DATA MINING LECTURE 8

Sequence Segmentation
Dimensionality Reduction

SEQUENCE SEGMENTATION

Why deal with sequential data?

- Because all data is sequential :)
- All data items arrive in the data store in some order
- Examples
- transaction data
- documents and words
- In some (many) cases the order does not matter
- In many cases the order is of interest

Time-series data

- Financial time series, process monitoring...

Sequence Segmentation

- Goal: discover structure in the sequence and provide a concise summary
- Given a sequence T, segment it into K contiguous segments that are as homogeneous as possible
- Similar to clustering but now we require the points in the cluster to be contiguous

Example

Basic definitions

- Sequence $T=\left\{t_{1}, t_{2}, \ldots, t_{N}\right\}$: an ordered set of N d-dimensional real points $t_{i} \in R^{d}$
- A k-segmentation S : a partition of T into K contiguous segments $\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right\}$.
- Each segment $S \in S$ is represented by a single value $\mu_{s} \in R^{d}$ (the representative of the segment)
- Error $\mathrm{E}(\mathrm{S})$: The error of replacing individual points with representatives
- Sum of Squares Error (SSE):

$$
E(S)=\sum_{s \in S} \sum_{t \in S}\left(t-\mu_{s}\right)^{2}
$$

- Representative for SSE: mean $\mu_{s}=\frac{1}{|s|} \sum_{t \in s} t$

The K-segmentation problem

Given a sequence T of length N and a value K, find a K-segmentation $S=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of T such that the SSE error E is minimized.

- Similar to K-means clustering, but now we need the points in the clusters to respect the order of the sequence.
- This actually makes the problem easier.

Optimal solution for the k-segmentation problem

- Bellman'61: The k-segmentation problem can be solved optimally using a standard dynamic-
programming algorithm
- Dynamic Programming:
- Construct the solution of the problem by using solutions to problems of smaller size
- Define the dynamic programming recursion
- Build the solution bottom up from smaller to larger instances
- Define the dynamic programming table that stores the solutions to the sub-problems

Dynamic Programming Solution

- Terminology:
- $E(S[1, n], k)$: error of optimal segmentation of subsequence $T[1, n]$ with k segments
- Dynamic Programming Recursion:

$$
E(S[1, n], k)=\min _{1 \leq j<n}\left\{E(S[1, j], k-1)+\sum_{j+1 \leq t \leq n}\left(t-\mu_{[j+1, n]}\right)^{2}\right\}
$$

- Dynamic programming table:
- Two-dimensional table A[1...K,1...N]
- A[k,n] $=E(S[1, n], k)$

Dynamic programming solution

$E(S[1, n], k)$

$$
=\min _{1 \leq j<\mathrm{n}}\left\{E(S[1, j], k-1)+\sum_{j+1 \leq t \leq n}\left(t-\mu_{[j+1, n]}\right)^{2}\right\}
$$

- Fill the table row to tow from smaller to larger values of k

Algorithm Complexity

-What is the complexity?

- NK cells to fill
- $E(S[1, n], k)=\min _{1 \leq j<n}\left\{E(S[1, j], k-1)+\sum_{j+1 \leq t \leq n}\left(t-\mu_{[j+1, n]}\right)^{2}\right\}$
- $\mathrm{O}(\mathrm{N})$ cells to check for each of the cells
- $\mathrm{O}(\mathrm{N})$ to compute the second term
- $\mathrm{O}\left(\mathrm{N}^{3} \mathrm{~K}\right)$ in the naïve computation
- $\sum_{j+1 \leq t \leq n}\left(t-\mu_{[j+1, n]}\right)^{2}=\sum_{j+1 \leq t \leq n} t^{2}+\frac{1}{n-j+2} \sum_{j+1 \leq t \leq n} t$
- We can compute in constant time by precomputing partial sums
- $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{~K}\right)$ complexity

Heuristics

- Bottom-up greedy (BU): O(NlogN)
- Merge adjacent points each time selecting the two points that cause the smallest increase in the error until K segments
- [Keogh and Smyth'97, Keogh and Pazzani'98]
- Top-down greedy (TD): O(NK)
- Introduce breakpoints so that you get the largest decrease in error, until K segments are created.
- [Douglas and Peucker'73, Shatkay and Zdonik'96, Lavrenko et. al'00]
- Local Search Heuristics: O(NKI)
- Assign the breakpoints randomly and then move them so that you reduce the error
- [Himberg et. al '01]

DIMENSIONALITY REDUCTION

The curse of dimensionality

- Real data usually have thousands, or millions of dimensions
- E.g., web documents, where the dimensionality is the vocabulary of words
- Facebook graph, where the dimensionality is the number of users
- Huge number of dimensions causes many problems
- Data becomes very sparse, some algorithms become meaningless (e.g. density based clustering)
- The complexity of several algorithms depends on the dimensionality and they become infeasible.

Dimensionality Reduction

- Usually the data can be described with fewer dimensions, without losing much of the meaning of the data.
- The data reside in a space of lower dimensionality
- Essentially, we assume that some of the data is noise, and we can approximate the useful part with a lower dimensionality space.
- Dimensionality reduction does not just reduce the amount of data, it often brings out the useful part of the data

Data in the form of a matrix

- We are given n objects and d attributes describing the objects. Each object has d numeric values describing it.
- We will represent the data as a $n \times d$ real matrix A.
- We can now use tools from linear algebra to process the data matrix
- Our goal is to produce a new $n \times k$ matrix B such that
- It preserves as much of the information in the original matrix A as possible
- It reveals something about the structure of the data in A

Example: Document matrices

d terms
 (e.g., theorem, proof, etc.)

n

documents

Find subsets of terms that bring documents together

Example: Recommendation systems

d movies

Find subsets of movies that capture the behavior or the customers

Some linear algebra basics

- We assume that vectors are column vectors. We use v^{T} for the transpose of vector v (row vector)
- Dot product: $u^{T} v(1 \times n, n \times 1 \rightarrow 1 \times 1)$
- The dot product is the projection of vector u on v
- External product: $u v^{T}(n \times 1,1 \times m \rightarrow n \times m)$
- The resulting $n \times m$ has rank 1 : all rows (or columns) are linearly dependent
- Rank of matrix A: The number of linearly independent vectors (column or row) in the matrix.
- Eigenvector of matrix A : a vector v such that $A v=\lambda v$

Singular Value Decomposition

$$
\underset{\substack{[n \times r][r \times r][r \times n]}}{\mathrm{A}=\mathrm{U}} \quad \Sigma \quad \mathrm{~V}^{\mathrm{T}}=\left[\begin{array}{llll}
\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2} & \cdots & \overrightarrow{\mathrm{u}}_{\mathrm{r}}
\end{array}\right]\left[\begin{array}{lllll}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \ddots & \\
& & & \sigma_{\mathrm{r}}
\end{array}\right]\left[\begin{array}{c}
\overrightarrow{\mathrm{v}}_{1} \\
\overrightarrow{\mathrm{v}}_{2} \\
\vdots \\
\overrightarrow{\mathrm{v}}_{\mathrm{r}}
\end{array}\right]
$$

- r : rank of matrix A
- $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}$: singular values (square roots of eig-vals $A A^{\top}, A^{\top} A$)
- $\overrightarrow{\mathrm{u}}_{1}, \overrightarrow{\mathrm{u}}_{2}, \cdots, \overrightarrow{\mathrm{u}}_{\mathrm{r}}$: left singular vectors (eig-vectors of AA^{\top})
- $\overrightarrow{\mathrm{v}}_{1}, \overrightarrow{\mathrm{v}}_{2}, \cdots, \overrightarrow{\mathrm{v}}_{r}$: right singular vectors (eig-vectors of $\mathrm{A}^{\top} \mathrm{A}$)

$$
A=\sigma_{1} \vec{u}_{1} \overrightarrow{\mathrm{v}}_{1}^{\top}+\sigma_{2} \overrightarrow{\mathrm{u}}_{2} \overrightarrow{\mathrm{v}}_{2}^{\top}+\cdots+\sigma_{\mathrm{r}} \overrightarrow{\mathrm{u}}_{\mathrm{r}} \overrightarrow{\mathrm{v}}_{\mathrm{r}}^{\top}
$$

Singular Value Decomposition

- What does it mean?
- If A has rank r, then A can be written as the sum of r rank-1 matrices
- There are r linear trends in A.
- Linear trend: the tendency of the row vectors of A to align with vector v
- Strength of the i-th linear trend: $\left\|A v_{i}\right\|=\sigma_{i}$

An (extreme) example

- Document-term matrix
- Blue and Red rows (colums) are linearly depedent

- There are two types of documents (words): blue and red
- To describe the data is enough to describe the two types, and the projection weights for each row
- A is a rank-2 matrix

An (more realistic) example

- Document-term matrix

- There are two types of documents and words but they are mixed
- We now have more than two singular vectors, but the strongest ones are still about the two types.
- By keeping the two strongest singular vectors we obtain most of the information in the data.
- This is a rank-2 approximation of the matrix A

SVD and Rank-k approximations

$\mathbf{A}=\mathbf{U} \quad \Sigma \quad \mathbf{V}^{\top}$

Rank-k approximations $\left(A_{k}\right)$

$\mathrm{U}_{\mathrm{k}}\left(\mathrm{V}_{\mathrm{k}}\right)$: orthogonal matrix containing the top k left (right) singular vectors of A.
Σ_{k} : diagonal matrix containing the top k singular values of A
A_{k} is an approximation of A

SVD as an optimization

- The rank-k approximation matrix A_{k} produced by the top-k singular vectors of A minimizes the Frobenious norm of the difference with the matrix A

$$
\begin{gathered}
A_{k}=\arg \max _{B: \operatorname{rank}(B)=k}\|A-B\|_{F}^{2} \\
\|A-B\|_{F}^{2}=\sum_{i, j}\left(A_{i j}-B_{i j}\right)^{2}
\end{gathered}
$$

What does this mean?

- We can project the row (and column) vectors of the matrix A into a k-dimensional space and preserve most of the information
- (Ideally) The k dimensions reveal latent features/aspects/topics of the term (document) space.
- (Ideally) The A_{k} approximation of matrix A, contains all the useful information, and what is discarded is noise

Two applications

- Latent Semantic Indexing (LSI):
- Apply SVD on the document-term space, and index the kdimensional vectors
- When a query comes, project it onto the low dimensional space and compute similarity cosine similarity in this space
- Singular vectors capture main topics, and enrich the document representation
- Recommender systems and collaborative filtering
- In a movie-rating system there are just a few types of users.
- What we observe is an incomplete and noisy version of the true data
- The rank-k approximation reconstructs the "true" matrix and we can provide ratings for movies that are not rated.

SVD and PCA

- PCA is a special case of SVD on the centered covariance matrix.

Covariance matrix

- Goal: reduce the dimensionality while preserving the "information in the data"
- Information in the data: variability in the data
- We measure variability using the covariance matrix.
- Sample covariance of variables X and Y

$$
\sum_{i}\left(x_{i}-\mu_{X}\right)^{T}\left(y_{i}-\mu_{Y}\right)
$$

- Given matrix A, remove the mean of each column from the column vectors to get the centered matrix C
- The matrix $V=C^{T} C$ is the covariance matrix of the row vectors of A .

PCA: Principal Component Analysis

- We will project the rows of matrix A into a new set of attributes such that:
- The attributes have zero covariance to each other (they are orthogonal)
- Each attribute captures the most remaining variance in the data, while orthogonal to the existing attributes
- The first attribute should capture the most variance in the data
- For matrix C , the variance of the rows of C when projected to vector x is given by $\sigma^{2}=\|C x\|^{2}$
- The right singular vector of C maximizes σ^{2} !

PCA

Input: 2-d dimensional points

Output:

1st (right) singular vector: direction of maximal variance,

2nd (right) singular vector: direction of maximal variance, after removing the projection of the data along the first singular vector.

Singular values

σ_{1} : measures how much of the data variance is explained by the first singular vector.
σ_{2} : measures how much of the data variance is explained by the second singular vector.

Another property of PCA/SVD

- The chosen vectors are such that minimize the sum of square differences between the data vectors and the low-dimensional projections

SVD is "the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra."*
*Dianne O'Leary, MMDS '06

