
DATA MINING

LECTURE 5
MinHashing,

Locality Sensitive Hashing,

Clustering

SKETCHING

AND

LOCALITY SENSITIVE

HASHING
Thanks to:

Rajaraman and Ullman, “Mining Massive Datasets”

Evimaria Terzi, slides for Data Mining Course.

Finding similar documents

• Problem: Find similar documents from a web

crawl

• Main issues to address:

• What is the right representation and similarity function?

• Shingling: reduce a document to a set of shingles

• Similarity function: Jaccard similarity

• Sim (C1, C2) = |C1C2|/|C1C2|

• Compress the sets so that we can fit more in memory

• Min-Hashing: create a signature/sketch of a document

• Find similar pairs without checking all possible pairs

• Locality Sensitive Hashing (LSH)

Shingling

• Shingle: a sequence of k contiguous characters

a rose is a rose is a rose

a rose is

 rose is a

 rose is a

 ose is a r

 se is a ro

 e is a ros

 is a rose

 is a rose

 s a rose i

 a rose is

 a rose is

Represent a document

as a set of shingles

Fingerprinting

• Hash shingles to 64-bit integers

a rose is

 rose is a

rose is a

ose is a r

se is a ro

e is a ros

 is a rose

is a rose

s a rose i

 a rose is

aaaa

bbbb

cccc

dddd

eeee

ffff

gggg

hhhh

iiii

jjjj

Set of Shingles Set of 64-bit integers
Hash function

(Rabin’s fingerprints)

Document processing

D Shingling Shingles
set S of
64-bit

integers

Rabin’s
fingerprints

Document Similarity

D1 D2

S1 S2

21

21

21
SS

SS
S,SSim

 Jaccard coefficient

Compacting the data

• Problem: shingle sets are too large to be kept in

memory.

• Key idea: “hash” each set S to a small signature

Sig (S), such that:

1. Sig (S) is small enough that we can fit a signature in

main memory for each set.

2. Sim (S1, S2) is (almost) the same as the “similarity” of

Sig (S1) and Sig (S2). (signature preserves similarity).

• Warning: This method can produce false

negatives, and false positives (if an additional

check is not made).

9

From Sets to Boolean Matrices

• Represent the data as a boolean matrix M

• Rows = the universe of all possible set elements

• In our case, shingle fingerprints take values in [0…264-1]

• Columns = the sets

• In our case, the sets of shingle fingerprints

• M(e,S) = 1 in row e and column S if and only if e is a

member of S.

• Typical matrix is sparse.

• We do not really materialize the matrix

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Sim(X,Y) =
3

5

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Sim(X,Y) =
3

5

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

At least one of the columns has value 1

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Sim(X,Y) =
3

5

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

Both columns have value 1

13

Minhashing

• Pick a random permutation of the rows (the

universe U).

• Define “hash” function

• h(S) = the index of the first row (in the permuted order)

in which column S has 1.

• h(S) = the index of the first element of S in the permuted

order.

• Use k (e.g., k = 100) independent random

permutations to create a signature.

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

A

C

G

F

B

E

D

S1 S2 S3 S4

A 1 0 1 0

C 0 1 0 1

G 1 0 1 0

F 1 0 1 0

B 1 0 0 1

E 0 1 1 1

D 0 1 0 1

1 2 1 2

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

D

B

A

C

F

G

E

S1 S2 S3 S4

D 0 1 0 1

B 1 0 0 1

A 1 0 1 0

C 0 1 0 1

F 1 0 1 0

G 1 0 1 0

E 0 1 1 1

2 1 3 1

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

C

D

G

F

A

B

E

S1 S2 S3 S4

C 0 1 0 1

D 0 1 0 1

G 1 0 1 0

F 1 0 1 0

A 1 0 1 0

B 1 0 0 1

E 0 1 1 1

3 1 3 1

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

h1 1 2 1 2

h1 2 1 3 1

h1 3 1 3 1

≈

Sig(S,i) = value of the i-th hash function for set S

Signature matrix

18

Hash function Property

Pr(h(S1) = h(S2)) = Sim(S1,S2)

• where the probability is over all choices of
permutations.

• Why?
• The first row where one of the two sets has value 1

belongs to the union.

• We have equality if both columns have value 1.

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

Rows C,D could be anywhere

they do not affect the probability

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

The * rows belong to the union

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

The question is what is the value

of the first * element

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

If it belongs to the intersection

then h(X) = h(Y)

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

Every element of the union is equally likely

to be the * element

Pr(h(X) = h(X)) =
| A,F,G |

| A,B,E,F,G |
=

3
5

= Sim(X,Y)

24

Similarity for Signatures

• The similarity of signatures is the fraction of the hash

functions in which they agree.

• With multiple signatures we get a good approximation

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 1 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

1 2 1 2

2 1 3 1

3 1 3 1

≈

actual Sig

(x1,x2) 0 0

(x1,x3) 3/5 2/3

(x1,x4) 1/7 0

(x2,x3) 0 0

(x2,x4) 3/4 1

(x3,x4) 0 0

Signature matrix

Is it now feasible?

• Assume a billion rows

• Hard to pick a random permutation of 1…billion

• Even representing a random permutation

requires 1 billion entries!!!

• How about accessing rows in permuted order?

•

Being more practical

• Approximating row permutations: pick k=100

hash functions (h1,…,hk)

for each row r

 for each hash function hi

 compute hi (r)

 for each column S that has 1 in row r

 if hi (r) is a smaller value than Sig(S,i) then

 Sig(S,i) = hi (r);

Sig(S,i) will become the smallest value of hi(r) among all rows for

which column S has value 1; i.e., hi (r) gives the min index for the

i-th permutation

27

Example

Row S1 S2

 A 1 0

 B 0 1

 C 1 1

 D 1 0

 E 0 1

h(x) = x+1 mod 5

g(x) = 2x+1 mod 5

h(0) = 1 1 -

g(0) = 3 3 -

h(1) = 2 1 2

g(1) = 0 3 0

h(2) = 3 1 2

g(2) = 2 2 0

h(3) = 4 1 2

g(3) = 4 2 0

h(4) = 0 1 0

g(4) = 1 2 0

Sig1 Sig2

Row S1 S2

 E 0 1

 A 1 0

 B 0 1

 C 1 1

 D 1 0

Row S1 S2

 B 0 1

 E 0 1

 C 1 0

 A 1 1

 D 1 0

x

0

1

2

3

4

28

Finding similar pairs

• Problem: Find all pairs of documents with

similarity at least t = 0.8

• While the signatures of all columns may fit in

main memory, comparing the signatures of all

pairs of columns is quadratic in the number of

columns.

• Example: 106 columns implies 5*1011 column-

comparisons.

• At 1 microsecond/comparison: 6 days.

29

Locality-Sensitive Hashing

• What we want: a function f(X,Y) that tells whether or not X
and Y is a candidate pair: a pair of elements whose
similarity must be evaluated.

• A simple idea: X and Y are a candidate pair if they have
the same min-hash signature.
• Easy to test by hashing the signatures.

• Similar sets are more likely to have the same signature.

• Likely to produce many false negatives.

• Making it more complex: Perform this process multiple
times; candidate pairs should have at least one common
signature.
• Reduce the probability for false negatives.

30

The signature matirx

Matrix Sig

r rows

per band

b bands

 One

signature

b*r hash functions

b mini-signatures

31

Partition into Bands – (2)

• Divide the signature matrix Sig into b bands of r
rows.
• Each band is a mini-signature with r hash functions.

• For each band, hash the mini-signature to a hash table
with k buckets.
• Make k as large as possible so that mini-signatures that hash

to the same bucket are almost certainly identical.

• Candidate column pairs are those that hash to the
same bucket for ≥ 1 band.

• Tune b and r to catch most similar pairs, but few non-
similar pairs.

32

Matrix M

r rows b bands

Buckets Columns 2 and 6

are (almost certainly) identical.

Columns 6 and 7 are

surely different.

33

Suppose S1, S2 are 80% Similar

• We want all 80%-similar pairs. Choose 20 bands of 5
integers/band.

• Probability S1, S2 identical in one particular band:
 (0.8)5 = 0.328.

• Probability S1, S2 are not similar in any of the 20
bands:

 (1-0.328)20 = .00035 .

• i.e., about 1/3000-th of the 80%-similar column pairs are
false negatives.

34

Suppose S1, S2 Only 40% Similar

• Probability S1, S2 identical in any one particular
band:

 (0.4)5 = 0.01 .

• Probability S1, S2 identical in at least 1 of 20
bands:

 ≤ 20 * 0.01 = 0.2 .

• But false positives much lower for similarities
<< 40%.

35

LSH Involves a Tradeoff

• Pick the number of minhashes, the number of

bands, and the number of rows per band to

balance false positives/negatives.

• Example: if we had only 15 bands of 5 rows, the

number of false positives would go down, but the

number of false negatives would go up.

36

Analysis of LSH – What We Want

 Similarity s of two sets

Probability

of sharing

a bucket

t

No chance

if s < t

Probability

= 1 if s > t

37

What One Band of One Row Gives You

Similarity s of two sets

Probability

of sharing

a bucket

t

Remember:

probability of

equal hash-values

= similarity

38

What b Bands of r Rows Gives You

Similarity s of two sets

Probability

of sharing

a bucket

t

s r

All rows

of a band

are equal

1 -

Some row

of a band

unequal

()b

No bands

identical

1 -

At least

one band

identical

t ~ (1/b)1/r

39

Example: b = 20; r = 5

 s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

t = 0.5

Locality-sensitive hashing (LSH)

• Big Picture: Construct hash functions h: Rd
 U

such that for any pair of points p,q, for distance

function D we have:

• If D(p,q)≤r, then Pr[h(p)=h(q)] is high

• If D(p,q)≥cr, then Pr[h(p)=h(q)] is small

• Then, we can find close pairs by hashing

• LSH is a general framework: for a given distance

function D we need to find the right h

CLUSTERING
Thanks to

Tan, Steinbach, Kumar, “Introduction to Data Mining”

What is Cluster Analysis?

• Finding groups of objects such that the objects in a group

will be similar (or related) to one another and different from

(or unrelated to) the objects in other groups

Inter-cluster
distances are
maximized

Intra-cluster
distances are

minimized

Applications of Cluster Analysis

• Understanding

• Group related documents for

browsing, group genes and

proteins that have similar

functionality, or group stocks

with similar price fluctuations

• Summarization

• Reduce the size of large data

sets

 Discovered Clusters Industry Group

1
Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,

Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down,

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,

Sun-DOWN

Technology1-DOWN

2
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN,

ADV-Micro-Device-DOWN,Andrew-Corp-DOWN,

Computer-Assoc-DOWN,Circuit-City-DOWN,

Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN

Technology2-DOWN

3
Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,

MBNA-Corp-DOWN,Morgan-Stanley-DOWN

Financial-DOWN

4
Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP,

Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP,

Schlumberger-UP

Oil-UP

Clustering precipitation

in Australia

Early applications of cluster analysis

• John Snow, London 1854

Notion of a Cluster can be Ambiguous

How many clusters?

Four Clusters Two Clusters

Six Clusters

Types of Clusterings

• A clustering is a set of clusters

• Important distinction between hierarchical and
partitional sets of clusters

• Partitional Clustering
• A division data objects into non-overlapping subsets (clusters)

such that each data object is in exactly one subset

• Hierarchical clustering
• A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Original Points A Partitional Clustering

Hierarchical Clustering

p4

p1
p3

p2

p4

p1
p3

p2

p4p1 p2 p3

p4p1 p2 p3

Traditional Hierarchical

Clustering

Non-traditional Hierarchical

Clustering

Non-traditional Dendrogram

Traditional Dendrogram

Other Distinctions Between Sets of

Clusters

• Exclusive versus non-exclusive
• In non-exclusive clusterings, points may belong to multiple

clusters.

• Can represent multiple classes or ‘border’ points

• Fuzzy versus non-fuzzy
• In fuzzy clustering, a point belongs to every cluster with some

weight between 0 and 1

• Weights must sum to 1

• Probabilistic clustering has similar characteristics

• Partial versus complete
• In some cases, we only want to cluster some of the data

Types of Clusters

• Well-separated clusters

• Center-based clusters

• Contiguous clusters

• Density-based clusters

• Property or Conceptual

• Described by an Objective Function

Types of Clusters: Well-Separated

• Well-Separated Clusters:
• A cluster is a set of points such that any point in a cluster is

closer (or more similar) to every other point in the cluster than
to any point not in the cluster.

3 well-separated clusters

Types of Clusters: Center-Based

• Center-based
• A cluster is a set of objects such that an object in a cluster is

closer (more similar) to the “center” of a cluster, than to the
center of any other cluster

• The center of a cluster is often a centroid, the average of all
the points in the cluster, or a medoid, the most “representative”
point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

• Contiguous Cluster (Nearest neighbor or
Transitive)
• A cluster is a set of points such that a point in a cluster is

closer (or more similar) to one or more other points in the
cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

• Density-based
• A cluster is a dense region of points, which is separated by

low-density regions, from other regions of high density.

• Used when the clusters are irregular or intertwined, and when
noise and outliers are present.

6 density-based clusters

Types of Clusters: Conceptual Clusters

• Shared Property or Conceptual Clusters
• Finds clusters that share some common property or represent

a particular concept.

.

2 Overlapping Circles

Types of Clusters: Objective Function

• Clusters Defined by an Objective Function
• Finds clusters that minimize or maximize an objective function.

• Enumerate all possible ways of dividing the points into clusters and

evaluate the `goodness' of each potential set of clusters by using the

given objective function. (NP Hard)

• Can have global or local objectives.

• Hierarchical clustering algorithms typically have local objectives

• Partitional algorithms typically have global objectives

• A variation of the global objective function approach is to fit the data

to a parameterized model.

• Parameters for the model are determined from the data.

• Mixture models assume that the data is a ‘mixture' of a number of

statistical distributions.

Clustering Algorithms

• K-means and its variants

• Hierarchical clustering

K-means Clustering

• Partitional clustering approach

• Each cluster is associated with a centroid
(center point)

• Each point is assigned to the cluster with the
closest centroid

• Number of clusters, K, must be specified

• The objective is to minimize the sum of
distances of the points to their respective
centroid

K-means Clustering

• Most common definition is with euclidean distance,
minimizing the Sum of Squares Error (SSE) function
• Sometimes K-means is defined like that

• Problem: Given a set X of n points in a d-
dimensional space and an integer K group the points
into K clusters {C1, C2,…,Ck} such that

 is minimized, where ci is the mean of the points in
cluster Ci

k

i Cx

i

i

cxdistCCost
1

2)(
Sum of Squares Error (SSE)

Algorithmic properties of the k-means

problem
• NP-hard if the dimensionality of the data is at least 2
(d>=2)

• Finding the best solution in polynomial time is
infeasible

• For d=1 the problem is solvable in polynomial time
(how?)

• A simple iterative algorithm works quite well in
practice

K-means Algorithm

• Also known as Lloyd’s algorithm.

• K-means is sometimes synonymous with this

algorithm

K-means Algorithm – Details

• Initial centroids are often chosen randomly.
• Clusters produced vary from one run to another.

• ‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

• The centroid depends on the distance function
• The mean of the points in the cluster for SSE, the median for

Manhattan distance.

• K-means will converge for common similarity measures
mentioned above.

• Most of the convergence happens in the first few
iterations.

• Often the stopping condition is changed to ‘Until relatively few
points change clusters’

• Complexity is O(n * K * I * d)
• n = number of points, K = number of clusters,

I = number of iterations, d = number of attributes

Two different K-means Clusterings

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Sub-optimal Clustering

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Optimal Clustering

Original Points

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

Importance of Choosing Initial Centroids …

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

Dealing with Initialization

• Do multiple runs and select the clustering with the

smallest error

• Select original set of points by methods other

than random . E.g., pick the most distant (from

each other) points as cluster centers (K-means++

algorithm)

Limitations of K-means

• K-means has problems when clusters are of

different

• Sizes

• Densities

• Non-globular shapes

• K-means has problems when the data contains

outliers.

Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.

Find parts of clusters, but need to put together.

Overcoming K-means Limitations

Original Points K-means Clusters

Overcoming K-means Limitations

Original Points K-means Clusters

Variations

• K-medoids: Similar problem definition as in K-

means, but the centroid of the cluster is defined

to be one of the points in the cluster (the medoid).

• K-centers: Similar problem definition as in K-

means, but the goal now is to minimize the

maximum diameter of the clusters (diameter of a

cluster is maximum distance between any two

points in the cluster).

Hierarchical Clustering

• Produces a set of nested clusters organized as a

hierarchical tree

• Can be visualized as a dendrogram

• A tree like diagram that records the sequences of

merges or splits

1 3 2 5 4 6
0

0.05

0.1

0.15

0.2

1

2

3

4

5

6

1

2
3 4

5

Strengths of Hierarchical Clustering

• Do not have to assume any particular number of
clusters
• Any desired number of clusters can be obtained by

‘cutting’ the dendogram at the proper level

• They may correspond to meaningful taxonomies
• Example in biological sciences (e.g., animal kingdom,

phylogeny reconstruction, …)

Hierarchical Clustering

• Two main types of hierarchical clustering
• Agglomerative:

• Start with the points as individual clusters

• At each step, merge the closest pair of clusters until only one cluster (or
k clusters) left

• Divisive:

• Start with one, all-inclusive cluster

• At each step, split a cluster until each cluster contains a point (or there
are k clusters)

• Traditional hierarchical algorithms use a similarity or
distance matrix
• Merge or split one cluster at a time

Agglomerative Clustering Algorithm

• More popular hierarchical clustering technique

• Basic algorithm is straightforward
1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity matrix

6. Until only a single cluster remains

• Key operation is the computation of the proximity
of two clusters

• Different approaches to defining the distance between
clusters distinguish the different algorithms

Starting Situation

• Start with clusters of individual points and a

proximity matrix

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12

Intermediate Situation

• After some merging steps, we have some clusters

C1

C4

C2 C5

C3

C2 C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12

Intermediate Situation

• We want to merge the two closest clusters (C2 and C5) and

update the proximity matrix.

C1

C4

C2 C5

C3

C2 C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12

After Merging

• The question is “How do we update the proximity matrix?”

C1

C4

C2 U C5

C3
 ? ? ? ?

?

?

?

C2

U

C5 C1

C1

C3

C4

C2 U C5

C3 C4

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.

Similarity?

 MIN

 MAX

 Group Average

 Distance Between Centroids

 Other methods driven by an objective

function

– Ward’s Method uses squared error

Proximity Matrix

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

 MIN

 MAX

 Group Average

 Distance Between Centroids

 Other methods driven by an objective

function

– Ward’s Method uses squared error

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

 MIN

 MAX

 Group Average

 Distance Between Centroids

 Other methods driven by an objective

function

– Ward’s Method uses squared error

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

 MIN

 MAX

 Group Average

 Distance Between Centroids

 Other methods driven by an objective

function

– Ward’s Method uses squared error

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

 MIN

 MAX

 Group Average

 Distance Between Centroids

 Other methods driven by an objective

function

– Ward’s Method uses squared error

Cluster Similarity: MIN or Single Link

• Similarity of two clusters is based on the two most

similar (closest) points in the different clusters

• Determined by one pair of points, i.e., by one link in the

proximity graph.

I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00
1 2 3 4 5

Hierarchical Clustering: MIN

Nested Clusters Dendrogram

1

2

3

4

5

6

1

2

3

4

5

3 6 2 5 4 1
0

0.05

0.1

0.15

0.2

Strength of MIN

Original Points Two Clusters

• Can handle non-elliptical shapes

Limitations of MIN

Original Points Two Clusters

• Sensitive to noise and outliers

Cluster Similarity: MAX or Complete Linkage

• Similarity of two clusters is based on the two least

similar (most distant) points in the different

clusters

• Determined by all pairs of points in the two clusters

 I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5

Hierarchical Clustering: MAX

Nested Clusters Dendrogram

3 6 4 1 2 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1

2

3

4

5

6

1

2 5

3

4

Strength of MAX

Original Points Two Clusters

• Less susceptible to noise and outliers

Limitations of MAX

Original Points Two Clusters

•Tends to break large clusters

•Biased towards globular clusters

Cluster Similarity: Group Average

• Proximity of two clusters is the average of pairwise proximity

between points in the two clusters.

• Need to use average connectivity for scalability since total

proximity favors large clusters

||Cluster||Cluster

)p,pproximity(

)Cluster,Clusterproximity(
ji

Clusterp
Clusterp

ji

ji
jj

ii

I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5

Hierarchical Clustering: Group Average

Nested Clusters Dendrogram

3 6 4 1 2 5
0

0.05

0.1

0.15

0.2

0.25

1

2

3

4

5

6

1

2

5

3

4

Hierarchical Clustering: Group Average

• Compromise between Single and

Complete Link

• Strengths

• Less susceptible to noise and outliers

• Limitations

• Biased towards globular clusters

Cluster Similarity: Ward’s Method

• Similarity of two clusters is based on the increase

in squared error when two clusters are merged

• Similar to group average if distance between points is

distance squared

• Less susceptible to noise and outliers

• Biased towards globular clusters

• Hierarchical analogue of K-means

• Can be used to initialize K-means

Hierarchical Clustering: Comparison

Group Average

Ward’s Method

1

2

3

4

5

6
1

2

5

3

4

MIN MAX

1

2

3

4

5

6

1

2

5

3
4

1

2

3

4

5

6

1

2 5

3

4 1

2

3

4

5

6

1

2

3

4

5

Hierarchical Clustering:

Time and Space requirements

• O(N2) space since it uses the proximity matrix.

• N is the number of points.

• O(N3) time in many cases

• There are N steps and at each step the size, N2,

proximity matrix must be updated and searched

• Complexity can be reduced to O(N2 log(N)) time for

some approaches

Hierarchical Clustering:

Problems and Limitations

• Once a decision is made to combine two clusters,

it cannot be undone

• No objective function is directly minimized

• Different schemes have problems with one or

more of the following:

• Sensitivity to noise and outliers

• Difficulty handling different sized clusters and convex

shapes

• Breaking large clusters

