
DATA MINING

LECTURE 4
Similarity and Distance

Sketching, Locality Sensitive Hashing

SIMILARITY AND

DISTANCE
Thanks to:

Tan, Steinbach, and Kumar, “Introduction to Data Mining”

Rajaraman and Ullman, “Mining Massive Datasets”

Similarity and Distance

• For many different problems we need to quantify how
close two objects are.

• Examples:
• For an item bought by a customer, find other similar items

• Group together the customers of site so that similar customers are
shown the same ad.

• Group together web documents so that you can separate the ones
that talk about politics and the ones that talk about sports.

• Find all the near-duplicate mirrored web documents.

• Find credit card transactions that are very different from previous
transactions.

• To solve these problems we need a definition of similarity,
or distance.
• The definition depends on the type of data that we have

What is Data?

• Collection of data objects and

their attributes

• An attribute is a property or

characteristic of an object

• Examples: eye color of a person,

temperature, etc.

• Attribute is also known as

variable, field, characteristic, or

feature

• A collection of attributes describe

an object

• Object is also known as record,

point, case, sample, entity, or

instance

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Attributes

Objects

Dimensionality: Number of attributes

Types of Attributes

• There are different types of attributes
• Nominal – Categorical

• Examples: ID numbers, eye color, zip codes

• There is no known ordering or comparison

• Ordinal
• Examples: rankings (e.g, good, fair, bad), grades (A,B,C),

height in {tall, medium, short}

• We can order, but not always clear how to compare

• Interval
• Examples: calendar dates, temperatures in Celsius or

Fahrenheit.

• We can take the difference in order to compare

• Ratio
• Examples: temperature in Kelvin, length, time, counts

• We can take differences as well as ratios.

Numeric

Discrete and Continuous Attributes

• Discrete Attribute
• Has only a finite or countably infinite set of values

• Examples: zip codes, counts, or the set of words in a collection of
documents

• Often represented as integer variables.

• Note: binary attributes are a special case of discrete attributes

• Continuous Attribute
• Has real numbers as attribute values

• Examples: temperature, height, or weight.

• Practically, real values can only be measured and represented
using a finite number of digits.

• Continuous attributes are typically represented as floating-point
variables.

Numeric Data

• If data objects have the same fixed set of numeric

attributes, then the data objects can be thought of as

points in a multi-dimensional space, where each

dimension represents a distinct attribute

• Such data set can be represented by an m by n matrix,

where there are m rows, one for each object, and n

columns, one for each attribute

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection

of y load

Projection

of x Load

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection

of y load

Projection

of x Load

Categorical Data

• Data that consists of a collection of records, each

of which consists of a fixed set of categorical

attributes

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single High No

2 No Married Medium No

3 No Single Low No

4 Yes Married High No

5 No Divorced Medium Yes

6 No Married Low No

7 Yes Divorced High No

8 No Single Medium Yes

9 No Married Medium No

10 No Single Medium Yes
10

Document Data

• Each document becomes a `term' vector,
• each term is a component (attribute) of the vector,

• the value of each component is the number of times the
corresponding term occurs in the document.

• Bag-of-words representation – no ordering

Document 1

s
e

a
s
o

n

tim
e

o
u

t

lo
s
t

w
i

n

g
a

m
e

s
c
o

re

b
a

ll

p
lay

c
o

a
c
h

te
a

m

Document 2

Document 3

3 0 5 0 2 6 0 2 0 2

0

0

7 0 2 1 0 0 3 0 0

1 0 0 1 2 2 0 3 0

Transaction Data

• Each record (transaction) is a set of items.

• A set of items can also be represented as a binary
vector, where each attribute is an item.

• A document can also be represented as a set of
words (no counts)

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Ordered Data

• Genomic sequence data

• Data is a long ordered string

GGTTCCGCCTTCAGCCCCGCGCC

CGCAGGGCCCGCCCCGCGCCGTC

GAGAAGGGCCCGCCTGGCGGGCG

GGGGGAGGCGGGGCCGCCCGAGC

CCAACCGAGTCCGACCAGGTGCC

CCCTCTGCTCGGCCTAGACCTGA

GCTCATTAGGCGGCAGCGGACAG

GCCAAGTAGAACACGCGAAGCGC

TGGGCTGCCTGCTGCGACCAGGG

Types of data

• Numeric data: Each object is a point in a

multidimensional space

• Categorical data: Each object is a vector of

categorical values

• Set data: Each object is a set of values (with or

without counts)

• Sets can also be represented as binary vectors, or

vectors of counts

• Ordered sequences: Each object is an ordered

sequence of values.

Similarity and Distance

• Similarity
• Numerical measure of how alike two data objects are.

• A function that maps pairs of objects to real values

• Is higher when objects are more alike.

• Often falls in the range [0,1]

• Sometimes in [-1,1]

• Distance
• Numerical measure of how different are two data objects

• A function that maps pairs of objects to real values

• Lower when objects are more alike

• Minimum dissimilarity is often 0

• Upper limit varies

• Closeness refers to a similarity or distance

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Distance Metric

• A distance function d is a distance metric if it is a

function from pairs of objects to real numbers

such that:

1. d(x,y) > 0. (non-negativity)

2. d(x,y) = 0 iff x = y. (identity)

3. d(x,y) = d(y,x). (symmetry)

4. d(x,y) < d(x,z) + d(z,y) (triangle inequality).

Triangle Inequality

• Triangle inequality guarantees that the distance

function is well-behaved.

• The direct connection is the shortest distance

• It is useful also for proving properties about the

data

• For example, suppose I want to find an object that

minimizes the sum of distances to all points in my

dataset

• If I select the best point from my dataset, the sum of

distances I get is at most twice that of the optimal point.

Properties of Similarity

• Desirable properties for similarity

1. s(p, q) = 1 (or maximum similarity) only if p = q.

(Identity)

2. s(p, q) = s(q, p) for all p and q. (Symmetry)

Distances for real vectors

• Vectors 𝑥 = 𝑥1, … , 𝑥𝑑 and 𝑦 = (𝑦1, … , 𝑦𝑑)

• Lp norms or Minkowski distance:

𝐿𝑝 𝑥, 𝑦 = 𝑥1 − 𝑦1
𝑝 + ⋯+ 𝑥𝑑 − 𝑦𝑑

𝑝 1 𝑝

• L2 norm: Euclidean distance:

𝐿2 𝑥, 𝑦 = 𝑥1 − 𝑦1
2 + ⋯+ 𝑥𝑑 − 𝑦𝑑

2

• L1 norm: Manhattan distance:

𝐿1 𝑥, 𝑦 = 𝑥1 − 𝑦1 + ⋯+ |𝑥𝑑 − 𝑦𝑑|

19

Example of Distances

a = (5,5)

b = (9,8)
L2-norm:

dist(x,y) =

(42+32)

= 5

L1-norm:

dist(x,y) =

4+3 = 7
4

3 5

Another Minkowski distance

• Vectors 𝑥 = 𝑥1, … , 𝑥𝑑 and 𝑦 = (𝑦1, … , 𝑦𝑑)

• Lp norms or Minkowski distance:

𝐿𝑝 𝑥, 𝑦 = 𝑥1 − 𝑦1
𝑝 + ⋯+ 𝑥𝑑 − 𝑦𝑑

𝑝 1 𝑝

• L∞ norm:

𝐿∞ 𝑥, 𝑦 = max 𝑥1 − 𝑦1 , … , |𝑥𝑑 − 𝑦𝑑|

• The limit of Lp as p goes to infinity.

21

Example of Distances

a = (5,5)

b = (9,8)
L2-norm:

dist(x,y) =

(42+32)

= 5

L1-norm:

dist(x,y) =

4+3 = 7
4

3 5

L∞-norm:

dist(x,y) =

max{3,4} = 4

Minkowski Distance

Distance Matrix

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

L1 p1 p2 p3 p4

p1 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

L p1 p2 p3 p4

p1 0 2 3 5

p2 2 0 1 3

p3 3 1 0 2

p4 5 3 2 0

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

Example

𝑥 = (𝑥1, … , 𝑥𝑛)

r

Green: All points y at distance L1(x,y) = r from point x

Blue: All points y at distance L2(x,y) = r from point x

Red: All points y at distance L∞(x,y) = r from point x

Lp distances for sets

• We can apply all the Lp distances to the cases of

sets of attributes, with or without counts, if we

represent the sets as vectors

• E.g., a transaction is a 0/1 vector

• E.g., a document is a vector of counts.

Cosine Similarity

• If d1 and d2 are two vectors, then

 cos(d1, d2) = (d1 d2) / ||d1|| ||d2|| ,

 where indicates vector dot product and || d || is the length of vector d.

• Example:

 d1 = 3 2 0 5 0 0 0 2 0 0

 d2 = 1 0 0 0 0 0 0 1 0 2

 d1 d2= 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

 ||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 = (42) 0.5 = 6.481

 ||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245

 cos(d1, d2) = .3150

Cosine Similarity

• Geometric Interpretation

• If the vectors are correlated angle is zero degrees and cosine is 1

• If the vectors are orthogonal (no common coordinates) angle is 90
degrees and cosine is 0

• Note that if one vector is a multiple of another cosine is still 1
(maximum)

• Cosine is commonly used for comparing documents, where we
assume that the vectors are normalized by the document length.

Example

document Apple Microsoft Obama Election

D1 10 20 0 0

D2 20 40 0 0

D2 0 0 10 20

cos(D1,D2) = 1

cos(D1,D3) = cos(D2,D3) = 0

Example

document Apple Microsoft Obama Election

D1 1/3 2/3 0 0

D2 1/3 2/3 0 0

D2 0 0 1/3 2/3

cos(D1,D2) = 1

cos(D1,D3) = cos(D2,D3) = 0

29

Jaccard Similarity of Sets

• The Jaccard similarity (Jaccard coefficient) of two

sets C1, C2 is the size of their intersection divided

by the size of their union.

• JSim (C1, C2) = |C1C2|/|C1C2|.

• Jaccard distance Jdist = 1 - JSim

3 in intersection.

8 in union.

Jaccard similarity

 = 3/8

Example with documents

• D1 = {apple, released, new, iPhone}

• D2 = {apple, released, new, iPad}

• D3 = {new, apple, pie, recipie}

• JSim(D1,D2) = 3/5

• JSim(D1,D3) = JSim(D2,D3) = 2/6

Similarity Between Binary Vectors

• Objects, p and q, have only binary attributes
• We can view them as sets and compute Jaccard

• We also compute the Simple Matching Coefficient

• Compute similarities using the following quantities
 M01 = the number of attributes where p was 0 and q was 1

 M10 = the number of attributes where p was 1 and q was 0

 M00 = the number of attributes where p was 0 and q was 0

 M11 = the number of attributes where p was 1 and q was 1

• Simple Matching and Jaccard Coefficients
 SMC = number of matches / number of attributes

 = (M11 + M00) / (M01 + M10 + M11 + M00)

 J = number of 11 matches / number of not-both-zero attributes values

 = (M11) / (M01 + M10 + M11) Jaccard treats 1’s asymmetrically

SMC versus Jaccard: Example

p = 1 0 0 0 0 0 0 0 0 0

q = 0 0 0 0 0 0 1 0 0 1

M01 = 2 (the number of attributes where p was 0 and q was 1)

M10 = 1 (the number of attributes where p was 1 and q was 0)

M00 = 7 (the number of attributes where p was 0 and q was 0)

M11 = 0 (the number of attributes where p was 1 and q was 1)

SMC = (M11 + M00)/(M01 + M10 + M11 + M00) = (0+7) / (2+1+0+7) = 0.7

J = (M11) / (M01 + M10 + M11) = 0 / (2 + 1 + 0) = 0

33

Hamming Distance

• Hamming distance is the number of positions in
which bit-vectors differ.

• Example: p1 = 10101; p2 = 10011.
• d(p1, p2) = 2 because the bit-vectors differ in the 3rd and 4th

positions.

• The L1 norm for the binary vectors

• Hamming distance between two vectors of
categorical attributes is the number of positions in
which they differ.

• Example: x = (married, low income, cheat),
 y = (single, low income, not cheat)
• d(x,y) = 2

34

Why Hamming Distance Is a Distance

Metric

• d(x,x) = 0 since no positions differ.

• d(x,y) = d(y,x) by symmetry of “different from.”

• d(x,y) > 0 since strings cannot differ in a

negative number of positions.

• Triangle inequality: changing x to z and then

to y is one way to change x to y.

35

Edit Distance for strings

• The edit distance of two strings is the number of
inserts and deletes of characters needed to turn
one into the other.

• Exampe: x = abcde ; y = bcduve.
• Turn x into y by deleting a, then inserting u and v

after d.

• Edit distance = 3.

• Minimum number of operations can be computed
using dynamic programming

• Common distance measure for comparing DNA
sequences

36

Why Edit Distance Is a Distance Metric

• d(x,x) = 0 because 0 edits suffice.

• d(x,y) = d(y,x) because insert/delete are

inverses of each other.

• d(x,y) > 0: no notion of negative edits.

• Triangle inequality: changing x to z and then

to y is one way to change x to y.

37

Variant Edit Distances

• Allow insert, delete, and mutate.

• Change one character into another.

• Minimum number of inserts, deletes, and

mutates also forms a distance measure.

• Same for any set of operations on strings.

• Example: substring reversal or block transposition OK

for DNA sequences

• Example: character transposition is used for spelling

Distances between distributions

• We can view a document as a distribution over the words

• KL-divergence (Kullback-Leibler) for distributions P,Q

𝐷𝐾𝐿 𝑃 𝑄 = 𝑝 𝑥 log
𝑝(𝑥)

𝑞(𝑥)
𝑥

• KL-divergence is asymmetric. We can make it symmetric by
taking the average of both sides

• JS-divergence (Jensen-Shannon)

 𝐽𝑆 𝑃, 𝑄 =
1

2
𝐷𝐾𝐿 𝑃 𝑄 +

1

2
𝐷𝐾𝐿 𝑄 𝑃

document Apple Microsoft Obama Election

D1 0.35 0.5 0.1 0.05

D2 0.4 0.4 0.1 0.1

D2 0.05 0.05 0.6 0.3

SKETCHING

AND

LOCALITY SENSITIVE

HASHING
Thanks to:

Rajaraman and Ullman, “Mining Massive Datasets”

Evimaria Terzi, slides for Data Mining Course.

Finding near-duplicates documents

• We will now consider the problem of finding

duplicate and near-duplicate documents from a

web crawl.

• Why is it important:

• Identify mirrored web pages, and avoid indexing them,

or serving them multiple times

• Identify plagiarism

• Find replicated stories in news and cluster them under a

single story.

• What if we wanted exact duplicates?

Main issues

• What is the right representation of the document

when we check for similarity?

• E.g., representing a document as a set of characters

will not do

• When we have billions of documents, keeping the

full text in memory is not an option.

• We need to find a shorter representation

• How do we do pairwise comparisons we billions

of documents?

• If exact match was the issue it would be ok, can we

replicate this idea?

42

Three Essential Techniques for Similar

Documents

1. Shingling : convert documents, emails, etc.,

to sets.

2. Minhashing : convert large sets to short

signatures, while preserving similarity.

3. Locality-sensitive hashing : focus on pairs of

signatures likely to be similar.

43

The Big Picture

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures :

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

sensitive

Hashing

Candidate

pairs :

those pairs

of signatures

that we need

to test for

similarity.

44

Shingles

• A k -shingle (or k -gram) for a document is a

sequence of k characters that appears in the

document.

• Example: k=2; doc = abcab. Set of 2-shingles =

{ab, bc, ca}.

• Option: regard shingles as a bag, and count ab twice.

• Represent a doc by its set of k-shingles.

Shingling

• Shingle: a sequence of k contiguous characters

a rose is a rose is a rose

a rose is

 rose is a

 rose is a

 ose is a r

 se is a ro

 e is a ros

 is a rose

 is a rose

 s a rose i

 a rose is

 a rose is

46

Working Assumption

• Documents that have lots of shingles in common

have similar text, even if the text appears in

different order.

• Careful: you must pick k large enough, or most

documents will have most shingles.

• k = 5 is OK for short documents; k = 10 is better for long

documents.

47

Shingles: Compression Option

• To compress long shingles, we can hash them

to (say) 4 bytes.

• Represent a doc by the set of hash values of

its k-shingles.

• Two documents could (rarely) appear to have

shingles in common, when in fact only the

hash-values were shared.

Rabin’s fingerprinting technique

• Comparing two strings of size n

• if a=b then f(a)=f(b)

 if f(a)=f(b) then a=b with high probability

a = 10110

b = 11010

a=b?

O(n) too expensive!

f(a)=f(b)?

01234 2021212021 A

01234 2021202121 B

f(a)= A mod p

f(b)= B mod p

p = small random prime

size O(logn loglogn)

49

Thought Question

• Why is it better to hash 9-shingles (say) to 4

bytes than to use 4-shingles?

• Hint: How random are the 32-bit sequences that

result from 4-shingling?

50

Basic Data Model: Sets

• Document: A document is represented as a set
shingles (more accurately, hashes of shingles)

• Document similarity: Jaccard similarity of the sets
of shingles.
• Common shingles over the union of shingles

• Sim (C1, C2) = |C1C2|/|C1C2|.

• Although we use the documents as our driving
example the techniques we will describe apply to
any kind of sets.

• E.g., similar customers or products.

51

From Sets to Boolean Matrices

• Rows = elements of the universal set (shingles)

• Columns = sets (documents)

• 1 in row e and column S if and only if e is a

member of S.

• Column similarity is the Jaccard similarity of the

sets of their rows with 1.

• Typical matrix is sparse.

52

Example: Jaccard Similarity of Columns

 C1 C2

 0 1

 1 0

 1 1 Sim (C1, C2) =

 0 0 2/5 = 0.4

 1 1

 0 1

*

*

*

*

*

*

*

53

Aside

• We might not really represent the data by a

boolean matrix.

• Sparse matrices are usually better

represented by the list of places where there is

a non-zero value.

• But the matrix picture is conceptually useful.

54

Outline: Finding Similar Columns

1. Compute signatures of columns = small

summaries of columns.

2. Examine pairs of signatures to find similar

signatures.

• Essential: similarities of signatures and columns

are related. The signatures preserve similarity.

3. Optional: check that columns with similar

signatures are really similar.

55

Warnings

1. Comparing all pairs of signatures may take too

much time, even if not too much space.

• A job for Locality-Sensitive Hashing.

2. These methods can produce false negatives,

and even false positives (if the optional check

is not made).

56

Signatures

• Key idea: “hash” each column C to a small

signature Sig (C), such that:

1. Sig (C) is small enough that we can fit a

signature in main memory for each column.

2. Sim (C1, C2) is (almost) the same as the

“similarity” of Sig (C1) and Sig (C2).

57

Four Types of Rows

• Given documents X and Y,

• Rows may be classified as:

type X

bit

Y

bit

R11 1 1

R10 1 0

R01 0 1

R00 0 0

X Y

1 1

1 0

0 0

0 0

0 0

1 1

1 1

58

Four Types of Rows

• Given documents X and Y,

• Rows may be classified as:

X Y

1 1

1 0

0 0

0 0

0 0

1 1

1 1

type X

bit

Y

bit

R11 1 1 3

R10 1 0

R01 0 1

R00 0 0

59

Four Types of Rows

• Given documents X and Y,

• Rows may be classified as:

type X

bit

Y

bit

R11 1 1 3

R10 1 0 1

R01 0 1

R00 0 0

X Y

1 1

1 0

0 0

0 0

0 0

1 1

1 1

60

Four Types of Rows

• Given documents X and Y,

• Rows may be classified as:

X Y

1 1

1 0

0 0

0 0

0 0

1 1

1 1

type X

bit

Y

bit

R11 1 1 3

R10 1 0 1

R01 0 1 0

R00 0 0

61

Four Types of Rows

• Given documents X and Y,

• Rows may be classified as:

X Y

1 1

1 0

0 0

0 0

0 0

1 1

1 1

type X

bit

Y

bit

R11 1 1 3

R10 1 0 1

R01 0 1 0

R00 0 0 3

62

Four Types of Rows
• Given documents X and Y,

• Rows may be classified as:

• Also, R11 = # rows of type R11 , etc.

• Note Sim (X,Y) = R11 /(R11 + R10 + R01).

X Y

1 1

1 0

0 0

0 0

0 0

1 1

1 1

type X

bit

Y

bit

R11 1 1 3

R10 1 0 1

R01 0 1 0

R00 0 0 3

63

Minhashing

• Imagine the rows permuted randomly.

• Define “hash” function h (C) = the number of the

first (in the permuted order) row in which column

C has 1.

• Use several (e.g., 100) independent hash

functions to create a signature.

Example of minhash signatures

• Input matrix

x1 x2 x3 X4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

A

C

G

F

B

E

D

x1 x2 x3 X4

A 1 0 1 0

C 0 1 0 1

G 1 0 1 0

F 1 0 1 0

B 1 0 0 1

E 0 1 0 1

D 0 1 0 1

1 2 1 2

Example of minhash signatures

• Input matrix

x1 x2 x3 X4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

D

B

A

C

F

G

E

x1 x2 x3 X4

D 0 1 0 1

B 1 0 0 1

A 1 0 1 0

C 0 1 0 1

F 1 0 1 0

G 1 0 1 0

E 0 1 0 1

2 1 3 1

Example of minhash signatures

• Input matrix

x1 x2 x3 X4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

C

D

G

F

A

B

E

x1 x2 x3 X4

C 0 1 0 1

D 0 1 0 1

G 1 0 1 0

F 1 0 1 0

A 1 0 1 0

B 1 0 0 1

E 0 1 0 1

3 1 3 1

67

Surprising Property

• The probability (over all permutations of the

rows) that h (C1) = h (C2) is the same as

Sim (C1, C2).

• Both are R11 /(R11 + R10 + R01)!

• Why?

• Look down the permuted columns C1 and C2 until

we see a 1.

• If it’s a type-R11 row, then h (C1) = h (C2). If a

type-R10 or type-R01 row, then not.

68

Similarity for Signatures

• The similarity of signatures is the fraction of the

hash functions in which they agree.

Example of minhash signatures

• Input matrix

x1 x2 x3 X4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

x1 x2 x3 X4

1 2 1 2

2 1 3 1

3 1 3 1

≈

actual Sig

(x1,x2) 0 0

(x1,x3) 0.75 2/3

(x1,x4) 1/7 0

(x2,x3) 0 0

(x2,x4) 0.75 1

(x3,x4) 0 0

Minhash algorithm

• Pick k (e.g., 100) permutations of the rows

• Think of Sig(x) as a new vector

• Let Sig(x)[i]: in the i-th permutation, the index of

the first row that has 1 for object x

Is it now feasible?

• Assume a billion rows

• Hard to pick a random permutation of 1…billion

• Even representing a random permutation

requires 1 billion entries!!!

• How about accessing rows in permuted order?

•

Being more practical

• Approximating row permutations: pick k=100 (?)

hash functions (h1,…,hk)

for each row r

 for each column c

 if c has 1 in row r

 for each hash function hi do

 if hi (r) is a smaller value than M(i,c) then

 M (i,c) = hi (r);

M(i,c) will become the smallest value of hi(r) for which column

c has 1 in row r; i.e., hi (r) gives order of rows for i-th

permutation

73

Example

Row C1 C2

 1 1 0

 2 0 1

 3 1 1

 4 1 0

 5 0 1

h(x) = x mod 5

g(x) = 2x+1 mod 5

h(1) = 1 1 -

g(1) = 3 3 -

h(2) = 2 1 2

g(2) = 0 3 0

h(3) = 3 1 2

g(3) = 2 2 0

h(4) = 4 1 2

g(4) = 4 2 0

h(5) = 0 1 0

g(5) = 1 2 0

Sig1 Sig2

74

Implementation – (4)

• Often, data is given by column, not row.

• E.g., columns = documents, rows = shingles.

• If so, sort matrix once so it is by row.

• And always compute hi (r) only once for each

row.

75

Finding Similar Pairs

• Suppose we have, in main memory, data

representing a large number of objects.

• May be the objects themselves .

• May be signatures as in minhashing.

• We want to compare each to each, finding those

pairs that are sufficiently similar.

76

Checking All Pairs is Hard

• While the signatures of all columns may fit in

main memory, comparing the signatures of all

pairs of columns is quadratic in the number of

columns.

• Example: 106 columns implies 5*1011 column-

comparisons.

• At 1 microsecond/comparison: 6 days.

77

Locality-Sensitive Hashing

• General idea: Use a function f(x,y) that tells

whether or not x and y is a candidate pair: a pair

of elements whose similarity must be evaluated.

• For minhash matrices: Hash columns to many

buckets, and make elements of the same bucket

candidate pairs.

78

Candidate Generation From Minhash

Signatures

• Pick a similarity threshold s, a fraction < 1.

• A pair of columns x and y is a candidate pair

if their signatures agree in at least fraction s of

the rows.

• I.e., M (i, c) = M (i, d) for at least fraction s values

of i.

79

LSH for Minhash Signatures

• Big idea: hash columns of signature matrix M

several times.

• Arrange that (only) similar columns are likely

to hash to the same bucket.

• While dissimilar columns are less likely to hash

to the same bucket

• Candidate pairs are those that hash at least

once to the same bucket.

80

Partition Into Bands

Matrix M

r rows

per band

b bands

 One

signature

81

Partition into Bands – (2)

• Divide matrix M into b bands of r rows.

• For each band, hash its portion of each column to

a hash table with k buckets.

• Make k as large as possible.

• Candidate column pairs are those that hash to the
same bucket for ≥ 1 band.

• Tune b and r to catch most similar pairs, but few

non-similar pairs.

82

Matrix M

r rows b bands

Buckets Columns 2 and 6

are probably identical.

Columns 6 and 7 are

surely different.

83

Simplifying Assumption

• There are enough buckets that columns are

unlikely to hash to the same bucket unless they

are identical in a particular band.

• Hereafter, we assume that “same bucket” means

“identical in that band.”

84

Example: Effect of Bands

• Suppose 100,000 columns.

• Signatures of 100 integers.

• Therefore, signatures take 40Mb.

• Want all 80%-similar pairs.

• 5,000,000,000 pairs of signatures can take a

while to compare.

• Choose 20 bands of 5 integers/band.

b r

85

Suppose C1, C2 are 80% Similar

• Probability C1, C2 identical in one particular band:

(0.8)5 = 0.328.

• Probability C1, C2 are not similar in any of the 20

bands: (1-0.328)20 = .00035 .

• i.e., about 1/3000th of the 80%-similar column pairs are

false negatives.

86

Suppose C1, C2 Only 40% Similar

• Probability C1, C2 identical in any one particular

band: (0.4)5 = 0.01 .

• Probability C1, C2 identical in ≥ 1 of 20 bands:

≤ 20 * 0.01 = 0.2 .

• But false positives much lower for similarities
<< 40%.

87

LSH Involves a Tradeoff

• Pick the number of minhashes, the number of

bands, and the number of rows per band to

balance false positives/negatives.

• Example: if we had only 15 bands of 5 rows, the

number of false positives would go down, but the

number of false negatives would go up.

88

Analysis of LSH – What We Want

 Similarity s of two sets

Probability

of sharing

a bucket

t

No chance

if s < t

Probability

= 1 if s > t

89

What One Band of One Row Gives You

Similarity s of two sets

Probability

of sharing

a bucket

t

Remember:

probability of

equal hash-values

= similarity

90

What b Bands of r Rows Gives You

Similarity s of two sets

Probability

of sharing

a bucket

t

s r

All rows

of a band

are equal

1 -

Some row

of a band

unequal

()b

No bands

identical

1 -

At least

one band

identical

t ~ (1/b)1/r

91

Example: b = 20; r = 5

 s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

t = 0.5

92

LSH Summary

• Tune to get almost all pairs with similar

signatures, but eliminate most pairs that do not

have similar signatures.

• Check in main memory that candidate pairs

really do have similar signatures.

• Optional: In another pass through data, check

that the remaining candidate pairs really

represent similar sets .

Locality-sensitive hashing (LSH)

• Big Picture: Construct hash functions h: Rd
 U

such that for any pair of points p,q:

• If D(p,q)≤r, then Pr[h(p)=h(q)] is high

• If D(p,q)≥cr, then Pr[h(p)=h(q)] is small

• Then, we can solve the “approximate NN”

problem by hashing

• LSH is a general framework; for a given distance

function D we need to find the right h

