSE: mean 𝜇𝑠 =
1

|𝑠|
 𝑡𝑡∈𝑠  

 



The K-segmentation problem 

• Similar to K-means clustering, but now we need 
the points in the clusters to respect the order of 
the sequence. 
• This actually makes the problem easier. 

 Given a sequence T of length N and a value K, find a 
K-segmentation S = {s1, s2, …,sK} of T such that the SSE 
error E is minimized. 



Optimal solution for the k-segmentation problem 

 [Bellman’61: The k-segmentation problem can be 
solved optimally using a standard dynamic-
programming algorithm 

• Dynamic Programming: 
• Construct the solution of the problem by using solutions 

to problems of smaller size 
• Define the dynamic programming recursion 

• Build the solution bottom up from smaller to larger 
instances 
• Define the dynamic programming table that stores the solutions 

to the sub-problems 

 



Dynamic Programming Solution 

• Terminology:  
• 𝐸 𝑆[1, 𝑛], 𝑘 : error of optimal segmentation of subsequence 𝑇[1, 𝑛] with 
𝑘 segments 

 

• Dynamic Programming Recursion: 

 

𝐸 𝑆 1, 𝑛 , 𝑘 = min
1≤j<n

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 +  𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

 

 

• Dynamic programming table: 
• Two-dimensional table A[1…K,1…N] 

• A[k,n] = 𝐸 𝑆[1, 𝑛], 𝑘  



𝐸 𝑆 1, 𝑛 , 𝑘

= min
1≤j<n

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 +  𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

 

 

 

 

 

 

 

• Fill the table row to tow from smaller to larger values 
of k 

 

N 1 

1 

K 

Dynamic programming solution 

k 

n 



Algorithm Complexity 

• What is the complexity? 
• NK cells to fill 

• 𝐸 𝑆 1, 𝑛 , 𝑘 = min
1≤j<n

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 +  𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛  

• O(N) cells to check for each of the cells 

• O(N) to compute the second term 

• O(N3K) in the naïve computation 

•  𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛 =  𝑡2 +
1

𝑛−𝑗+2
 𝑡𝑗+1≤𝑡≤𝑛𝑗+1≤𝑡≤𝑛  

 

• We can compute in constant time by precomputing partial 
sums 
• O(N2K) complexity 

 



Heuristics 

• Bottom-up greedy (BU): O(NlogN) 
• Merge adjacent points each time selecting the two points that 

cause the smallest increase in the error until K segments 
• [Keogh and Smyth’97, Keogh and Pazzani’98] 
 

• Top-down greedy (TD): O(NK) 
• Introduce breakpoints so that you get the largest decrease in 

error, until K segments are created. 
• [Douglas and Peucker’73, Shatkay and Zdonik’96, Lavrenko 

et. al’00] 

 
• Local Search Heuristics: O(NKI) 

• Assign the breakpoints randomly and then move them so 
that you reduce the error 

• [Himberg et. al ’01] 

  
 



 

DIMENSIONALITY 

REDUCTION 



The curse of dimensionality 

• Real data usually have thousands, or millions of 
dimensions 
• E.g., web documents, where the dimensionality is the 

vocabulary of words 

• Facebook graph, where the dimensionality is the 
number of users 

• Huge number of dimensions causes many 
problems 
• Data becomes very sparse, some algorithms become 

meaningless (e.g. density based clustering) 

• The complexity of several algorithms depends on the 
dimensionality and they become infeasible. 



Dimensionality Reduction 

• Usually the data can be described with fewer 

dimensions, without losing much of the meaning 

of the data. 

• The data reside in a space of lower dimensionality 

 

• Essentially, we assume that some of the data is 

noise, and we can approximate the useful part 

with a lower dimensionality space. 

• Dimensionality reduction does not just reduce the 

amount of data, it often brings out the useful part of the 

data 



Data in the form of a matrix 

• We are given n objects and d attributes describing 
the objects. Each object has d numeric values 
describing it. 

 

• We will represent the data as a nd real matrix A. 
• We can now use tools from linear algebra to process the 

data matrix 

 

• Our goal is to produce a new nk matrix B such that 
• It preserves as much of the information in the original matrix 

A as possible 

• It reveals something about the structure of the data in A 



Example: Document matrices 

n 

documents 

d terms  

(e.g., theorem, proof, etc.) 

Aij = frequency of the j-th 

term in the i-th document 

Find  subsets of terms that bring documents 

together 



Example: Recommendation systems 

n 

customers 

d movies 

 

Aij = rating of j-th  

product by the i-th 

customer 

Find subsets of movies that capture the 

behavior or the customers 



Some linear algebra basics 

• We assume that vectors are column vectors. We 

use 𝑣𝑇 for the transpose of vector 𝑣 (row vector) 

• Dot product: 𝑢𝑇𝑣 (1𝑛, 𝑛1 →  11)  
• The dot product is the projection of vector 𝑢 on 𝑣 

• External product: 𝑢𝑣𝑇 (𝑛1 , 1𝑚 →  𝑛𝑚)  

• The resulting 𝑛𝑚 has rank 1: all rows (or columns) are linearly 

dependent 

• Rank of matrix A: The number of linearly independent 

vectors (column or row) in the matrix. 

• Eigenvector of matrix A: a vector v such that 

𝐴𝑣 = 𝜆𝑣 



Singular Value Decomposition 

 

 

 

 
 
 

• r : rank of matrix A 
 

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA) 
                      
•                      : left singular vectors (eig-vectors of AAT) 
                     
•                        : right singular vectors (eig-vectors of ATA) 

 
•    

 







































r

2

1

r

2

1

r21

T

v

v

v

σ

σ

σ

uuuVΣUA















[n×r] [r×r] [r×n] 

r21 u,,u,u





r21 v,,v,v





T
rrr

T
222

T
111 vuσvuσvuσA









Singular Value Decomposition 

• What does it mean? 

 

• If A has rank r, then A can be written as the sum 

of r rank-1 matrices 

 

• There are r linear trends in A. 
• Linear trend: the tendency of the row vectors of A to align 

with vector v 

• Strength of the i-th linear trend: ||𝐴𝒗𝒊||  = 𝝈𝒊 

 



An (extreme) example 

• Document-term matrix 
• Blue and Red rows (colums) are linearly depedent  

 

 

 

 

• There are two types of documents (words): blue 
and red 
• To describe the data is enough to describe the two 

types, and the projection weights for each row 

• A is a rank-2 matrix 

A =  



An (more realistic) example 

• Document-term matrix 

 

 

 

 

• There are two types of documents and words but 
they are mixed 
• We now have more than two singular vectors, but the 

strongest ones are still about the two types. 

• By keeping the two strongest singular vectors we obtain most 
of the information in the data. 

• This is a rank-2 approximation of the matrix A 

A =  



A VT  U = 

objects 

features 

significant 

noise 
n
o
is

e
 noise 

s
ig

n
if
ic

a
n
t 

sig. 

= 

SVD and Rank-k  approximations  



Rank-k approximations (Ak) 

Uk (Vk): orthogonal matrix containing the top k left (right) 

singular vectors of A. 

k: diagonal matrix containing the top k singular values of 

A 

 

Ak is an approximation of A 

n x d n x k k x k k x d 

Ak is the best approximation of A 



SVD as an optimization 

• The rank-k approximation matrix 𝐴𝑘 produced by 

the top-k singular vectors of A minimizes the 

Frobenious norm of the difference with the matrix 

A 

𝐴𝑘 = arg max
𝐵:𝑟𝑎𝑛𝑘 𝐵 =𝑘

𝐴 − 𝐵 𝐹
2  

𝐴 − 𝐵 𝐹
2 = 𝐴𝑖𝑗 − 𝐵𝑖𝑗

2

𝑖,𝑗

 



What does this mean? 

• We can project the row (and column) vectors of 

the matrix A into a k-dimensional space and 

preserve most of the information 

• (Ideally) The k dimensions reveal latent 

features/aspects/topics of the term (document) 

space. 

• (Ideally) The 𝐴𝑘 approximation of matrix A, 

contains all the useful information, and what is 

discarded is noise 



Two applications 

• Latent Semantic Indexing (LSI): 
• Apply SVD on the document-term space, and index the k-

dimensional vectors 

• When a query comes, project it onto the low dimensional 
space and compute similarity cosine similarity in this space 

• Singular vectors capture main topics, and enrich the 
document representation 

• Recommender systems and collaborative filtering 
• In a movie-rating system there are just a few types of users. 

• What we observe is an incomplete and noisy version of the 
true data 

• The rank-k approximation reconstructs the “true” matrix and 
we can provide ratings for movies that are not rated. 

 



SVD and PCA 

• PCA is a special case of SVD on the centered 

covariance matrix. 



Covariance matrix 

• Goal: reduce the dimensionality while preserving the 

“information in the data” 

• Information in the data: variability in the data 

• We measure variability using the covariance matrix. 

• Sample covariance of variables X and Y  

 𝑥𝑖 − 𝜇𝑋
𝑇(𝑦𝑖 − 𝜇𝑌)

𝑖

 

• Given matrix A, remove the mean of each column 

from the column vectors to get the centered matrix C 

• The matrix 𝑉 =  𝐶𝑇𝐶 is the covariance matrix of the 

row vectors of A. 



PCA: Principal Component Analysis 

• We will project the rows of matrix A into a new set 

of attributes such that: 

• The attributes have zero covariance to each other (they 

are orthogonal) 

• Each attribute captures the most remaining variance in 

the data, while orthogonal to the existing attributes 

• The first attribute should capture the most variance in the data 

 

• For matrix C, the variance of the rows of C when 

projected to vector x is given by 𝜎2 = 𝐶𝑥
2
 

• The right singular vector of C maximizes 𝜎2! 



4.0 4.5 5.0 5.5 6.0
2

3

4

5

PCA 

Input: 2-d dimensional points 
 

Output:  
 

 

1st (right) 

singular vector 

1st (right) singular vector:  

direction of maximal variance, 

2nd (right) 

singular 

vector 

2nd (right) singular vector:  

direction of maximal variance, 

after removing the projection of 
the data along the first singular 

vector. 



Singular values 

1: measures how much of the 

data variance is explained by 

the first singular vector. 

 

2: measures how much of the 

data variance is explained by 

the second singular vector. 
1 

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st (right) 

singular vector 

2nd (right) 

singular 

vector 



Another property of PCA/SVD 

• The chosen vectors are such that minimize the sum of square 
differences between the data vectors and the low-dimensional 
projections 

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st (right) 

singular vector 



SVD is “the Rolls-Royce and the Swiss 
Army Knife of Numerical Linear 

Algebra.”* 

*Dianne O’Leary, MMDS ’06 


