DATA MINING
LECTURE 8

Sequence Segmentation
Dimensionality Reduction




SEQUENCE
SEGMENTATION




Why deal with sequential data?

Because all data is sequential ©
- All data items arrive in the data store in some order

Examples
- transaction data
- documents and words

In some (many) cases the order does not matter

In many cases the order is of interest



Time-series data
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Sequence Segmentation

Goal: discover structure in the sequence and
provide a concise summary

Given a seguence T, segment it into K contiguous
segments that are as homogeneous as possible

Similar to clustering but now we require the
points in the cluster to be contiguous



Example
g
¢ ! [ .I .I .I .I .I ¢ ! ! [ [
. .
g
I I I S R B -_.I__.I__.!__.I__. I I I I S B




Basic definitions

Sequence T = {t,1,,...,1}: an ordered set of N d-dimensional
real points teR®

A k-segmentation S: a partition of T into K contiguous
segments {s,,S,,...,Sx}-

- Each segment seS is represented by a single value peR (the
representative of the segment)

Error E(S): The error of replacing individual points with
representatives

- Sum of Squares Error (SSE):

E(S) = ) Y (¢ p)?

SES tEs

- Representative for SSE: mean y. = |?1|Ztes t



The K-segmentation problem

Given a sequence | of length '/ and a value ¢, find a

-segmentation of | such that the
error - is minimized.

Similar to K-means clustering, but now we need
the points in the clusters to respect the order of
the sequence.

- This actually makes the problem easier.



Optimal solution for the k-segmentation problem

e Bellman’61: The k-segmentation problem can be
solved optimally using a standard dynamic-
programming algorithm

Dynamic Programming:
- Construct the solution of the problem by using solutions
to problems of smaller size
Define the dynamic programming recursion
- Build the solution bottom up from smaller to larger
Instances

Define the dynamic programming table that stores the solutions
to the sub-problems



Dynamic Programming Solution

- Terminology:

- E(S|1,n], k): error of optimal segmentation of subsequence 7|1, n| with
k segments

- Dynamic Programming Recursion:

E(S[1,n],k) = min {5(5[1 jhk—1)+ z (t :“[J+1n)2}

1<j<n
j+1sts

- Dynamic programming table:
- Two-dimensional table A[1...K,1...N]
. Alk,n] = E(S[1,n], k)



Dynamic programming solution

E(S[1,n], k)
2
—1r§]1<nn{E(S[1J]k—1)+ z (t - ]+1’n)}
jt+1stsn
1 n N
1
k [ ]
K

- Fill the table row to tow from smaller to larger values
of k



-
Algorithm Complexity

What is the complexity?
- NK cells to fill
- E(S[1,n], k) = min {E(S (1,1 k=1 + X1 1<e<n(t — M[j+1,n])2}

1<j<n
O(N) cells to check for each of the cells
O(N) to compute the second term

- O(N®K) in the naive computation

1
n—j+2

2
— 2
Zj+15t5n(t T .u[j+1,n]) - Zj+1stsn t* + Zj+1stSn t

We can compute in constant time by precomputing partial
sums
- O(N?K) complexity



Heuristics

Bottom-up greedy (BU): O(NlogN)
- Merge adjacent points each time selecting the two points that
cause the smallest increase in the error until K segments

- [Keogh and Smyth’97, Keogh and Pazzani’98]

Top-down greedy (TD): O(NK)
- Introduce breakpoints so that you C?et the largest decrease In
error, until K segments are created.

° [Dou%as and Peucker’73, Shatkay and Zdonik’96, Lavrenko
et. al'00]

Local Search Heuristics: O(NKI)

- Assign the breakﬁoints randomly and then move them so
that you reduce the error

- [Himberg et. al '01]



DIMENSIONALITY
REDUCTION




The curse of dimensionality

Real data usually have thousands, or millions of
dimensions

- E.g., web documents, where the dimensionality is the
vocabulary of words

- Facebook graph, where the dimensionality is the
number of users

Huge number of dimensions causes many

problems

- Data becomes very sparse, some algorithms become
meaningless (e.g. density based clustering)

- The complexity of several algorithms depends on the
dimensionality and they become infeasible.



Dimensionality Reduction

Usually the data can be described with fewer
dimensions, without losing much of the meaning
of the data.

- The data reside in a space of lower dimensionality

Essentially, we assume that some of the data is
noise, and we can approximate the useful part
with a lower dimensionality space.

- Dimensionality reduction does not just reduce the
amount of data, it often brings out the useful part of the
data



Data In the form of a matrix

We are given n objects and d attributes describing
the objects. Each object has d numeric values
describing it.

We will represent the data as a nxd real matrix A.

- We can now use tools from linear algebra to process the
data matrix

Our goal Is to produce a new nxk matrix B such that

- It preserves as much of the information in the original matrix
A as possible

- It reveals something about the structure of the data in A



Example: Document matrices

d terms
(e.g., theorem, proof, etc.)

(

A

n
documents

Aj; = frequency of the |-th
\ term in the i-th document

Find subsets of terms that bring documents
together



Example: Recommendation systems

d movies

n A

customers Aij — rating of j_th

product by the i-th
\ customer /

Find subsets of movies that capture the
behavior or the customers



Some linear algebra basics

- We assume that vectors are column vectors. We
use v’ for the transpose of vector v (row vector)
- Dot product: u'v (Ixn,nx1 - 1x1)
- The dot product is the projection of vector . on v

- External product: uv’ (nx1,1xm - nxm)

+ The resulting nxm has rank 1: all rows (or columns) are linearly
dependent

- Rank of matrix A: The number of linearly independent
vectors (column or row) in the matrix.
- Elgenvector of matrix A: a vector v such that
Av = Av



Singular Value Decomposition

G,
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r

L <
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A=U X V'=[G, G, - @

[nxr][rxr] [rxn]

- 1 : rank of matrix A
- 0,2 0,2 ... 20, . singular values (square roots of eig-vals AAT, ATA)
u,,u,,---, U : left singular vectors (eig-vectors of AAT)

: \71,\72,- - -,\7r: right singular vectors (eig-vectors of ATA)
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Singular Value Decomposition

- What does it mean?

- If A has rank r, then A can be written as the sum
of r rank-1 matrices

- There are r linear trends In A.

- Linear trend: the tendency of the row vectors of A to align
with vector v

- Strength of the I-th linear trend: ||Av;|| = o;



An (extreme) example

- Document-term matrix
- Blue and Red rows (colums) are linearly depedent

A =

- There are two types of documents (words): blue
and red

- To describe the data is enough to describe the two
types, and the projection weights for each row

- A IS a rank-2 matrix



An (more realistic) example

Document-term matrix

A =

There are two types of documents and words but
they are mixed

- We now have more than two singular vectors, but the
strongest ones are still about the two types.

- By keeping the two strongest singular vectors we obtain most
of the information in the data.

This is a rank-2 approximation of the matrix A



SVD and Rank-k approximations
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Rank-k approximations (A,)

/ Vo
e
\ )\

nxd n x k k x k k xd

U, (V,): orthogonal matrix containing the top k left (right)

singular vectors of A.
2. diagonal matrix containing the top k singular values of

A

A, IS an approximation of A is the approximation of




SVD as an optimization

The rank-k approximation matrix A, produced by
the top-k singular vectors of A minimizes the
Frobenious norm of the difference with the matrix
A

_ _ 2
Ak - argB:raera()lg):k”A B”F

|A — Bz = Z(Aij — Bij)2
L,j



What does this mean?

We can project the row (and column) vectors of
the matrix A into a k-dimensional space and
preserve most of the information

(Ideally) The k dimensions reveal latent
features/aspects/topics of the term (document)
space.

(Ideally) The A, approximation of matrix A,
contains all the useful information, and what is
discarded is noise



Two applications

Latent Semantic Indexing (LSI):

- Apply SVD on the document-term space, and index the k-
dimensional vectors

- When a query comes, project it onto the low dimensional
space and compute similarity cosine similarity in this space

- Singular vectors capture main topics, and enrich the
document representation
Recommender systems and collaborative filtering
- In a movie-rating system there are just a few types of users.

- What we observe is an incomplete and noisy version of the
true data

- The rank-k approximation reconstructs the “true” matrix and
we can provide ratings for movies that are not rated.



e
SVD and PCA

- PCA is a special case of SVD on the centered
covariance matrix.



Covariance matrix

Goal: reduce the dimensionality while preserving the
“Information in the data”

Information in the data: variability in the data
- We measure variability using the covariance matrix.
- Sample covariance of variables X and Y

Z(xi - MX)T(YL' — Uy)

Given matrix A, remove the mean of each column
from the column vectors to get the centered matrix C

The matrix V = CTC is the covariance matrix of the
row vectors of A.



PCA: Principal Component Analysis

We will project the rows of matrix A into a new set
of attributes such that:

- The attributes have zero covariance to each other (they
are orthogonal)

- Each attribute captures the most remaining variance in
the data, while orthogonal to the existing attributes
The first attribute should capture the most variance in the data

For matrix C, the variance of the rows of C when
i : i 2

projected to vector x is given by o2 = ||Cx||

- The right singular vector of C maximizes ¢2!



Input: 2-d dimensional points

S | | | Output:

2nd (right)

1st (right) sinqular vector:
4L Vvector - direction of maximal variance,

2nd (right) singular vector:
direction of maximal variance,

3 . after removing the projection of
the data along the first singular
1st (right) vector.
singular vector
2 | | |

4.0 4.5 5.0 5.5 6.0



Singular values
S l l l
2nd (right
nd (1ony o,. measures how much of the
ne | data variance is explained by
the first singular vector.
o,. measures how much of the
3r 7 data variance is explained by
the second singular vector.
1st (right)
singular vector
2 | | |

4.0 4.5 5.0 5.5 6.0



-
Another property of PCA/SVD

- The chosen vectors are such that minimize the sum of square
differences between the data vectors and the low-dimensional

projections
S l l l
4_ —
3 - —
1st (right)
singular vector
2 | | |

4.0 4.5 5.0 5.5 6.0



SVD is “the Rolls-Royce and the Swiss
Army Knife of Numerical Linear

Algebra.””
*Dianne O’Leary, MMDS "06



