DATA MINING LECTURE 4

Similarity and Distance
Sketching, Locality Sensitive Hashing

SIMILARITY AND DISTANCE

Thanks to:
Tan, Steinbach, and Kumar, "Introduction to Data Mining" Rajaraman and Ullman, "Mining Massive Datasets"

Similarity and Distance

- For many different problems we need to quantify how close two objects are.
- Examples:
- For an item bought by a customer, find other similar items
- Group together the customers of site so that similar customers are shown the same ad.
- Group together web documents so that you can separate the ones that talk about politics and the ones that talk about sports.
- Find all the near-duplicate mirrored web documents.
- Find credit card transactions that are very different from previous transactions.
- To solve these problems we need a definition of similarity, or distance.
- The definition depends on the type of data that we have

What is Data?

- Collection of data objects and their attributes

Attributes

- An attribute is a property or characteristic of an object
- Examples: eye color of a person, temperature, etc.
- Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
- Object is also known as record, point, case, sample, entity, or
 instance

Dimensionality: Number of attributes

Types of Attributes

- There are different types of attributes
- Nominal - Categorical
- Examples: ID numbers, eye color, zip codes
- There is no known ordering or comparison
- Ordinal
- Examples: rankings (e.g, good, fair, bad), grades (A,B,C), height in \{tall, medium, short\}
- We can order, but not always clear how to compare
[Interval
- Examples: calendar dates, temperatures in Celsius or Fahrenheit.
- We can take the difference in order to compare
- Ratio
- Examples: temperature in Kelvin, length, time, counts
- We can take differences as well as ratios.

Discrete and Continuous Attributes

- Discrete Attribute
- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes
- Continuous Attribute
- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Numeric Data

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of \mathbf{x} Load	Projection of \mathbf{y} load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Categorical Data

- Data that consists of a collection of records, each of which consists of a fixed set of categorical attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	High	No
2	No	Married	Medium	No
3	No	Single	Low	No
4	Yes	Married	High	No
5	No	Divorced	Medium	Yes
6	No	Married	Low	No
7	Yes	Divorced	High	No
8	No	Single	Medium	Yes
9	No	Married	Medium	No
10	No	Single	Medium	Yes

Document Data

- Each document becomes a `term' vector,
- each term is a component (attribute) of the vector,
- the value of each component is the number of times the corresponding term occurs in the document.
- Bag-of-words representation - no ordering

	$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { O} \\ & \stackrel{0}{\mathrm{O}} \end{aligned}$	$<\frac{0}{2}$	ס	$\begin{aligned} & \text { n } \\ & \frac{0}{\sigma} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{3} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	כ	\%	$\begin{aligned} & \text { 产 } \\ & \text { © } \\ & \stackrel{C}{\leftrightarrows} \end{aligned}$	® N\% On
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction Data

- Each record (transaction) is a set of items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

- A set of items can also be represented as a binary vector, where each attribute is an item.
- A document can also be represented as a set of words (no counts)

Ordered Data

- Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCCGTC GAGAAGGGCCCGCCTGGCGGGCG GGGGGAGGCGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC СССТСТGСTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

- Data is a long ordered string

Types of data

- Numeric data: Each object is a point in a multidimensional space
- Categorical data: Each object is a vector of categorical values
- Set data: Each object is a set of values (with or without counts)
- Sets can also be represented as binary vectors, or vectors of counts
- Ordered sequences: Each object is an ordered sequence of values.

Similarity and Distance

- Similarity
- Numerical measure of how alike two data objects are.
- A function that maps pairs of objects to real values
- Is higher when objects are more alike.
- Often falls in the range [0,1]
- Sometimes in [-1,1]
- Distance
- Numerical measure of how different are two data objects
- A function that maps pairs of objects to real values
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies
- Closeness refers to a similarity or distance

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute Type	Dissimilarity	Similarity
Nominal	$d= \begin{cases}0 & \text { if } p=q \\ 1 & \text { if } p \neq q\end{cases}$	$s= \begin{cases}1 & \text { if } p=q \\ 0 & \text { if } p \neq q\end{cases}$
Ordinal	$d=\frac{\|p-q\|}{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s=1-\frac{\|p-q\|}{n-1}$
Interval or Ratio	$d=\|p-q\|$	$s=-d, s=\frac{1}{1+d}$ or $s=1-\frac{d-m i n-d}{\operatorname{max-d-min-d}}$

Table 5.1. Similarity and dissimilarity for simple attributes

Distance Metric

- A distance function d is a distance metric if it is a function from pairs of objects to real numbers such that:

1. $d(x, y) \geq 0$. (non-negativity)
2. $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ iff $\mathrm{x}=\mathrm{y}$. (identity)
3. $d(x, y)=d(y, x)$. (symmetry)
4. $d(x, y) \leq d(x, z)+d(z, y)$ (triangle inequality).

Triangle Inequality

- Triangle inequality guarantees that the distance function is well-behaved.
- The direct connection is the shortest distance
- It is useful also for proving properties about the data
- For example, suppose I want to find an object that minimizes the sum of distances to all points in my dataset
- If I select the best point from my dataset, the sum of distances I get is at most twice that of the optimal point.

Properties of Similarity

- Desirable properties for similarity

1. $s(p, q)=1$ (or maximum similarity) only if $p=q$. (Identity)
2. $s(p, q)=s(q, p)$ for all p and q. (Symmetry)

Distances for real vectors

- Vectors $x=\left(x_{1}, \ldots, x_{d}\right)$ and $y=\left(y_{1}, \ldots, y_{d}\right)$
- L_{p} norms or Minkowski distance:

$$
L_{p}(x, y)=\left[\left|x_{1}-y_{1}\right|^{p}+\cdots+\left|x_{d}-y_{d}\right|^{p}\right]^{1 / p}
$$

- L_{2} norm: Euclidean distance:

$$
L_{2}(x, y)=\sqrt{\left|x_{1}-y_{1}\right|^{2}+\cdots+\left|x_{d}-y_{d}\right|^{2}}
$$

- L_{1} norm: Manhattan distance:

$$
L_{1}(x, y)=\left|x_{1}-y_{1}\right|+\cdots+\left|x_{d}-y_{d}\right|
$$

Example of Distances

Another Minkowski distance

- Vectors $x=\left(x_{1}, \ldots, x_{d}\right)$ and $y=\left(y_{1}, \ldots, y_{d}\right)$
- L_{p} norms or Minkowski distance:

$$
L_{p}(x, y)=\left[\left|x_{1}-y_{1}\right|^{p}+\cdots+\left|x_{d}-y_{d}\right|^{p}\right]^{1 / p}
$$

- L_{∞} norm:

$$
L_{\infty}(x, y)=\max \left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{d}-y_{d}\right|\right\}
$$

- The limit of L_{p} as p goes to infinity.

Example of Distances

Minkowski Distance

point	\mathbf{x}	\mathbf{y}
$\mathbf{p 1}$	0	2
$\mathbf{p 2}$	2	0
$\mathbf{p 3}$	3	1
$\mathbf{p 4}$	5	1

$\mathbf{L 1}$	$\mathbf{p 1}$	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	4	4	6
$\mathbf{p 2}$	4	0	2	4
$\mathbf{p 3}$	4	2	0	2
$\mathbf{p 4}$	6	4	2	0

$\mathbf{L 2}$	p1	$\mathbf{p 2}$	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	2.828	3.162	5.099
$\mathbf{p 2}$	2.828	0	1.414	3.162
$\mathbf{p 3}$	3.162	1.414	0	2
$\mathbf{p 4}$	5.099	3.162	2	0

\mathbf{L}_{∞}	p1	p2	$\mathbf{p 3}$	$\mathbf{p 4}$
$\mathbf{p 1}$	0	2	3	5
$\mathbf{p 2}$	2	0	1	3
$\mathbf{p 3}$	3	1	0	2
$\mathbf{p 4}$	5	3	2	0

Distance Matrix

Example

Green: All points y at distance $L_{1}(x, y)=r$ from point x
Blue: All points y at distance $L_{2}(x, y)=r$ from point x
Red: All points y at distance $L_{\infty}(x, y)=r$ from point x

L_{p} distances for sets

- We can apply all the L_{p} distances to the cases of sets of attributes, with or without counts, if we represent the sets as vectors
- E.g., a transaction is a $0 / 1$ vector
- E.g., a document is a vector of counts.

Cosine Similarity

- If d_{1} and d_{2} are two vectors, then

$$
\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \bullet d_{2}\right) /\left\|d_{1}\right\|\left\|d_{2}\right\|,
$$

where \bullet indicates vector dot product and $\|d\|$ is the length of vector d.

- Example:

$$
\begin{aligned}
& d_{1}=3205000200 \\
& d_{2}=1000000102 \\
& d_{1} \cdot d_{2}=3^{*} 1+2^{*} 0+0^{*} 0+5^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+2^{*} 1+0^{*} 0+0^{*} 2=5 \\
& \left\|d_{1}\right\|=\left(3^{*} 3+2^{*} 2+0^{*} 0+5^{*} 5+0^{*} 0+0^{*} 0+0^{*} 0+2^{*} 2+0^{*} 0+0^{*} 0\right)^{0.5}=(42)^{0.5}=6.481 \\
& \left\|d_{2}\right\|=\left(1^{*} 1+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+1^{*} 1+0^{*} 0+2^{*} 2\right)^{0.5}=(6)^{0.5}=2.245 \\
& \cos \left(d_{1}, d_{2}\right)=.3150
\end{aligned}
$$

Cosine Similarity

- Geometric Interpretation

Figure 2.16. Geometric illustration of the cosine measure.

- If the vectors are correlated angle is zero degrees and cosine is 1
- If the vectors are orthogonal (no common coordinates) angle is 90 degrees and cosine is 0
- Note that if one vector is a multiple of another cosine is still 1 (maximum)
- Cosine is commonly used for comparing documents, where we assume that the vectors are normalized by the document length.

Example

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	20	40	0	0
D2	0	0	10	20

$\cos (D 1, D 2)=1$
$\cos (D 1, D 3)=\cos (D 2, D 3)=0$

Example

document	Apple	Microsoft	Obama	Election
D1	$1 / 3$	$2 / 3$	0	0
D2	$1 / 3$	$2 / 3$	0	0
D2	0	0	$1 / 3$	$2 / 3$

$\cos (\mathrm{D} 1, \mathrm{D} 2)=1$
$\cos (\mathrm{D} 1, \mathrm{D} 3)=\cos (\mathrm{D} 2, \mathrm{D} 3)=0$

Jaccard Similarity of Sets

- The Jaccard similarity (Jaccard coefficient) of two sets C_{1}, C_{2} is the size of their intersection divided by the size of their union.
$\cdot \operatorname{JSim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|$.

3 in intersection.
8 in union.
Jaccard similarity
$=3 / 8$

- Jaccard distance Jdist = 1 - JSim

Example with documents

- D1 = \{apple, released, new, iPhone\}
- D2 = \{apple, released, new, iPad\}
- D3 = \{new, apple, pie, recipie\}
$\cdot \mathrm{JSim}(\mathrm{D} 1, \mathrm{D} 2)=3 / 5$
- $\operatorname{JSim}(\mathrm{D} 1, \mathrm{D} 3)=\mathrm{JSim}(\mathrm{D} 2, \mathrm{D} 3)=2 / 6$

Similarity Between Binary Vectors

Objects, p and q, have only binary attributes
We can view them as sets and compute Jaccard We also compute the Simple Matching Coefficient
Compute similarities using the following quantities
$M_{01}=$ the number of attributes where p was 0 and q was 1
$M_{10}=$ the number of attributes where p was 1 and q was 0
$\mathrm{M}_{00}=$ the number of attributes where p was 0 and q was 0
$M_{11}=$ the number of attributes where p was 1 and q was 1
Simple Matching and Jaccard Coefficients
SMC = number of matches / number of attributes

$$
=\left(M_{11}+M_{00}\right) /\left(M_{01}+M_{10}+M_{11}+M_{00}\right)
$$

$J=$ number of 11 matches / number of not-both-zero attributes values

$$
=\left(M_{11}\right) /\left(M_{01}+M_{10}+M_{11}\right) \quad \text { Jaccard treats 1's asymmetrically }
$$

SMC versus Jaccard: Example

$$
\begin{aligned}
& p=100000000000 \\
& q= \\
& q=000000010001
\end{aligned}
$$

$M_{01}=2$ (the number of attributes where p was 0 and q was 1)
$M_{10}=1$ (the number of attributes where p was 1 and q was 0)
$M_{00}=7$ (the number of attributes where p was 0 and q was 0)
$M_{11}=0 \quad$ (the number of attributes where p was 1 and q was 1)

$$
\begin{aligned}
& S M C=\left(M_{11}+M_{00}\right) /\left(M_{01}+M_{10}+M_{11}+M_{00}\right)=(0+7) /(2+1+0+7)=0.7 \\
& J=\left(M_{11}\right) /\left(M_{01}+M_{10}+M_{11}\right)=0 /(2+1+0)=0
\end{aligned}
$$

Hamming Distance

- Hamming distance is the number of positions in which bit-vectors differ.
- Example: $p_{1}=10101 ; p_{2}=10011$.
- $d\left(p_{1}, p_{2}\right)=2$ because the bit-vectors differ in the $3^{\text {rd }}$ and $4^{\text {th }}$ positions.
- The L_{1} norm for the binary vectors
- Hamming distance between two vectors of categorical attributes is the number of positions in which they differ.
- Example: $x=$ (married, low income, cheat),
$y=$ (single, low income, not cheat)
- $d(x, y)=2$

Why Hamming Distance Is a Distance

 Metric- $d(x, x)=0$ since no positions differ.
- $d(x, y)=d(y, x)$ by symmetry of "different from."
- $d(x, y) \geq 0$ since strings cannot differ in a negative number of positions.
- Triangle inequality: changing x to z and then to y is one way to change x to y.

Edit Distance for strings

- The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other.
- Exampe: $x=$ abcde $; y=$ bcduve.
- Turn x into y by deleting a, then inserting u and v after d.
- Edit distance $=3$.
- Minimum number of operations can be computed using dynamic programming
- Common distance measure for comparing DNA sequences

Why Edit Distance Is a Distance Metric

- $d(x, x)=0$ because 0 edits suffice.
- $d(x, y)=d(y, x)$ because insert/delete are inverses of each other.
- $d(x, y) \geq 0$: no notion of negative edits.
- Triangle inequality: changing x to z and then to y is one way to change x to y.

Variant Edit Distances

- Allow insert, delete, and mutate.
- Change one character into another.
- Minimum number of inserts, deletes, and mutates also forms a distance measure.
- Same for any set of operations on strings.
- Example: substring reversal or block transposition OK for DNA sequences
- Example: character transposition is used for spelling

Distances between distributions

- We can view a document as a distribution over the words

document	Apple	Microsoft	Obama	Election
D1	0.35	0.5	0.1	0.05
D2	0.4	0.4	0.1	0.1
D2	0.05	0.05	0.6	0.3

- KL-divergence (Kullback-Leibler) for distributions P,Q

$$
D_{K L}(P \| Q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}
$$

- KL-divergence is asymmetric. We can make it symmetric by taking the average of both sides
- JS-divergence (Jensen-Shannon)

$$
J S(P, Q)=\frac{1}{2} D_{K L}(P \| Q)+\frac{1}{2} D_{K L}(Q \| P)
$$

SKETCHING AND LOCALITY SENSITIVE HASHING

Thanks to:
Rajaraman and Ullman, "Mining Massive Datasets"
Evimaria Terzi, slides for Data Mining Course.

Finding near-duplicates documents

- We will now consider the problem of finding duplicate and near-duplicate documents from a web crawl.
-Why is it important:
- Identify mirrored web pages, and avoid indexing them, or serving them multiple times
- Identify plagiarism
- Find replicated stories in news and cluster them under a single story.
-What if we wanted exact duplicates?

Main issues

- What is the right representation of the document when we check for similarity?
- E.g., representing a document as a set of characters will not do
- When we have billions of documents, keeping the full text in memory is not an option.
- We need to find a shorter representation
- How do we do pairwise comparisons we billions of documents?
- If exact match was the issue it would be ok, can we replicate this idea?

Three Essential Techniques for Similar Documents

1. Shingling : convert documents, emails, etc., to sets.
2. Minhashing : convert large sets to short signatures, while preserving similarity.
3. Locality-sensitive hashing : focus on pairs of signatures likely to be similar.

The Big Picture

Shingles

- A k-shingle (or k-gram) for a document is a sequence of k characters that appears in the document.
- Example: $\mathrm{k}=2$; doc = abcab. Set of 2-shingles = \{ab, bc, ca\}.
- Option: regard shingles as a bag, and count ab twice.
- Represent a doc by its set of k-shingles.

Shingling

- Shingle: a sequence of k contiguous characters

```
a rose is a rose is a rose
a rose is
rose is a
    rose is a
ose is a r
se is a ro
e is a ros
is a rose
    is a rose
s a rose i
a rose is
a rose is
```


Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order.
- Careful: you must pick k large enough, or most documents will have most shingles.
- $k=5$ is OK for short documents; $k=10$ is better for long documents.

Shingles: Compression Option

- To compress long shingles, we can hash them to (say) 4 bytes.
- Represent a doc by the set of hash values of its k-shingles.
- Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.

Rabin's fingerprinting technique

Comparing two strings of size n

$$
\begin{aligned}
& \begin{array}{l}
a=10110 \quad \mathrm{O} \quad \mathrm{n}) \text { too expensive! } \\
\mathrm{b}=11010 \quad \mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{~b}) ?
\end{array} \\
& \mathrm{~A}=1 * 2^{4}+0 * 2^{3}+1 * 2^{2}+1 * 2^{1}+0 * 2^{0} \\
& B=1 * 2^{4}+1 * 2^{3}+0 * 2^{2}+1 * 2^{1}+0 * 2^{0} \\
& f(a)=A \bmod p \quad P=\text { small random prime } \\
& f(b)=B \bmod p \quad \text { size } O(\operatorname{logn} \text { loglogn) } \\
& \text { - if } a=b \text { then } f(a)=f(b) \\
& \text { if } f(a)=f(b) \text { then } a=b \text { with high probability }
\end{aligned}
$$

Thought Question

- Why is it better to hash 9 -shingles (say) to 4 bytes than to use 4-shingles?
- Hint: How random are the 32-bit sequences that result from 4-shingling?

Basic Data Model: Sets

- Document: A document is represented as a set shingles (more accurately, hashes of shingles)
- Document similarity: Jaccard similarity of the sets of shingles.
- Common shingles over the union of shingles
- $\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|$.
- Although we use the documents as our driving example the techniques we will describe apply to any kind of sets.
- E.g., similar customers or products.

From Sets to Boolean Matrices

-Rows = elements of the universal set (shingles)

- Columns = sets (documents)
- 1 in row e and column S if and only if e is a member of S.
- Column similarity is the Jaccard similarity of the sets of their rows with 1.
- Typical matrix is sparse.

Example: Jaccard Similarity of Columns

$$
\begin{array}{llll}
\mathrm{C}_{1} & \mathrm{C}_{2} & & \\
0 & 1 & * & \\
1 & 0 & * & \\
1 & 1 & * & * \\
0 & 0 & & \operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)= \\
1 & 1 & * & 2 / 5=0.4 \\
0 & 1 & * &
\end{array}
$$

Aside

- We might not really represent the data by a boolean matrix.
- Sparse matrices are usually better represented by the list of places where there is a non-zero value.
- But the matrix picture is conceptually useful.

Outline: Finding Similar Columns

1. Compute signatures of columns = small summaries of columns.
2. Examine pairs of signatures to find similar signatures.

- Essential: similarities of signatures and columns are related. The signatures preserve similarity.

3. Optional: check that columns with similar signatures are really similar.

Warnings

Comparing all pairs of signatures may take too much time, even if not too much space.

- A job for Locality-Sensitive Hashing.

2. These methods can produce false negatives, and even false positives (if the optional check is not made).

Signatures

Key idea: "hash" each column C to a small signature Sig (C), such that:

1. $\operatorname{Sig}(\mathrm{C})$ is small enough that we can fit a signature in main memory for each column.
2. $\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$ is (almost) the same as the "similarity" of $\operatorname{Sig}\left(\mathrm{C}_{1}\right)$ and $\operatorname{Sig}\left(\mathrm{C}_{2}\right)$.

Four Types of Rows

- Given documents X and Y,
- Rows may be classified as:

type	\mathbf{X} bit	\mathbf{Y} bit
R_{11}	1	1
R_{10}	1	0
R_{01}	0	1
R_{00}	0	0

X	Y
1	1
1	0
0	0
0	0
0	0
1	1
1	1

Four Types of Rows

- Given documents X and Y,
- Rows may be classified as:

type	X bit	Y bit	
R_{11}	1	1	3
R_{10}	1	0	
R_{01}	0	1	
R_{00}	0	0	

X	Y
1	1
1	0
0	0
0	0
0	0
1	1
1	1

Four Types of Rows

- Given documents X and Y,
- Rows may be classified as:

type	X bit	Y bit	
R_{11}	1	1	3
R_{10}	1	0	1
R_{01}	0	1	
R_{00}	0	0	

X	Y
1	1
1	0
0	0
0	0
0	0
1	1
1	1

Four Types of Rows

- Given documents X and Y,
- Rows may be classified as:

type	X bit	\mathbf{Y} bit	
R_{11}	1	1	3
R_{10}	1	0	1
R_{01}	0	1	0
R_{00}	0	0	

X	Y
1	1
1	0
0	0
0	0
0	0
1	1
1	1

Four Types of Rows

- Given documents X and Y,
- Rows may be classified as:

type	\mathbf{X} bit	\mathbf{Y} bit	
R_{11}	1	1	3
R_{10}	1	0	1
R_{01}	0	1	0
R_{00}	0	0	3

X	Y
1	1
1	0
0	0
0	0
0	0
1	1
1	1

Four Types of Rows

- Given documents X and Y,
- Rows may be classified as:

type	\mathbf{X} bit	\mathbf{Y} bit	
R_{11}	1	1	3
R_{10}	1	0	1
R_{01}	0	1	0
R_{00}	0	0	3

X	Y
1	1
1	0
0	0
0	0
0	0
1	1
1	1

- Also, $R_{11}=\#$ rows of type R_{11}, etc.
- Note $\operatorname{Sim}(X, Y)=R_{11} /\left(R_{11}+R_{10}+R_{01}\right)$.

Minhashing

- Imagine the rows permuted randomly.
- Define "hash" function $h(C)=$ the number of the first (in the permuted order) row in which column C has 1.
- Use several (e.g., 100) independent hash functions to create a signature.

Example of minhash signatures

- Input matrix

	$\mathbf{x 1}$	$\mathbf{x} \mathbf{2}$	$\mathbf{x 3}$	$\mathbf{X 4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

Example of minhash signatures

- Input matrix

	$\mathbf{x 1}$	$\mathbf{x} \mathbf{2}$	$\mathbf{x 3}$	$\mathbf{X 4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

Example of minhash signatures

- Input matrix

	$\mathbf{x 1}$	$\mathbf{x} \mathbf{2}$	$\mathbf{x 3}$	$\mathbf{X 4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

		x1	x2	x3	X4
C	C	0	1	0	1
D	D	0	1	0	1
G	G	1	0	1	0
F	F	1	0	1	0
A	A	1	0	1	0
B	B	1	0	0	1
E	E	0	1	0	1
		3	1	3	1

Surprising Property

- The probability (over all permutations of the rows) that $h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)$ is the same as $\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$.
- Both are $\mathrm{R}_{11} /\left(\mathrm{R}_{11}+\mathrm{R}_{10}+\mathrm{R}_{01}\right)$!
-Why?
- Look down the permuted columns C_{1} and C_{2} until we see a 1.
- If it's a type- R_{11} row, then $h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)$. If a type- R_{10} or type- R_{01} row, then not.

Similarity for Signatures

- The similarity of signatures is the fraction of the hash functions in which they agree.

Example of minhash signatures

- Input matrix

	$\mathbf{x} 1$	$\mathbf{x} 2$	$\mathbf{x 3}$	$\mathbf{X 4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

\approx| $\mathbf{x 1}$ | $x 2$ | $x 3$ | $x 4$ |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 1 | 2 |
| 2 | 1 | 3 | 1 |
| 3 | 1 | 3 | 1 |

	actual	Sig
$(x 1, x 2)$	0	0
$(x 1, x 3)$	0.75	$2 / 3$
$(x 1, x 4)$	$1 / 7$	0
$(x 2, x 3)$	0	0
$(x 2, x 4)$	0.75	1
$(x 3, x 4)$	0	0

Minhash algorithm

- Pick k (e.g., 100) permutations of the rows
- Think of Sig(x) as a new vector
- Let Sig(x)[i]: in the i-th permutation, the index of the first row that has 1 for object x

Is it now feasible?

- Assume a billion rows
- Hard to pick a random permutation of $1 . .$. billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order?
- ©

Being more practical

- Approximating row permutations: pick k=100 (?) hash functions ($\mathrm{h}_{\left.1, \ldots, \mathrm{~h}_{\mathrm{k}} \text {) }\right) ~(1)}$
for each row ir
for each column c
if c has 1 in row r
for each hash function h_{i} do
if $h_{i}(r)$ is a smaller value than $M(i, c)$ then

$$
M(i, c)=h_{i}(r) ;
$$

$M(i, c)$ will become the smallest value of $h_{i}(r)$ for which column c has 1 in row r; i.e., $h_{i}(r)$ gives order of rows for i-th permutation

Example

Sig1 Sig2

$$
\begin{aligned}
& h(1)=1 \\
& g(1)=3
\end{aligned}
$$

$$
h(2)=2
$$

$$
1
$$

$$
2
$$

1	1	0
2	0	1
3	1	1
4	1	0
5	0	1

$$
g(2)=0
$$

$$
3
$$

$$
\begin{aligned}
& h(3)=3 \\
& g(3)=2
\end{aligned}
$$

$$
h(4)=4
$$

$$
g(4)=4
$$

$$
2
$$

$$
\begin{aligned}
& 2 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& h(x)=x \bmod 5 \\
& g(x)=2 x+1 \bmod 5
\end{aligned}
$$

1	0
2	0

Implementation - (4)

- Often, data is given by column, not row.
- E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- And always compute $h_{i}(r)$ only once for each row.

Finding Similar Pairs

- Suppose we have, in main memory, data representing a large number of objects.
- May be the objects themselves .
- May be signatures as in minhashing.
- We want to compare each to each, finding those pairs that are sufficiently similar.

Checking All Pairs is Hard

- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- Example: 10^{6} columns implies $5^{*} 10^{11}$ columncomparisons.
- At 1 microsecond/comparison: 6 days.

Locality-Sensitive Hashing

- General idea: Use a function $f(x, y)$ that tells whether or not x and y is a candidate pair: a pair of elements whose similarity must be evaluated.
- For minhash matrices: Hash columns to many buckets, and make elements of the same bucket candidate pairs.

Candidate Generation From Minhash Signatures

- Pick a similarity threshold s , a fraction <1.
- A pair of columns x and y is a candidate pair if their signatures agree in at least fraction s of the rows.
- I.e., $M(i, c)=M(i, d)$ for at least fraction s values of i.

LSH for Minhash Signatures

- Big idea: hash columns of signature matrix M several times.
- Arrange that (only) similar columns are likely to hash to the same bucket.
- While dissimilar columns are less likely to hash to the same bucket
- Candidate pairs are those that hash at least once to the same bucket.

Partition Into Bands

Partition into Bands - (2)

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
- Make k as large as possible.
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band.
- Tune b and r to catch most similar pairs, but few non-similar pairs.

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band.
- Hereafter, we assume that "same bucket" means "identical in that band."

Example: Effect of Bands

- Suppose 100,000 columns.
- Signatures of 100 integers.
- Therefore, signatures take 40 Mb .
- Want all 80\%-similar pairs.
-5,000,000,000 pairs of signatures can take a while to compare.
- Choose $\underset{\sim}{20}$ bands of 5 integers/band.

Suppose $\mathrm{C}_{1}, \mathrm{C}_{2}$ are 80% Similar

- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in one particular band: $(0.8)^{5}=0.328$.
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ are not similar in any of the 20 bands: $(1-0.328)^{20}=.00035$.
- i.e., about $1 / 3000$ th of the 80%-similar column pairs are false negatives.

Suppose $\mathrm{C}_{1}, \mathrm{C}_{2}$ Only 40\% Similar

- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in any one particular band: $(0.4)^{5}=0.01$.
- Probability $\mathrm{C}_{1}, \mathrm{C}_{2}$ identical in ≥ 1 of 20 bands: ≤ 20 * $0.01=0.2$.
- But false positives much lower for similarities << 40\%.

LSH Involves a Tradeoff

- Pick the number of minhashes, the number of bands, and the number of rows per band to balance false positives/negatives.
- Example: if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up.

Analysis of LSH - What We Want

Similarity s of two sets

What One Band of One Row Gives You

Similarity s of two sets

What b Bands of r Rows Gives You

Similarity s of two sets

Example: $b=20 ; r=5$

\boldsymbol{s}	$\mathbf{1 - (1 - s r}^{\mathbf{r}} \mathbf{b}^{\mathbf{b}}$
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Figure 3.7: The S-curve

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.

Locality-sensitive hashing (LSH)

- Big Picture: Construct hash functions $\mathrm{h}: \mathrm{R}^{\mathrm{d}} \rightarrow \mathrm{U}$ such that for any pair of points p, q :
- If $D(p, q) \leq r$, then $\operatorname{Pr}[h(p)=h(q)]$ is high
- If $D(p, q) \geq c r$, then $\operatorname{Pr}[h(p)=h(q)]$ is small
- Then, we can solve the "approximate NN" problem by hashing
- LSH is a general framework; for a given distance function D we need to find the right h

