DATA MINING
LECTURE 6

Mixture of Gaussians and the EM algorithm
DBSCAN: A Density-Based Clustering Algorithm
Clustering Validation




AVOKOIVWOEIC

H TrpoBeopia yia Tn TTapadoon Twv BewpnTIKWV AOKNTEWV
gival Tetaptn 4/4

- KaBuoTtepnuéveg aokNOEIg o€ PETETTEITO NUEPEG Ba TTPETTEN va
TTapadobouv gTnv Ka. 2ouAiou, N oTroia Ba onpeIwVEl TV NUEPQ

mapadoong (MEPTTTN- I‘IapGOKaun HEXPI TIG 2:30, A KATW ATTO TNV TTOPTA
METQ).

- MT1TOpPEITE VA TIC TTAPADWOETE KAl NAEKTPOVIKA v OEAETE.

WEKA: Av oag ByaAel out-of-memory error, akOAOUBEIOTE TIG
odnyieg kal AAAAETE TO .ini apxeio. @a oag el OTI OEV
EMMTPETTETAI, OTTOTE TIPETTEI VA TO AVTIYPAWETE AAAOU va TO
OAAGCETE KOl HETA VA TO AVTIYPAWETE CavA.

LSH Implementation: ['a Tnv uAotroinon Ba XpeIaoTEITE PIa
uAoTtroinon €vog Dictionary kai List. H C++ €xer pia BiA1o0nkn
(STL), ka1 n Java 1a €xel wg built-in data types.



2YNTOMO MAGHMATIA
HASH TABLE
IMPLEMENTATIONS




Vector, map

vector AUVONIKOC TTivakag

map KpaTtdel (euyn kAediwv kai Tipwv (key-value
pairs). ZUoXeTiCel aVTIKEIMEVA-KAEIDIQ JE
QVTIKEIMEVA-TIUEG. TO KABE KAEIDI PTTOPEI VA
OUOXETICETAI PUE POVO [ia TIMA



vector

MéoBog

size ()
push back ()

pop_back ()
back ()

operator []

empty ()
insert ()

erase ()

ETTIOTPEPEI TOV APIOUS TWV OTOIXEIWV
MECQ OTOV TTiVOKQ

TTPOCBETEI Eva OTOIXEIO OTO TEAOG TOU
TTivaka

A@aIPEi TO TEAEUTAIO OTOIXEIO TOU TTivAKQ

ETTIOTPEPEI TO TEAEUTAIO OTOIXEIO TOU
TTivaka

TUXaia TTpOoBacn oTa OTOIXEIO TOU
TTivaka

ETTIOTPEPEI true av 1o vector ival adelo

TTPOOOETEI Eva OTOIXEIO O€ EVOIAUEDN
0£on (xpnoluoTrolwvTag iterator)
agaipei Eva oToIxeio atrd evoldueon
BEon (xpnoluoTrolwvTag iterator)



-
[Tapaodeiyua

#include <iostream>
#include <vector>

using namespace std;

int main () {
vector<int> v;

int x;
do{

cin >> x;

v.push back (x);
}while (x '= -1);
v[iv.size() - 1] = 0;

cout << "vector elements: ";
for (int i = 0; i < v.size(); i ++){
cout << v[i] <« " ",

}
cout << endl;



[Mapadelypa map

#include <iostream>
#include <map>
using namespace std;

int main () {
map<string,Person*> M;
string fname,lname;

while (!'cin.eof()) {
cin >> fname >> lname;

Person *p =new Person (fname,lname) ;
M[lname] = p;
}

map<string,Person*>::iterator iter = M.find(“marley") ;
if (iter == M.end()) {

cout << “marley is not in\n";
}else{

M[“marley"]->PrintPersonalDetails () ;

}



-
lterators map

#include <iostream>
#include <map>

using namespace std; _
int main () {

map<string,Person*> M;

string fname,lname;

while (!'cin.eof()) {
cin >> fname >> lname;
Person *p =new Person (fname,lname) ;
M[lname] = p;

}

map<string,Person*>::iterator iter;

for (iter = M.begin(); iter !'= M.end(); i++) {
cout << (*iter) .first <K “:”;
(*iter) .second->PrintPersonalDetails () ;



-
ArrayLlist

O Container ArrayList kKAnpovopuel atro 10 List kal
auTo atrod 1o Collection.

[TpoopEpel oeIpIOK atToONKEUON OEOOUEVWY KOl
EXEI OAQ TA TTAEOVEKTAMATA KOl JEIOVEKTAUATA TOU
vector otnv C++,

2TNV Java 0gv ETTITPETTETAI UTTEPPOPTWON
TEAEOTWYV OTTOTE XPNOIUOTTOIOUME TNV NEBODO
get(index) yia va diaAacouue Eva OTOIXEIO.

Aiaoxion Tou ArrayList pe Tnv foreach evroAn givai
TTI0 aTTAN OTT OTI JE TOV Iterator.


http://docs.oracle.com/javase/1.5.0/docs/api/java/util/ArrayList.html

import Jjava.io.*;
import java.util.*;

public class arraylist {
public static void main(String[] args) {

ArrayList<Integer> A = new ArrayList<Integer>() ;

for (int 1 = 0; 1 < 10; i ++){
Random r = new Random() ;
A.add(r.nextInt (100)) ;
System.out.println(A.get (1)) ;

}

Collections.sort (34) ;

System.out.println("") ;

for (int x: A) {
System.out.println(x) ;

}

System.out.println("") ;

System.out.println (A.toString()) ;



-
HashMap

To HashMap opilel Eva ouvelppIKO aTToBnKeEUTN
(associative container) o otroio¢ cUOXEeTICEl KAEIDIA PE
TIMEG, KANPOVOMEI atTO TNV TTIO YEVIKN KAAaon Map.
- [1.X., 0 BaBpog evog @oITnTn, N ouXvOTNTA UE TNV OTToIA
spcpaw(ual LI AECn O€ €va KEIPEVO.

H BiBAI0BNKN TG Java pag divel o EUKOAN
TPpOoRaon ota KAEIOIA Kal TIC TIMEC TOU map.
Xpnolueg uEBoodol:

- put(key,value): TTpocB<Tel Eva veEo key-value euyog
- containsKey(key): emoTpe@el aAnNBEC av UTTAPXEl TO KAEIDI
- containsValue(value): eTmoTpE@el aAnNBEC av UTTAPXEI N TIWN
- values(): emoTtpepel Eva Collection pe TIG TIMES
- keySet(): eTIoTPEPEI Eva Set PE TIC TIUEC.



http://docs.oracle.com/javase/1.4.2/docs/api/java/util/HashMap.html

import java.io.¥*;
import java.util.*;

public class mapexample ({
public static void main(String[] args) ({
String line;
Map<String,Integer> namesGrades = new HashMap<String,Integer>() ;
try{
FileReader fr = new FileReader ("Files/in.txt");
BufferedReader inReader = new BufferedReader (fr) ;

while((line = inReader.readLine()) '=null) {
System.out.println(line);
String [] words = line.split("\t");
Integer grade = Integer.parseInt(words[1l])
namesGrades.put (words[0] ,grade) ;
}
} catch (IOException ex) {
System.out.println("IO Error" + ex);
}
for (String x: namesGrades.keySet()) {
System.out.println(x + " -- " + namesGrades.get(x)) ;

}



MIXTURE MODELS AND
THE EM ALGORITHM




-
Model-based clustering

In order to understand our data, we will assume that there
IS a generative process (a model) that creates/describes
the data, and we will try to find the model that best fits the
data.

- Models of different complexity can be defined, but we will assume
that our model is a distribution from which data points are sampled

- Example: the data is the height of all people in Greece

In most cases, a single distribution is not good enough to
describe all data points: different parts of the data follow a
different distribution

- Example: the data is the height of all people in Greece and China

- We need a mixture model
- Different distributions correspond to different clusters in the data.



Gaussian Distribution

Example: the data is the height of all people In
Greece

- Experience has shown that this data follows a Gaussian
(Normal) distribution

- Reminder: Normal distribution:

1 _(x=w?
e 202

Pl = 21O

- L = mean, o = standard deviation



Gaussian Model

What is a model?

- A Gaussian distribution is fully defined by the mean
1 and the standard deviation o

- We define our model as the pair of parameters
0 = (o)

This Is a general principle: a model is defined as
a vector of parameters 6



-
Fitting the model

- We want to find the normal distribution that best
fits our data
- Find the best values for y and o
- But what does best fit mean?



-
Maximum Likelihood Estimation (MLE)

Suppose that we have a vector X = (x4, ..., x,,) of values
And we want to fit a Gaussian N(u, o) model to the data
Probability of observing point x;:
_(x=w)?
e 202
V2ro
Probability of observing all points (assume independence)

P(x;) =

1 _(xi—w)*

P(X) = HP(xi) - e 207

We want to find the parameters 6 = (u, o) that maximize
the probability P(X|60)



-
Maximum Likelihood Estimation (MLE)

The probability P(X|6) as a function of 8 is called the
Likelihood function

1 (mw?
L(6) = 1_[ e 207
) 210

It is usually easier to work with the Log-Likelihood
function

o O —w? 1
LL(9)=—Z 1202” —Enloan—nloga
i=1

Maximum Likelihood Estimation
- Find parameters u, o that maximize LL(6)

n n

1 1
p= ) Xi= i 0 = —Z(xi—u)z = oy

n
=1 =
‘ Sample Mean =1

Sample Variance



B0
asr —440
40_
—480
ach
E a0k —4B0]
K
? ach =470
-E 20k —480
15 —480
10
=500
5_ -
o ] -510
-0 -& ] —4 -2 1] 2
® log proks
(a) Histogram of 200 points from a (b) Log likelihood plot of the 200 points for
(Zaussian distribution. different values of the mean and standard

deviation.

Figure 9.3. 200 points from a Gaussian distribution and their log probability for different parameter
values.



Mixture of Gaussians

Suppose that you have the heights of people from
Greece and China and the distribution looks like
the figure below (dramatization)

Probability Densty
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(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of two normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture of Gaussians

In this case the data is the result of the mixiure of
two Gaussians
- One for Greek people, and one for Chinese people

- Identifying for each value which Gaussian is most likely
to have generated it will give us a clustering.

(a) Probability density function for (b) 20,000 points generated from the
the mixture model. mixture model.

Figure 9.2. Mixture model consisting of twe normal distributions with means of -4 and 4, respectively.
Both distributions have a standard deviation of 2.



Mixture model

A value x; Is generated according to the following
process:

- First | select the nationality
With probability ; | select Greek, with probability r. | select
China (n; +m = 1)
- Given the nationality, | generate the point from the
corresponding Gaussian
P(x;|6;) ~ N(ug,oz) if Greece
P(x;|6;) ~ N(ug,o¢) if China



e
Mixture Model

For value x;, we have:
P(x;) = mgP(x;105) + mcP(x;]6¢)
For all values X = (x4, ..., x,)

PO = | [P
i=1

Our model has the following parameters
O = (7g, ¢, Ug, Ke) TG, Oc)

Mixture probabilities  Distribution Parameters

We want to estimate the parameters that maximize
the Likelihood of the data



Mixture Models

Once we have the parameters

O = (g, e, U, Uc, Oc, Oc) WE can estimate the

membership probabilities P(G|x;) and P(C|x;) for

each point x;:

- This is the probability that point x; belongs to the Greek
or the Chinese population (cluster)

P(x;|G)P(G)

P(x;|G)P(G) + P(x;|C)P(C)
P(x;|G)mg

- P(x;|G)mg + P(x;| O

P(Glx;) =




EM (Expectation Maximization) Algorithm

Initialize the values of the parameters in © to some
random values

Repeat until convergence

- E-Step: Given the parameters 0 estimate the membership
probabilities P(G|x;) and P(C|x;)

- M-Step: Compute the parameter values that (in expectation)
maximize the data likelihood

n n
G = —Z P(Gx;) e = _Z P(Clx)
=1 i=1
= P(Clx;) n
' P(G|x; :
pe = z — e = Z G MLE Estimates
i=1 =~ N*Tg if ©’s were fixed
n n
P(Clx;) P(G|x;)
Gg=2n*n; (xi_ﬂc)z Gg:Zn*n; (xi—uG)Z



Relationship to K-means

E-Step: Assignment of points to clusters
- K-means: hard assignment, EM: soft assignment

M-Step: Computation of centroids

- K-means assumes common fixed variance (spherical
clusters)

- EM: can change the variance for different clusters or
different dimensions (elipsoid clusters)

If the variance is fixed then both minimize the
same error function
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Figure 9.4. EM clustering of a two-dimensional point set with three clusters.



=10

Figure 9.5. EM clustering of a two-dimensional point set with two clusters of differing density.



(b) Clusters produced by K-means clustering.

Figure 9.6. Mixture model and K-means clustering of a set of two-dimensional points.



DBSCAN: ADENSITY-BASED
CLUSTERING ALGORITHM

Thanks to:
“Introduction to Data Mining” by Tan, Steinbach, Kumar.



-
DBSCAN: Density-Based Clustering

DBSCAN is a Density-Based Clustering algorithm

Reminder: In density based clustering we partition points
Into dense regions separated by not-so-dense regions.

Important Questions:
- How do we measure density?
- What is a dense region?

DBSCAN:

- Density at point p: number of points within a circle of radius Eps

- Dense Region: A circle of radius Eps that contains at least MinPts
points



-
DBSCAN

Characterization of points
- A point is a core point If it has more than a specified
number of points (MinPts) within Eps

These points belong in a dense region and are at the interior of
a cluster

- A border point has fewer than MinPts within Eps, but
IS In the neighborhood of a core point.

- A noise point is any point that is not a core point or a
border point.



S
DBSCAN: Core, Border, and Noise Points
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DBSCAN: Core, Border and Noise Points

Point types:

border and noise

Original Points

=4

10, MinPts

Eps =



Density-Connected points

- Density edge

- We place an edge between two core
points g and p if they are within
distance Eps.

- Density-connected

- A point p is density-connected to a
point g if there is a path of edges
from p to q




-
DBSCAN Algorithm

Label points as , border and noise

Eliminate noise points

For every point p that has not been assigned
to a cluster

- Create a new cluster with the point p and all the
points that are density-connected to

Assign border points to the cluster of the closest
core point.



-
DBSCAN: Determining Eps and MinPts

Idea is that for points in a cluster, their k'" nearest neighbors
are at roughly the same distance

Noise points have the ki nearest neighbor at farther distance
So, plot sorted distance of every point to its k' nearest
neighbor

Find the distance d where there is a “knee” in the curve

- Eps =d, MinPts =k
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When DBSCAN Works Well

Clusters

Original Points

* Resistant to Noise

» Can handle clusters of different shapes and sizes
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When DBSCAN Does NOT Work Well
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S
DBSCAN: Sensitive to Parameters

Figure 8. DBScan
results for DS1 with
MinPts at 4 and Eps at
(a)0.5and (b) 0.4.

Figure 9. DBScan
results for DS2 with
MinPts at 4 and Eps at
(a)5.0. (b) 3.5, and
fc) 3.0.

(a) (b) (c)



Other algorithms

PAM, CLARANS: Solutions for the k-medoids
problem

BIRCH: Constructs a hierarchical tree that acts a
summary of the data, and then clusters the leaves.

MST: Clustering using the Minimum Spanning Tree.

ROCK: clustering categorical data by neighbor and
Ink analysis

_IMBO, COOLCAT: Clustering categorical data using
Information theoretic tools.

CURE: Hierarchical algorithm uses different
representation of the cluster

CHAMELEON: Hierarchical algorithm uses closeness
and interconnectivity for merging




CLUSTERING VALIDITY




-
Cluster Validity

How do we evaluate the “goodness” of the resulting
clusters?

But “clusters are in the eye of the beholder”!

Then why do we want to evaluate them?
- To avoid finding patterns in noise
- To compare clustering algorithms
- To compare two sets of clusters
- To compare two clusters
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-
Different Aspects of Cluster Validation

Determining the clustering tendency of a set of data, i.e.,
distinguishing whether non-random structure actually exists in the
data.

Comparing the results of a cluster analysis to externally known
results, e.g., to externally given class labels.

Evaluating how well the results of a cluster analysis fit the data
without reference to external information.

- Use only the data

Comparing the results of two different sets of cluster analyses to
determine which is better.

Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to
evaluate the entire clustering or just individual clusters.



-
Measures of Cluster Validity

Numerical measures that are applied to judge various aspects
of cluster validity, are classified into the following three types.

- External Index: Used to measure the extent to which cluster labels

match externally supplied class labels.
Entropy

- Internal Index: Used to measure the goodness of a clustering
structure without respect to external information.
Sum of Squared Error (SSE)
- Relative Index: Used to compare two different clusterings or

clusters.

Often an external or internal index is used for this function, e.g., SSE or
entropy

Sometimes these are referred to as criteria instead of indices

- However, sometimes criterion is the general strategy and index is the
numerical measure that implements the criterion.



Measuring Cluster Validity Via Correlation

Two matrices
Proximity Matrix

“Incidence” Matrix
One row and one column for each data point
An entry is 1 if the associated pair of points belong to the same cluster
An entry is 0 if the associated pair of points belongs to different clusters

Compute the correlation between the two matrices

Since the matrices are symmetric, only the correlation between
n(n-1) / 2 entries needs to be calculated.

High correlation indicates that points that belong to the
same cluster are close to each other.

Not a good measure for some density or contiguity based
clusters.



Measuring Cluster Validity Via Correlation

- Correlation of incidence and proximity matrices
for the K-means clusterings of the following two

data sets.
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Using Similarity Matrix for Cluster Validation

- QOrder the similarity matrix with respect to cluster
labels and inspect visually.
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Using Similarity Matrix for Cluster Validation

- Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

- Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

- Clusters in random data are not so crisp
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e
Internal Measures: SSE

Clusters in more complicated figures aren’t well separated

Internal Index: Used to measure the goodness of a
clustering structure without respect to external information
- SSE

SSE is good for comparing two clusterings or two clusters
(average SSE).

Can also be used to estimate the number of clusters
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|
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SSE
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SSE

- SSE curve for a more complicated data set
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Framework for Cluster Validity

Need a framework to interpret any measure.
For example, if our measure of evaluation has the value, 10, is that
good, fair, or poor?

Statistics provide a framework for cluster validity

The more “atypical” a clustering result is, the more likely it represents
valid structure in the data

Can compare the values of an index that result from random data or
clusterings to those of a clustering result.

If the value of the index is unlikely, then the cluster results are valid
These approaches are more complicated and harder to understand.
For comparing the results of two different sets of cluster

analyses, a framework Is less necessary.

However, there is the question of whether the difference between two
index values is significant



Statistical Framework for SSE
Example

Compare SSE of 0.005 against three clusters in random data

Histogram shows SSE of three clusters in 500 sets of random data
points of size 100 distributed over the range 0.2 — 0.8 for x and y
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Statistical Framework for Correlation

Correlation of incidence and proximity matrices for the
K-means clusterings of the following two data sets.
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0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0.7 -0.65 -086 -0.55 -05 -0.45 -04 -0.35
X X Correlation

Corr =-0.9235 Corr = -0.5810



Internal Measures: Cohesion and Separation

Cluster Cohesion: Measures how closely related

are objects in a cluster
- Example: SSE
Cluster Separation: Measure how distinct or well-

separated a cluster is from other clusters

Example: Squared Error
- Cohesion is measured by the within cluster sum of squares (SSE)

WSS=3 >(x—m;)?
I xeC.
- Separation is measured by the between cluster sum of squares

BSS = ) |C|(m-m,)’

* Where |C|| is the size of cluster i



Internal Measures: Cohesion and Separation

A proximity graph based approach can also be used for
cohesion and separation.
Cluster cohesion is the sum of the weight of all links within a cluster.

Cluster separation is the sum of the weights between nodes in the cluster
and nodes outside the cluster.

cohesion separation



External Measures for Clustering Validity

Assume that the data iIs labeled with some class
labels

- E.g., documents are classified into topics, people classified
according to their income, senators classified as republican
or democrat.

In this case we want the clusters to be homogeneous
with respect to classes

- Each cluster should contain elements of mostly one class

- Also each class should ideally be assigned to a single cluster

This does not always make sense
- Clustering is not the same as classification

But this is what people use most of the time



Measures

m = number of points

m; = points in cluster |

m; = points Iin class |

m;;= points in cluster i coming from class |

pi; = m;;/m;= prob of element from class | in cluster |

- Entropy:
- Of a cluster i: e = — §:=1 Dij logpu
- Highest when uniform, zero when single class
. . K mi
- Of a clustering: e = i=1§lei

- Purity:
- Of a cluster i: p; = maxp;;
J

- Of a clustering: purity = §=1%Pi



Measures

- Precision:
- Of cluster i with respect to class j: Prec(i,j) = p;;

- Recall:

- Of cluster | with respect to class j: Rec(i,j) = %
J

- F-measure:
- Harmonic Mean of Precision and Recall:
o 2 * Prec(i,j) * Rec(i,])
F(i,j) = — -
Prec(i,j) + Rec(i, )




External Measures of Cluster Validity:
Entropy and Purity

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster | Entertainment | Financial | Foreign | Metro | National | Sports | Entropy | Purity
1 3 5 40 506 96 27 1.2270 | 0.7474
2 4 7 280 29 39 2 1.1472 | 0.7756
3 1 1 1 7 4 671 0.1813 | 0.9796
4 10 162 3 119 73 2 1.7487 | 0.4390
5 331 22 5 70 13 23 1.3976 | 0.7134
6 5 358 12 212 48 13 1.5523 | 0.5525
Total 354 555 341 943 273 738 1.1450 | 0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j
we compute p;;, the ‘probability’ that a member of cluster 7 belongs to class ¢ as follows:
Pi; = méj/mj, where m; is the number of values in cluster j and m,; is the number of values
of class ¢ in cluster 7. Then using this class distribution, the entropy of each cluster 5 is
calculated using the standard formula e; = Zf=1péj log, psj, where the L is the number of
classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each
cluster weighted by the size of each cluster, i.e., e = Zil e, where m; is the size of cluster

1, K 1s the number of clusters, and m is the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster j, is given by purity; =
max p;; and the overall purity of a clustering by purity = Zfil L purity;.



Final Comment on Cluster Validity

“The validation of clustering structures is the most
difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster
analysis will remain a black art accessible only to
those true believers who have experience and
great courage.”

Algorithms for Clustering Data, Jain and Dubes



