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Finding similar documents 

• Problem: Find similar documents from a web 

crawl 

• Main issues to address: 

• What is the right representation and similarity function? 

• Shingling: reduce a document to a set of shingles 

• Similarity function: Jaccard similarity  

• Sim (C1, C2) = |C1C2|/|C1C2|  

• Compress the sets so that we can fit more in memory 

• Min-Hashing: create a signature/sketch of a document 

• Find similar pairs without checking all possible pairs 

• Locality Sensitive Hashing (LSH) 



Shingling 

• Shingle: a sequence of k contiguous characters 

a rose is a rose is a rose 

a rose is  

  rose is a 

  rose is a  

   ose is a r 

    se is a ro 

     e is a ros 

       is a rose 

       is a rose  

        s a rose i 

      a rose is 

  a rose is  

Represent a document 

as a set of shingles 



Fingerprinting 

• Hash shingles to 64-bit integers 

a rose is  

 rose is a 

rose is a  

ose is a r 

se is a ro 

e is a ros 

 is a rose 

is a rose  

s a rose i 

 a rose is 

aaaa 

bbbb 

cccc 

dddd 

eeee 

ffff 

gggg 

hhhh 

iiii 

jjjj 

Set of Shingles Set of 64-bit integers 
Hash function 

(Rabin’s fingerprints) 



Document processing 

 

D Shingling Shingles 
set S of  
64-bit  

integers 

Rabin’s 
fingerprints 



Document Similarity 

D1 D2 

S1 S2 
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 Jaccard coefficient 



Compacting the data  

• Problem: shingle sets are too large to be kept in 

memory. 

• Key idea: “hash” each set S  to a small signature 

Sig (S), such that: 

1. Sig (S) is small enough that we can fit a signature in 

main memory for each set. 

2. Sim (S1, S2) is (almost) the same as the “similarity” of 

Sig (S1) and Sig (S2). (signature preserves similarity). 

• Warning: This method can produce false 

negatives, and false positives (if an additional  

check is not made). 
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From Sets to Boolean Matrices 

• Represent the data as a boolean matrix M 

• Rows = the universe of all possible set elements  

• In our case, shingle fingerprints take values in [0…264-1] 

• Columns = the sets  

• In our case, the sets of shingle fingerprints 

• M(e,S) = 1 in row e  and column S  if and only if e  is a 

member of S. 

• Typical matrix is sparse. 

• We do not really materialize the matrix 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Sim(X,Y) = 
3

5
 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Sim(X,Y) = 
3

5
 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

At least one of the columns has value 1 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Sim(X,Y) = 
3

5
 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

Both columns have value 1 
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Minhashing 

• Pick a random permutation of the rows (the 

universe U). 

• Define “hash” function  

• h(S) = the index of the first row (in the permuted order) 

in which column S has 1. 

• h(S) = the index of the first element of S in the permuted 

order. 

• Use k (e.g., k = 100) independent random 

permutations to create a signature. 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

A 

C 

G 

F 

B 

E 

D 

S1 S2 S3 S4 

A 1 0 1 0 

C 0 1 0 1 

G 1 0 1 0 

F 1 0 1 0 

B 1 0 0 1 

E 0 1 1 1 

D 0 1 0 1 

1 2 1 2 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

D 

B 

A 

C 

F 

G 

E 

S1 S2 S3 S4 

D 0 1 0 1 

B 1 0 0 1 

A 1 0 1 0 

C 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

E 0 1 1 1 

2 1 3 1 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

C 

D 

G 

F 

A 

B 

E 

S1 S2 S3 S4 

C 0 1 0 1 

D 0 1 0 1 

G 1 0 1 0 

F 1 0 1 0 

A 1 0 1 0 

B 1 0 0 1 

E 0 1 1 1 

3 1 3 1 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

S1 S2 S3 S4 

h1 1 2 1 2 

h1 2 1 3 1 

h1 3 1 3 1 

≈ 

Sig(S,i) = value of the i-th hash function for set S 

Signature matrix 
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Hash function Property 

 

Pr(h(S1) = h(S2)) = Sim(S1,S2) 

 

• where the probability is over all choices of  
permutations.  

 

• Why? 
• The first row where one of the two sets has value 1 

belongs to the union. 

• We have equality if both columns have value 1. 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

Rows C,D could be anywhere 

they do not affect the probability 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

The * rows belong to the union 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

The question is what is the value 

of the first * element 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

If it belongs to the intersection 

then h(X) = h(Y) 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

Every element of the union is equally likely 

to be the * element 

Pr(h(X) = h(X)) = 
| A,F,G |

| A,B,E,F,G |
= 

3
5

= Sim(X,Y) 
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Similarity for Signatures 

• The similarity of signatures  is the fraction of the hash 

functions in which they agree. 

 

 

 

 

 

 

 

• With multiple signatures we get a good approximation 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 1 1 

F 1 0 1 0 

G 1 0 1 0 

S1 S2 S3 S4 

1 2 1 2 

2 1 3 1 

3 1 3 1 

≈ 

actual Sig 

(x1,x2) 0 0 

(x1,x3) 3/5 2/3 

(x1,x4) 1/7 0 

(x2,x3) 0 0 

(x2,x4) 3/4 1 

(x3,x4) 0 0 

Signature matrix 



Is it now feasible? 

• Assume a billion rows 

• Hard to pick a random permutation of 1…billion 

• Even representing a random permutation 

requires 1 billion entries!!! 

• How about accessing rows in permuted order? 

• 



Being more practical 

• Approximating row permutations: pick k=100 

hash functions (h1,…,hk) 

for each row r  

  for each hash function hi  

      compute hi (r )  

      for each column S that has 1 in row r  

  if hi (r ) is a smaller value than Sig(S,i) then 

    Sig(S,i) = hi (r); 

 

 

Sig(S,i) will become the smallest value of hi(r) among all rows for 

which column S has value 1; i.e., hi (r) gives the min index for the 

i-th permutation 
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Example 

Row S1 S2 

  A  1  0 

  B  0  1 

  C  1  1 

  D  1  0 

  E  0  1 

h(x) = x+1 mod 5 

g(x) = 2x+1 mod 5 

h(0) = 1  1 - 

g(0) = 3  3 - 

h(1) = 2  1 2 

g(1) = 0  3 0 

h(2) = 3  1 2 

g(2) = 2  2 0 

h(3) = 4  1 2 

g(3) = 4  2 0 

h(4) = 0  1 0 

g(4) = 1  2 0 

Sig1 Sig2 

Row S1 S2 

  E    0  1  

  A    1  0 

  B    0  1 

  C    1  1 

  D    1  0 

   

Row S1 S2 

  B    0  1  

  E    0  1  

  C    1  0 

  A    1  1 

  D   1  0 

   

x 

0 

1 

2 

3 

4 
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Finding similar pairs 

• Problem: Find all pairs of documents with 

similarity at least t = 0.8 

• While the signatures of all columns may fit in 

main memory, comparing the signatures of all 

pairs of columns is quadratic in the number of 

columns. 

• Example: 106 columns implies 5*1011 column-

comparisons. 

• At 1 microsecond/comparison: 6 days. 
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Locality-Sensitive Hashing 

• What we want: a function f(X,Y) that tells whether or not X  
and Y  is a candidate pair: a pair of elements whose 
similarity must be evaluated. 

 

• A simple idea: X and Y are a candidate pair if they have 
the same min-hash signature. 
• Easy to test by hashing the signatures. 

• Similar sets are more likely to have the same signature. 

• Likely to produce many false negatives. 

 

• Making it more complex: Perform this process multiple 
times; candidate pairs should have at least one common 
signature.  
• Reduce the probability for false negatives. 
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The signature matirx 

Matrix Sig 

r  rows 

per band 

b  bands 

   One 

signature 

b*r   hash functions 

b  mini-signatures 
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Partition into Bands – (2) 

• Divide the signature matrix Sig  into b  bands of r  
rows. 
• Each band is a mini-signature with r hash functions. 

• For each band, hash the mini-signature to a hash table 
with k  buckets. 
• Make k  as large as possible so that mini-signatures that hash 

to the same bucket are almost certainly identical. 

• Candidate column pairs are those that hash to the 
same bucket for ≥ 1 band. 

• Tune b and r  to catch most similar pairs, but few non-
similar pairs. 
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Matrix M 

r  rows b  bands 

Buckets Columns 2 and 6 

are (almost certainly) identical. 

Columns 6 and 7 are 

surely different. 
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Suppose S1, S2 are 80% Similar 

• We want all 80%-similar pairs. Choose 20 bands of 5 
integers/band. 

 

• Probability S1, S2 identical in one particular band: 
  (0.8)5 = 0.328. 

 

• Probability S1, S2 are not  similar in any of the 20 
bands:  

  (1-0.328)20 = .00035 . 
 

• i.e., about 1/3000-th of the 80%-similar column pairs are 
false negatives. 
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Suppose S1, S2 Only 40% Similar 

• Probability S1, S2 identical in any one particular 
band:  

  (0.4)5  = 0.01 . 

 

• Probability S1, S2 identical in at least 1 of 20 
bands:  

   ≤ 20 * 0.01 = 0.2 . 

 

• But false positives much lower for similarities 
<< 40%.  
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LSH Involves a Tradeoff 

• Pick the number of minhashes, the number of 

bands, and the number of rows per band to 

balance false positives/negatives. 

 

• Example: if we had only 15 bands of 5 rows, the 

number of false positives would go down, but the 

number of false negatives would go up. 



36 

Analysis of LSH – What We Want 

       Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

No chance 

if s < t 

Probability 

= 1 if s > t 



37 

What One Band of One Row Gives You 

Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

Remember: 

probability of 

equal hash-values 

= similarity 
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What b  Bands of r  Rows Gives You 

Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

s r  

All rows 

of a band 

are equal 

1 - 

Some row 

of a band 

unequal 

( )b  

 

No bands 

identical 

1 - 

At least 

one band 

identical 

t ~ (1/b)1/r  
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Example: b  = 20; r  = 5 

 s  1-(1-sr)b 

.2    .006 

.3    .047 

.4    .186 

.5    .470 

.6    .802 

.7    .975 

.8    .9996 

t = 0.5 



Locality-sensitive hashing (LSH) 

• Big Picture: Construct hash functions h: Rd
 U 

such that for any pair of points p,q, for distance 

function D we have: 

• If D(p,q)≤r, then Pr[h(p)=h(q)] is high 

• If D(p,q)≥cr, then Pr[h(p)=h(q)] is small 

• Then, we can find close pairs by hashing 

 

• LSH is a general framework: for a given distance 

function D we need to find the right h 



CLUSTERING 
Thanks to 

Tan, Steinbach, Kumar, “Introduction to Data Mining” 



What is Cluster Analysis? 

• Finding groups of objects such that the objects in a group 

will be similar (or related) to one another and different from 

(or unrelated to) the objects in other groups 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 



Applications of Cluster Analysis 

• Understanding 

• Group related documents for 

browsing, group genes and 

proteins that have similar 

functionality, or group stocks 

with similar price fluctuations 

 

• Summarization 

• Reduce the size of large data 

sets 

 

 Discovered Clusters Industry Group 

1 
Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 

Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 

Sun-DOWN 

 

 

Technology1-DOWN 

2 
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 

ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 

Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 

 

Technology2-DOWN 

3 
Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 

MBNA-Corp-DOWN,Morgan-Stanley-DOWN 
 

Financial-DOWN 

4 
Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 

Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 

Oil-UP 

 

 

Clustering precipitation 

in Australia 



Early applications of cluster analysis 

• John Snow, London 1854 



Notion of a Cluster can be Ambiguous 

How many clusters? 

Four Clusters  Two Clusters  

Six Clusters  



Types of Clusterings 

• A clustering is a set of clusters 
 

• Important distinction between hierarchical and 
partitional sets of clusters  
 

• Partitional Clustering 
• A division data objects into non-overlapping subsets (clusters) 

such that each data object is in exactly one subset 
 

• Hierarchical clustering 
• A set of nested clusters organized as a hierarchical tree  



Partitional Clustering 

Original Points A Partitional  Clustering 



Hierarchical Clustering 

p4

p1
p3

p2

 

p4 

p1 
p3 

p2 

p4p1 p2 p3

p4p1 p2 p3

Traditional Hierarchical 

Clustering 

Non-traditional Hierarchical 

Clustering 

Non-traditional Dendrogram 

Traditional Dendrogram 



Other Distinctions Between Sets of 

Clusters 

• Exclusive versus non-exclusive 
• In non-exclusive clusterings, points may belong to multiple 

clusters. 

• Can represent multiple classes or ‘border’ points 

• Fuzzy versus non-fuzzy 
• In fuzzy clustering, a point belongs to every cluster with some 

weight between 0 and 1 

• Weights must sum to 1 

• Probabilistic clustering has similar characteristics 

• Partial versus complete 
• In some cases, we only want to cluster some of the data 



Types of Clusters 

•  Well-separated clusters 

 

•  Center-based clusters 

 

•  Contiguous clusters 

 

•  Density-based clusters 

 

• Property or Conceptual 

 

• Described by an Objective Function 



Types of Clusters: Well-Separated 

• Well-Separated Clusters:  
• A cluster is a set of points such that any point in a cluster is 

closer (or more similar) to every other point in the cluster than 
to any point not in the cluster.  

 

3 well-separated clusters 



Types of Clusters: Center-Based 

• Center-based 
•  A cluster is a set of objects such that an object in a cluster is 

closer (more similar) to the “center” of a cluster, than to the 
center of any other cluster   

• The center of a cluster is often a centroid, the average of all 
the points in the cluster, or a medoid, the most “representative” 
point of a cluster  

 

4 center-based clusters 



Types of Clusters: Contiguity-Based 

• Contiguous Cluster (Nearest neighbor or 
Transitive) 
• A cluster is a set of points such that a point in a cluster is 

closer (or more similar) to one or more other points in the 
cluster than to any point not in the cluster. 

 

8 contiguous clusters 



Types of Clusters: Density-Based 

• Density-based 
• A cluster is a dense region of points, which is separated by 

low-density regions, from other regions of high density.  

• Used when the clusters are irregular or intertwined, and when 
noise and outliers are present.  

6 density-based clusters 



Types of Clusters: Conceptual Clusters 

• Shared Property or Conceptual Clusters 
• Finds clusters that share some common property or represent 

a particular concept.  

.  

2 Overlapping Circles 



Types of Clusters: Objective Function 

• Clusters Defined by an Objective Function 
• Finds clusters that minimize or maximize an objective function.  

• Enumerate all possible ways of dividing the points into clusters and 

evaluate the `goodness' of each potential set of clusters by using the 

given objective function.  (NP Hard) 

•  Can have global or local objectives. 

•  Hierarchical clustering algorithms typically have local objectives 

•  Partitional algorithms typically have global objectives 

• A variation of the global objective function approach is to fit the data 

to a parameterized model.  

•  Parameters for the model are determined from the data.  

•  Mixture models assume that the data is a ‘mixture' of a number of 

statistical distributions.   



Clustering Algorithms 

• K-means and its variants 
 

• Hierarchical clustering 

 

 



K-means Clustering 

• Partitional clustering approach  

• Each cluster is associated with a centroid 
(center point)  

• Each point is assigned to the cluster with the 
closest centroid 

• Number of clusters, K, must be specified 

• The objective is to minimize the sum of 
distances of the points to their respective 
centroid 



K-means Clustering 

• Most common definition is with euclidean distance, 
minimizing the Sum of Squares Error (SSE) function 
• Sometimes K-means is defined like that 

 

• Problem: Given a set X of n points in a d-
dimensional space and an integer K group the points 
into K clusters {C1, C2,…,Ck} such that 

 

 

  

 

  is minimized, where ci is the mean of the points in 
cluster Ci 

 
 


k

i Cx

i

i

cxdistCCost
1

2)(
Sum of Squares Error (SSE) 



Algorithmic properties of the k-means 

problem 
• NP-hard if the dimensionality of the data is at least 2 
(d>=2) 

 

• Finding the best solution in polynomial time is 
infeasible 

 

• For d=1 the problem is solvable in polynomial time 
(how?) 

 

• A simple iterative algorithm works quite well in 
practice 



K-means Algorithm 

• Also known as Lloyd’s algorithm. 

• K-means is sometimes synonymous with this 

algorithm 



K-means Algorithm – Details 

• Initial centroids are often chosen randomly. 
• Clusters produced vary from one run to another. 

• ‘Closeness’ is measured by Euclidean distance, cosine 
similarity, correlation, etc. 

• The centroid depends on the distance function 
• The mean of the points in the cluster for SSE, the median for 

Manhattan distance. 

• K-means will converge for common similarity measures 
mentioned above. 

• Most of the convergence happens in the first few 
iterations. 

• Often the stopping condition is changed to ‘Until relatively few 
points change clusters’ 

• Complexity is O( n * K * I * d ) 
• n = number of points, K = number of clusters,  

I = number of iterations, d = number of attributes 



Two different K-means Clusterings 
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Importance of Choosing Initial Centroids 
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Importance of Choosing Initial Centroids 
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Importance of Choosing Initial Centroids 
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Importance of Choosing Initial Centroids … 
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Dealing with Initialization 

• Do multiple runs and select the clustering with the 

smallest error 

 

• Select original set of  points by methods other 

than random . E.g.,  pick the most distant (from 

each other) points as cluster centers (K-means++ 

algorithm) 

 



Limitations of K-means 

• K-means has problems when clusters are of 

different  

• Sizes 

• Densities 

• Non-globular shapes 

 

• K-means has problems when the data contains 

outliers. 



Limitations of K-means: Differing Sizes 

 
 
 

 

Original Points K-means (3 Clusters) 



Limitations of K-means: Differing Density 
 

 
 

 

Original Points K-means (3 Clusters) 



Limitations of K-means: Non-globular Shapes 

 
 
 

 

Original Points K-means (2 Clusters) 



Overcoming K-means Limitations 
 

 
 

 

Original Points    K-means Clusters 

One solution is to use many clusters. 

Find parts of clusters, but need to put together. 



Overcoming K-means Limitations 
 

 
 

 

Original Points    K-means Clusters 



Overcoming K-means Limitations 

 
 
 

 

Original Points    K-means Clusters 



Variations 

• K-medoids: Similar problem definition as in K-

means, but the centroid of the cluster is defined 

to be one of the points in the cluster (the medoid). 

 

• K-centers: Similar problem definition as in K-

means, but the goal now is to minimize the 

maximum diameter of the clusters (diameter of a 

cluster is maximum distance between any two 

points in the cluster).  



Hierarchical Clustering  

• Produces a set of nested clusters organized as a 

hierarchical tree 

• Can be visualized as a dendrogram 

• A tree like diagram that records the sequences of 

merges or splits 

1 3 2 5 4 6
0

0.05

0.1

0.15

0.2

1

2

3

4

5

6

1

2
3 4

5



Strengths of Hierarchical Clustering 

• Do not have to assume any particular number of 
clusters 
• Any desired number of clusters can be obtained by 

‘cutting’ the dendogram at the proper level 

 

• They may correspond to meaningful taxonomies 
• Example in biological sciences (e.g., animal kingdom, 

phylogeny reconstruction, …) 



Hierarchical Clustering 

• Two main types of hierarchical clustering 
• Agglomerative:   

•  Start with the points as individual clusters 

•  At each step, merge the closest pair of clusters until only one cluster (or 
k clusters) left 

 

• Divisive:   

•  Start with one, all-inclusive cluster  

•  At each step, split a cluster until each cluster contains a point (or there 
are k clusters) 

 

• Traditional hierarchical algorithms use a similarity or 
distance matrix 
• Merge or split one cluster at a time 

 



Agglomerative Clustering Algorithm 

• More popular hierarchical clustering technique 
 

• Basic algorithm is straightforward 
1. Compute the proximity matrix 

2. Let each data point be a cluster 

3. Repeat 

4.  Merge the two closest clusters 

5.  Update the proximity matrix 

6. Until only a single cluster remains 
  

• Key operation is the computation of the proximity 
of two clusters 

• Different approaches to defining the distance between 
clusters distinguish the different algorithms 



Starting Situation  

• Start with clusters of individual points and a 

proximity matrix 
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Intermediate Situation 

• After some merging steps, we have some clusters  
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Intermediate Situation 

• We want to merge the two closest clusters (C2 and C5)  and 

update the proximity matrix.  
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After Merging 

• The question is “How do we update the proximity matrix?”  
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How to Define Inter-Cluster Similarity 
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How to Define Inter-Cluster Similarity 
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Cluster Similarity: MIN or Single Link  

• Similarity of two clusters is based on the two most 

similar (closest) points in the different clusters 

• Determined by one pair of points, i.e., by one link in the 

proximity graph. 

I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00
1 2 3 4 5 



Hierarchical Clustering: MIN 

Nested Clusters Dendrogram 

1 

2 

3 

4 

5 

6 

1 

2 

3 

4 

5 

3 6 2 5 4 1
0

0.05

0.1

0.15

0.2



Strength of MIN 

Original Points Two Clusters 

• Can handle non-elliptical shapes 



Limitations of MIN 

Original Points Two Clusters 

• Sensitive to noise and outliers 



Cluster Similarity: MAX or Complete Linkage 

• Similarity of two clusters is based on the two least 

similar (most distant) points in the different 

clusters 

• Determined by all pairs of points in the two clusters 

 I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5 



Hierarchical Clustering: MAX 

Nested Clusters Dendrogram 
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Strength of MAX 

Original Points Two Clusters 

• Less susceptible to noise and outliers 



Limitations of MAX 

Original Points Two Clusters 

•Tends to break large clusters 

•Biased towards globular clusters 



Cluster Similarity: Group Average 

• Proximity of two clusters is the average of pairwise proximity 

between points in the two clusters. 

 

 

 

• Need to use average connectivity for scalability since total 

proximity favors large clusters 
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I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5 



Hierarchical Clustering: Group Average 

Nested Clusters Dendrogram 
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Hierarchical Clustering: Group Average 

• Compromise between Single and 

Complete Link 

 

• Strengths 

• Less susceptible to noise and outliers 

 

• Limitations 

• Biased towards globular clusters 



Cluster Similarity: Ward’s Method 

• Similarity of two clusters is based on the increase 

in squared error when two clusters are merged 

• Similar to group average if distance between points is 

distance squared 
 

• Less susceptible to noise and outliers 
 

• Biased towards globular clusters 
 

• Hierarchical analogue of K-means 

• Can be used to initialize K-means 



Hierarchical Clustering: Comparison 
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Hierarchical Clustering:   

Time and Space requirements 

• O(N2) space since it uses the proximity matrix.   

• N is the number of points. 

 

• O(N3) time in many cases 

• There are N steps and at each step the size, N2, 

proximity matrix must be updated and searched 

• Complexity can be reduced to O(N2 log(N) ) time for 

some approaches 

 

 

 



Hierarchical Clustering:   

Problems and Limitations 

• Once a decision is made to combine two clusters, 

it cannot be undone 
 

• No objective function is directly minimized 
 

• Different schemes have problems with one or 

more of the following: 

• Sensitivity to noise and outliers 

• Difficulty handling different sized clusters and convex 

shapes 

• Breaking large clusters 


