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LECTURE 4 
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Sketching, Locality Sensitive Hashing 



SIMILARITY AND 

DISTANCE 
Thanks to: 

Tan, Steinbach, and Kumar, “Introduction to Data Mining” 

Rajaraman and Ullman, “Mining Massive Datasets” 



Similarity and Distance 

• For many different problems we need to quantify how 
close two objects are. 

• Examples: 
• For an item bought by a customer, find other similar items 

• Group together the customers of site so that similar customers are 
shown the same ad. 

• Group together web documents so that you can separate the ones 
that talk about politics and the ones that talk about sports. 

• Find all the near-duplicate mirrored web documents. 

• Find credit card transactions that are very different from previous 
transactions. 

• To solve these problems we need a definition of similarity, 
or distance. 
• The definition depends on the type of data that we have 



What is Data? 

• Collection of data objects and 

their attributes 

 

• An attribute is a property or 

characteristic of an object 

• Examples: eye color of a person, 

temperature, etc. 

• Attribute is also known as 

variable, field, characteristic, or 

feature 

• A collection of attributes describe 

an object 

• Object is also known as record, 

point, case, sample, entity, or 

instance 

 

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Attributes 

Objects 

Dimensionality: Number of attributes 



Types of Attributes  

•  There are different types of attributes 
• Nominal – Categorical  

• Examples: ID numbers, eye color, zip codes 

• There is no known ordering or comparison 

• Ordinal 
• Examples: rankings (e.g, good, fair, bad), grades (A,B,C), 

height in {tall, medium, short} 

• We can order, but not always clear how to compare 

• Interval 
• Examples: calendar dates, temperatures in Celsius or 

Fahrenheit. 

• We can take the difference in order to compare 

• Ratio 
• Examples: temperature in Kelvin, length, time, counts  

• We can take differences as well as ratios. 

 

Numeric 



Discrete and Continuous Attributes  

• Discrete Attribute 
• Has only a finite or countably infinite set of values 

• Examples: zip codes, counts, or the set of words in a collection of 
documents  

• Often represented as integer variables.    

• Note: binary attributes are a special case of discrete attributes  

 

• Continuous Attribute 
• Has real numbers as attribute values 

• Examples: temperature, height, or weight.   

• Practically, real values can only be measured and represented 
using a finite number of digits. 

• Continuous attributes are typically represented as floating-point 
variables.   

 



Numeric Data 

• If data objects have the same fixed set of numeric 

attributes, then the data objects can be thought of as 

points in a multi-dimensional space, where each 

dimension represents a distinct attribute  
 

• Such data set can be represented by an m by n matrix, 

where there are m rows, one for each object, and n 

columns, one for each attribute 

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection 

of y load
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Categorical Data  

• Data that consists of a collection of records, each 

of which consists of a fixed set of categorical 

attributes  

 

 

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single High No 

2 No Married Medium No 

3 No Single Low No 

4 Yes Married High No 

5 No Divorced Medium Yes 

6 No Married Low No 

7 Yes Divorced High No 

8 No Single Medium Yes 

9 No Married Medium No 

10 No Single Medium Yes 
10 

 



Document Data 

• Each document becomes a `term' vector,  
• each term is a component (attribute) of the vector, 

• the value of each component is the number of times the 
corresponding term occurs in the document.  

• Bag-of-words representation – no ordering 
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Transaction Data 

• Each record (transaction) is a set of items. 

 

 

 

 

 

 

• A set of items can also be represented as a binary 
vector, where each attribute is an item.  

• A document can also be represented as a set of 
words (no counts)  

 

 

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 



Ordered Data  

•  Genomic sequence data 

 

 

 

 

 

 

 

• Data is a long ordered string 

GGTTCCGCCTTCAGCCCCGCGCC

CGCAGGGCCCGCCCCGCGCCGTC

GAGAAGGGCCCGCCTGGCGGGCG

GGGGGAGGCGGGGCCGCCCGAGC

CCAACCGAGTCCGACCAGGTGCC

CCCTCTGCTCGGCCTAGACCTGA

GCTCATTAGGCGGCAGCGGACAG

GCCAAGTAGAACACGCGAAGCGC

TGGGCTGCCTGCTGCGACCAGGG



Types of data 

• Numeric data: Each object is a point in a 

multidimensional space 

• Categorical data: Each object is a vector of 

categorical values 

• Set data: Each object is a set of values (with or 

without counts) 

• Sets can also be represented as binary vectors, or 

vectors of counts 

• Ordered sequences: Each object is an ordered 

sequence of values. 



Similarity and Distance 

• Similarity 
• Numerical measure of how alike two data objects are. 

• A function that maps pairs of objects to real values 

• Is higher when objects are more alike. 

• Often falls in the range [0,1] 

• Sometimes in [-1,1] 

• Distance 
• Numerical measure of how different are two data objects 

• A function that maps pairs of objects to real values 

• Lower when objects are more alike 

• Minimum dissimilarity is often 0 

• Upper limit varies 

• Closeness refers to a similarity or distance 



Similarity/Dissimilarity for Simple Attributes 

p and q are the attribute values for two data objects. 



Distance Metric 

• A distance function d  is a distance metric if it is a 

function from pairs of objects to real numbers 

such that: 

1. d(x,y) > 0. (non-negativity) 

2. d(x,y) = 0 iff x = y. (identity) 

3. d(x,y) = d(y,x). (symmetry) 

4. d(x,y) < d(x,z) + d(z,y) (triangle inequality ). 



Triangle Inequality 

• Triangle inequality guarantees that the distance 

function is well-behaved. 

• The direct connection is the shortest distance 

 

• It is useful also for proving properties about the 

data 

• For example, suppose I want to find an object that 

minimizes the sum of distances to all points in my 

dataset 

• If I select the best point from my dataset, the sum of 

distances I get is at most twice that of the optimal point. 



Properties of Similarity 

• Desirable properties for similarity 

1. s(p, q) = 1 (or maximum similarity) only if p = q.  

(Identity) 

2. s(p, q) = s(q, p)   for all p and q. (Symmetry) 

 

 



Distances for real vectors 

• Vectors 𝑥 = 𝑥1, … , 𝑥𝑑  and 𝑦 = (𝑦1, … , 𝑦𝑑) 

 

• Lp norms or Minkowski distance: 

𝐿𝑝 𝑥, 𝑦 =  𝑥1 − 𝑦1
𝑝 + ⋯+ 𝑥𝑑  − 𝑦𝑑

𝑝 1 𝑝  

 

• L2 norm: Euclidean distance: 

𝐿2 𝑥, 𝑦 = 𝑥1 − 𝑦1
2 + ⋯+ 𝑥𝑑 − 𝑦𝑑

2 

 

• L1 norm: Manhattan distance: 

𝐿1 𝑥, 𝑦 = 𝑥1 − 𝑦1 + ⋯+ |𝑥𝑑 − 𝑦𝑑| 

 



19 

Example of Distances 

a = (5,5) 

b = (9,8) 
L2-norm: 

dist(x,y) = 

(42+32) 

= 5 

L1-norm: 

dist(x,y) = 

4+3 = 7 
4 

3 5 



Another Minkowski distance 

• Vectors 𝑥 = 𝑥1, … , 𝑥𝑑  and 𝑦 = (𝑦1, … , 𝑦𝑑) 

 

• Lp norms or Minkowski distance: 

𝐿𝑝 𝑥, 𝑦 =  𝑥1 − 𝑦1
𝑝 + ⋯+ 𝑥𝑑  − 𝑦𝑑

𝑝 1 𝑝  

 

• L∞ norm:  

𝐿∞ 𝑥, 𝑦 = max 𝑥1 − 𝑦1 , … , |𝑥𝑑 − 𝑦𝑑|  

 

• The limit of Lp as p goes to infinity. 
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Example of Distances 

a = (5,5) 

b = (9,8) 
L2-norm: 

dist(x,y) = 

(42+32) 

= 5 

L1-norm: 

dist(x,y) = 

4+3 = 7 
4 

3 5 

L∞-norm: 

dist(x,y) = 

max{3,4} = 4 



Minkowski Distance 

Distance Matrix 

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

L1 p1 p2 p3 p4

p1 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

L p1 p2 p3 p4

p1 0 2 3 5

p2 2 0 1 3

p3 3 1 0 2

p4 5 3 2 0

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4



Example 

𝑥 =  (𝑥1, … , 𝑥𝑛) 

r 

Green: All points y at distance L1(x,y) = r from point x 

Blue: All points y at distance L2(x,y) = r from point x 

Red: All points y at distance L∞(x,y) = r from point x 



Lp distances for sets  

• We can apply all the Lp distances to the cases of 

sets of attributes, with or without counts, if we 

represent the sets as vectors 

• E.g., a transaction is a 0/1 vector 

• E.g., a document is a vector of counts. 



Cosine Similarity 

• If d1 and d2 are two vectors, then 

             cos( d1, d2 ) =  (d1  d2) / ||d1|| ||d2|| ,  

   where  indicates vector dot product and || d || is  the   length of vector d.   
 

• Example:  
 

   d1 =  3 2 0 5 0 0 0 2 0 0   

    d2 =  1 0 0 0 0 0 0 1 0 2  

 
    d1  d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 

    

   ||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481 

     

    ||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245 

 

     cos( d1, d2 ) = .3150 

 



Cosine Similarity 

• Geometric Interpretation 

 

 

 

 

 

• If the vectors are correlated angle is zero degrees and cosine is 1 

• If the vectors are orthogonal (no common coordinates) angle is 90 
degrees and cosine is 0 

 

• Note that if one vector is a multiple of another cosine is still 1 
(maximum) 

 

• Cosine is commonly used for comparing documents, where we 
assume that the vectors are normalized by the document length. 



Example 

document Apple Microsoft Obama Election 

D1 10 20 0 0 

D2 20 40 0 0 

D2 0 0 10 20 

cos(D1,D2) = 1 

cos(D1,D3) = cos(D2,D3) = 0 



Example 

document Apple Microsoft Obama Election 

D1 1/3 2/3 0 0 

D2 1/3 2/3 0 0 

D2 0 0 1/3 2/3 

cos(D1,D2) = 1 

cos(D1,D3) = cos(D2,D3) = 0 
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Jaccard Similarity of Sets 

• The Jaccard similarity (Jaccard coefficient) of two 

sets C1, C2 is the size of their intersection divided 

by the size of their union. 

• JSim (C1, C2) = |C1C2|/|C1C2|. 

 

 

 

 

• Jaccard distance Jdist = 1 - JSim 

3 in intersection. 

8 in union. 

Jaccard similarity 

   = 3/8 



Example with documents 

• D1 = {apple, released, new, iPhone} 

• D2 = {apple, released, new, iPad} 

• D3  = {new, apple, pie, recipie} 

 

• JSim(D1,D2) = 3/5 

• JSim(D1,D3) = JSim(D2,D3) = 2/6  



Similarity Between Binary Vectors 

• Objects, p and q, have only binary attributes 
• We can view them as sets and compute Jaccard 

• We also compute the Simple Matching Coefficient 
 

• Compute similarities using the following quantities 
 M01 = the number of attributes where p was 0 and q was 1 

 M10 = the number of attributes where p was 1 and q was 0 

 M00 = the number of attributes where p was 0 and q was 0 

 M11 = the number of attributes where p was 1 and q was 1 
 

• Simple Matching and Jaccard Coefficients  
 SMC =  number of matches / number of attributes  

                 =  (M11 + M00) / (M01 + M10 + M11 + M00) 

 

 J = number of 11 matches / number of not-both-zero attributes values 

       = (M11) / (M01 + M10 + M11)  Jaccard treats 1’s asymmetrically  



SMC versus Jaccard: Example 

p =  1 0 0 0 0 0 0 0 0 0       

q =  0 0 0 0 0 0 1 0 0 1  

 
M01 = 2   (the number of attributes where p was 0 and q was 1) 

M10 = 1   (the number of attributes where p was 1 and q was 0) 

M00 = 7   (the number of attributes where p was 0 and q was 0) 

M11 = 0   (the number of attributes where p was 1 and q was 1) 

  

SMC = (M11 + M00)/(M01 + M10 + M11 + M00) = (0+7) / (2+1+0+7) = 0.7  

 

J = (M11) / (M01 + M10 + M11) = 0 / (2 + 1 + 0) = 0  
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Hamming Distance 

• Hamming distance  is the number of positions in 
which bit-vectors differ. 

• Example: p1 = 10101; p2 = 10011. 
•  d(p1, p2) = 2 because the bit-vectors differ in the 3rd and 4th 

positions. 

• The L1 norm for the binary vectors 

• Hamming distance between two vectors of 
categorical attributes is the number of positions in 
which they differ. 

• Example: x = (married, low income, cheat),                    
         y = (single,    low income, not cheat) 
• d(x,y) = 2 
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Why Hamming Distance Is a Distance 

Metric 

• d(x,x) = 0 since no positions differ. 

• d(x,y) = d(y,x) by symmetry of “different from.” 

• d(x,y) > 0 since strings cannot differ in a 

negative number of positions. 

• Triangle inequality: changing x  to z and then 

to y  is one way to change x  to y. 
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Edit Distance for strings 

• The edit distance  of two strings is the number of 
inserts and deletes of characters needed to turn 
one into the other.  

• Exampe: x = abcde ; y = bcduve. 
• Turn x  into y  by deleting a, then inserting u  and v  

after d. 

• Edit distance = 3. 

•  Minimum number of operations can be computed 
using dynamic programming 

• Common distance measure for comparing DNA 
sequences 
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Why Edit Distance Is a Distance Metric 

• d(x,x) = 0 because 0 edits suffice. 

• d(x,y) = d(y,x) because insert/delete are 

inverses of each other. 

• d(x,y) > 0: no notion of negative edits. 

• Triangle inequality: changing x  to z and then 

to y  is one way to change x  to y. 
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Variant Edit Distances 

• Allow insert, delete, and mutate. 

• Change one character into another. 

• Minimum number of inserts, deletes, and 

mutates also forms a distance measure. 

• Same for any set of operations on strings. 

• Example: substring reversal or block transposition OK 

for DNA sequences 

• Example: character transposition is used for spelling 



Distances between distributions 

• We can view a document as a distribution over the words 

 

 

 

 

 

• KL-divergence (Kullback-Leibler) for distributions P,Q 

𝐷𝐾𝐿 𝑃 𝑄 = 𝑝 𝑥 log
𝑝(𝑥)

𝑞(𝑥)
𝑥

 

• KL-divergence is asymmetric. We can make it symmetric by 
taking the average of both sides 

• JS-divergence (Jensen-Shannon)  

                       𝐽𝑆 𝑃, 𝑄 =  
1

2
𝐷𝐾𝐿 𝑃 𝑄  + 

1

2
𝐷𝐾𝐿 𝑄 𝑃  

document Apple Microsoft Obama Election 

D1 0.35 0.5 0.1 0.05 

D2 0.4 0.4 0.1 0.1 

D2 0.05 0.05 0.6 0.3 



SKETCHING  

AND  

LOCALITY SENSITIVE 

HASHING 
Thanks to: 

Rajaraman and Ullman, “Mining Massive Datasets” 

Evimaria Terzi, slides for Data Mining Course.  



Finding near-duplicates documents 

• We will now consider the problem of finding 

duplicate and near-duplicate documents from a 

web crawl. 

• Why is it important: 

• Identify mirrored web pages, and avoid indexing them, 

or serving them multiple times 

• Identify plagiarism 

• Find replicated stories in news and cluster them under a 

single story. 

• What if we wanted exact duplicates? 



Main issues 

• What is the right representation of the document 

when we check for similarity? 

• E.g., representing a document as a set of characters 

will not do 

• When we have billions of documents, keeping the 

full text in memory is not an option. 

• We need to find a shorter representation 

• How do we do pairwise comparisons we billions 

of documents? 

• If exact match was the issue it would be ok, can we 

replicate this idea? 
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Three Essential Techniques for Similar 

Documents 

1. Shingling : convert documents, emails, etc., 

to sets. 

2. Minhashing : convert large sets to short 

signatures, while preserving similarity. 

3. Locality-sensitive hashing : focus on pairs of 

signatures likely to be similar. 
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The Big Picture 

Docu- 

ment 

The set 

of strings 

of length k 

that appear 

in the doc- 

ument 

Signatures : 

short integer 

vectors that 

represent the 

sets, and 

reflect their 

similarity 

Locality- 

sensitive 

Hashing 

Candidate 

pairs : 

those pairs 

of signatures 

that we need 

to test for 

similarity. 
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Shingles 

• A k -shingle (or k -gram) for a document is a 

sequence of k characters that appears in the 

document. 

• Example: k=2; doc = abcab.  Set of 2-shingles = 

{ab, bc, ca}. 

• Option: regard shingles as a bag, and count ab twice. 

• Represent a doc by its set of k-shingles. 



Shingling 

• Shingle: a sequence of k contiguous characters 

a rose is a rose is a rose 

a rose is  

  rose is a 

  rose is a  

   ose is a r 

    se is a ro 

     e is a ros 

       is a rose 

       is a rose  

        s a rose i 

      a rose is 

  a rose is  
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Working Assumption 

• Documents that have lots of shingles in common 

have similar text, even if the text appears in 

different order. 

• Careful: you must pick k  large enough, or most 

documents will have most shingles. 

• k = 5 is OK for short documents; k = 10 is better for long 

documents. 
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Shingles: Compression Option 

• To compress long shingles, we can hash them 

to (say) 4 bytes. 

• Represent a doc by the set of hash values of 

its k-shingles. 

• Two documents could (rarely) appear to have 

shingles in common, when in fact only the 

hash-values were shared. 



Rabin’s fingerprinting technique 

• Comparing two strings of size n 

 

 

 

 

 

 

• if a=b then f(a)=f(b) 

   if f(a)=f(b) then a=b with high probability 

a = 10110 

b = 11010 

a=b?  

O(n) too expensive! 

f(a)=f(b)? 

01234 2021212021 A

01234 2021202121 B

f(a)= A mod p 

f(b)= B mod p 

p = small random prime 

size O(logn loglogn) 
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Thought Question 

• Why is it better to hash 9-shingles (say) to 4 

bytes than to use 4-shingles? 

• Hint: How random are the 32-bit sequences that 

result from 4-shingling? 
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Basic Data Model: Sets 

• Document: A document is represented as a set 
shingles (more accurately, hashes of shingles) 

• Document similarity: Jaccard similarity of the sets 
of shingles. 
• Common shingles over the union of shingles 

• Sim (C1, C2) = |C1C2|/|C1C2|. 

 

• Although we use the documents as our driving 
example the techniques we will describe apply to 
any kind of sets. 

• E.g., similar customers or products. 
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From Sets to Boolean Matrices 

• Rows = elements of the universal set (shingles) 

• Columns = sets (documents) 

• 1 in row e  and column S  if and only if e  is a 

member of S. 

• Column similarity is the Jaccard similarity of the 

sets of their rows with 1. 

• Typical matrix is sparse. 
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Example: Jaccard Similarity of Columns 

 C1 C2 

 0 1 

 1 0 

 1 1  Sim (C1, C2) = 

 0 0   2/5 = 0.4 

 1 1 

 0 1 

 

* 

* 

* 

* 

* 

* 

* 
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Aside 

• We might not really represent the data by a 

boolean matrix. 

• Sparse matrices are usually better 

represented by the list of places where there is 

a non-zero value. 

• But the matrix picture is conceptually useful. 
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Outline: Finding Similar Columns 

1. Compute signatures of columns = small 

summaries of columns. 

2. Examine pairs of signatures to find similar 

signatures. 

• Essential: similarities of signatures and columns 

are related. The signatures preserve similarity. 

3. Optional: check that columns with similar 

signatures are really similar. 
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Warnings 

1. Comparing all pairs of signatures may take too 

much time, even if not too much space. 

• A job for Locality-Sensitive Hashing. 

2. These methods can produce false negatives, 

and even false positives (if the optional check 

is not made). 
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Signatures 

• Key idea: “hash” each column C  to a small 

signature Sig (C), such that: 

1. Sig (C) is small enough that we can fit a 

signature in main memory for each column. 

2. Sim (C1, C2) is (almost) the same as the 

“similarity” of Sig (C1) and Sig (C2). 
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Four Types of Rows 

• Given documents X and Y,  

 

• Rows may be classified as: 

 
    

 

 

 

 

type X 

bit 

Y 

bit 

R11 1 1 

R10 1 0 

R01 0 1 

R00 0 0 

X Y 

1 1 

1 0 

0 0 

0 0 

0 0 

1 1 

1 1 
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Four Types of Rows 

• Given documents X and Y,  

 

• Rows may be classified as: 

 
    

 

 

 

 

X Y 

1 1 

1 0 

0 0 

0 0 

0 0 

1 1 

1 1 

type X 

bit 

Y 

bit 

R11 1 1 3 

R10 1 0 

R01 0 1 

R00 0 0 
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Four Types of Rows 

• Given documents X and Y,  

 

• Rows may be classified as: 

 
    

 

 

 

 

type X 

bit 

Y 

bit 

R11 1 1 3 

R10 1 0 1 

R01 0 1 

R00 0 0 

X Y 

1 1 

1 0 

0 0 

0 0 

0 0 

1 1 

1 1 
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Four Types of Rows 

• Given documents X and Y,  

 

• Rows may be classified as: 

 
    

 

 

 

 

X Y 

1 1 

1 0 

0 0 

0 0 

0 0 

1 1 

1 1 

type X 

bit 

Y 

bit 

R11 1 1 3 

R10 1 0 1 

R01 0 1 0 

R00 0 0 
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Four Types of Rows 

• Given documents X and Y,  

 

• Rows may be classified as: 

 
    

 

 

 

 

X Y 

1 1 

1 0 

0 0 

0 0 

0 0 

1 1 

1 1 

type X 

bit 

Y 

bit 

R11 1 1 3 

R10 1 0 1 

R01 0 1 0 

R00 0 0 3 
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Four Types of Rows 
• Given documents X and Y,  

 

• Rows may be classified as: 

 
    

 

 

 

 

 

• Also, R11  = # rows of type R11 , etc. 

• Note Sim (X,Y) = R11 /(R11 + R10 + R01). 

X Y 

1 1 

1 0 

0 0 

0 0 

0 0 

1 1 

1 1 

type X 

bit 

Y 

bit 

R11 1 1 3 

R10 1 0 1 

R01 0 1 0 

R00 0 0 3 
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Minhashing 

• Imagine the rows permuted randomly. 

• Define “hash” function h (C ) = the number of the 

first (in the permuted order) row in which column 

C  has 1. 

• Use several (e.g., 100) independent hash 

functions to create a signature. 



Example of minhash signatures 

• Input matrix 

x1 x2 x3 X4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

A 

C 

G 

F 

B 

E 

D 

x1 x2 x3 X4 

A 1 0 1 0 

C 0 1 0 1 

G 1 0 1 0 

F 1 0 1 0 

B 1 0 0 1 

E 0 1 0 1 

D 0 1 0 1 

1 2 1 2 



Example of minhash signatures 

• Input matrix 

x1 x2 x3 X4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

D 

B 

A 

C 

F 

G 

E 

x1 x2 x3 X4 

D 0 1 0 1 

B 1 0 0 1 

A 1 0 1 0 

C 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

E 0 1 0 1 

2 1 3 1 



Example of minhash signatures 

• Input matrix 

x1 x2 x3 X4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

C 

D 

G 

F 

A 

B 

E 

x1 x2 x3 X4 

C 0 1 0 1 

D 0 1 0 1 

G 1 0 1 0 

F 1 0 1 0 

A 1 0 1 0 

B 1 0 0 1 

E 0 1 0 1 

3 1 3 1 
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Surprising Property 

• The probability (over all permutations of the 

rows) that h (C1) = h (C2) is the same as    

Sim (C1, C2). 

• Both are R11 /(R11 + R10 + R01)! 

• Why? 

• Look down the permuted columns C1 and C2 until 

we see a 1. 

• If it’s a type-R11  row, then h (C1) = h (C2).  If a  

type-R10  or type-R01  row, then not. 
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Similarity for Signatures 

• The similarity of signatures  is the fraction of the 

hash functions in which they agree. 



Example of minhash signatures 

• Input matrix 

x1 x2 x3 X4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

x1 x2 x3 X4 

1 2 1 2 

2 1 3 1 

3 1 3 1 

≈ 

actual Sig 

(x1,x2) 0 0 

(x1,x3) 0.75 2/3 

(x1,x4) 1/7 0 

(x2,x3) 0 0 

(x2,x4) 0.75 1 

(x3,x4) 0 0 



Minhash algorithm 

• Pick k (e.g., 100) permutations of the rows 

 

• Think of Sig(x) as a new vector 

 

• Let Sig(x)[i]: in the i-th permutation, the index of 

the first row that has 1 for object x 

 

 



Is it now feasible? 

• Assume a billion rows 

• Hard to pick a random permutation of 1…billion 

• Even representing a random permutation 

requires 1 billion entries!!! 

• How about accessing rows in permuted order? 

• 



Being more practical 

• Approximating row permutations: pick k=100 (?) 

hash functions (h1,…,hk) 

for each row r  

    for each column c  

  if c has 1 in row r  

     for each hash function hi  do 

   if hi (r ) is a smaller value than M(i,c) then 

   M (i,c) = hi (r); 

 

 
M(i,c) will become the smallest value of hi(r) for which column 

c has 1 in row r; i.e., hi (r) gives order of rows for i-th 

permutation 
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Example 

Row C1 C2 

  1  1  0 

  2  0  1 

  3  1  1 

  4  1  0 

  5  0  1 

h(x) = x mod 5 

g(x) = 2x+1 mod 5 

h(1) = 1  1 - 

g(1) = 3  3 - 

h(2) = 2  1 2 

g(2) = 0  3 0 

h(3) = 3  1 2 

g(3) = 2  2 0 

h(4) = 4  1 2 

g(4) = 4  2 0 

h(5) = 0  1 0 

g(5) = 1  2 0 

Sig1 Sig2 
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Implementation – (4) 

• Often, data is given by column, not row. 

• E.g., columns = documents, rows = shingles. 

• If so, sort matrix once so it is by row. 

• And always  compute hi (r ) only once for each 

row. 
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Finding Similar Pairs 

• Suppose we have, in main memory, data 

representing a large number of objects. 

• May be the objects themselves . 

• May be signatures as in minhashing. 

• We want to compare each to each, finding those 

pairs that are sufficiently similar. 



76 

Checking All Pairs is Hard 

• While the signatures of all columns may fit in 

main memory, comparing the signatures of all 

pairs of columns is quadratic in the number of 

columns. 

• Example: 106 columns implies 5*1011 column-

comparisons. 

• At 1 microsecond/comparison: 6 days. 
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Locality-Sensitive Hashing 

• General idea: Use a function f(x,y) that tells 

whether or not x  and y  is a candidate pair: a pair 

of elements whose similarity must be evaluated. 

 

• For minhash matrices: Hash columns to many 

buckets, and make elements of the same bucket 

candidate pairs. 
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Candidate Generation From Minhash 

Signatures 

• Pick a similarity threshold s, a fraction < 1. 

• A pair of columns x  and y  is a candidate pair  

if their signatures agree in at least fraction s  of 

the rows. 

• I.e., M (i, c ) = M (i, d )  for at least fraction s  values 

of i. 
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LSH for Minhash Signatures 

• Big idea: hash columns of signature matrix M  

several times. 

• Arrange that (only) similar columns are likely 

to hash to the same bucket. 

• While dissimilar columns are less likely to hash 

to the same bucket 

• Candidate pairs are those that hash at least 

once to the same bucket. 
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Partition Into Bands 

Matrix M 

r  rows 

per band 

b  bands 

   One 

signature 
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Partition into Bands – (2) 

• Divide matrix M  into b  bands of r  rows. 

• For each band, hash its portion of each column to 

a hash table with k  buckets. 

• Make k  as large as possible. 

• Candidate column pairs are those that hash to the 
same bucket for ≥ 1 band. 

• Tune b and r  to catch most similar pairs, but few 

non-similar pairs. 
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Matrix M 

r  rows b  bands 

Buckets Columns 2 and 6 

are probably identical. 

Columns 6 and 7 are 

surely different. 
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Simplifying Assumption 

• There are enough buckets that columns are 

unlikely to hash to the same bucket unless they 

are identical in a particular band. 

• Hereafter, we assume that “same bucket” means 

“identical in that band.” 
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Example: Effect of Bands 

• Suppose 100,000 columns. 

• Signatures of 100 integers. 

• Therefore, signatures take 40Mb. 

• Want all 80%-similar pairs. 

• 5,000,000,000 pairs of signatures can take a 

while to compare. 

• Choose 20 bands of 5 integers/band. 

b r 
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Suppose C1, C2 are 80% Similar 

• Probability C1, C2 identical in one particular band: 

(0.8)5 = 0.328. 

• Probability C1, C2 are not  similar in any of the 20 

bands: (1-0.328)20 = .00035 . 

• i.e., about 1/3000th of the 80%-similar column pairs are 

false negatives. 
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Suppose C1, C2 Only 40% Similar 

• Probability C1, C2 identical in any one particular 

band: (0.4)5  = 0.01 . 

• Probability C1, C2 identical in ≥ 1 of 20 bands: 

≤ 20 * 0.01 = 0.2 . 

• But false positives much lower for similarities 
<< 40%.  
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LSH Involves a Tradeoff 

• Pick the number of minhashes, the number of 

bands, and the number of rows per band to 

balance false positives/negatives. 

• Example: if we had only 15 bands of 5 rows, the 

number of false positives would go down, but the 

number of false negatives would go up. 
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Analysis of LSH – What We Want 

       Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

No chance 

if s < t 

Probability 

= 1 if s > t 
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What One Band of One Row Gives You 

Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

Remember: 

probability of 

equal hash-values 

= similarity 
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What b  Bands of r  Rows Gives You 

Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

s r  

All rows 

of a band 

are equal 

1 - 

Some row 

of a band 

unequal 

( )b  

 

No bands 

identical 

1 - 

At least 

one band 

identical 

t ~ (1/b)1/r  
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Example: b  = 20; r  = 5 

 s  1-(1-sr)b 

.2    .006 

.3    .047 

.4    .186 

.5    .470 

.6    .802 

.7    .975 

.8    .9996 

t = 0.5 
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LSH Summary 

• Tune to get almost all pairs with similar 

signatures, but eliminate most pairs that do not 

have similar signatures. 

• Check in main memory that candidate pairs 

really do have similar signatures. 

• Optional: In another pass through data, check 

that the remaining candidate pairs really 

represent similar sets . 



Locality-sensitive hashing (LSH) 

• Big Picture: Construct hash functions h: Rd
 U 

such that for any pair of points p,q: 

• If D(p,q)≤r, then Pr[h(p)=h(q)] is high 

• If D(p,q)≥cr, then Pr[h(p)=h(q)] is small 

• Then, we can solve the “approximate NN” 

problem by hashing 

 

• LSH is a general framework; for a given distance 

function D we need to find the right h 


