DATA MINING LECTURE 4

Similarity and Distance Sketching, Locality Sensitive Hashing

SIMILARITY AND DISTANCE

Thanks to:

Tan, Steinbach, and Kumar, "Introduction to Data Mining" Rajaraman and Ullman, "Mining Massive Datasets"

Similarity and Distance

- For many different problems we need to quantify how close two objects are.
- Examples:
 - For an item bought by a customer, find other similar items
 - Group together the customers of site so that similar customers are shown the same ad.
 - Group together web documents so that you can separate the ones that talk about politics and the ones that talk about sports.
 - Find all the near-duplicate mirrored web documents.
 - Find credit card transactions that are very different from previous transactions.
- To solve these problems we need a definition of similarity, or distance.
 - The definition depends on the type of data that we have

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

٨

						\mathcal{I}
	_	Tid	Refund	Marital Status	Taxable Income	Cheat
		1	Yes	Single	125K	No
		2	No	Married	100K	No
		3	No	Single	70K	No
		4	Yes	Married	120K	No
Objects ≺)	5	No	Divorced	95K	Yes
		6	No	Married	60K	No
		7	Yes	Divorced	220K	No
		8	No	Single	85K	Yes
		9	No	Married	75K	No
		10	No	Single	90K	Yes

Dimensionality: Number of attributes

Types of Attributes

- There are different types of attributes
 - Nominal Categorical
 - Examples: ID numbers, eye color, zip codes
 - There is no known ordering or comparison
 - Ordinal
 - Examples: rankings (e.g, good, fair, bad), grades (A,B,C), height in {tall, medium, short}
 - We can order, but not always clear how to compare
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
- Numeric-
- We can take the difference in order to compare
- Ratio
 - Examples: temperature in Kelvin, length, time, counts
 - We can take differences as well as ratios.

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Numeric Data

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Categorical Data

 Data that consists of a collection of records, each of which consists of a fixed set of categorical attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	High	No
2	No	Married	Medium	No
3	No	Single	Low	No
4	Yes	Married	High	No
5	No	Divorced	Medium	Yes
6	No	Married	Low	No
7	Yes	Divorced	High	No
8	No	Single	Medium	Yes
9	No	Married	Medium	No
10	No	Single	Medium	Yes

Document Data

- Each document becomes a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.
 - Bag-of-words representation no ordering

	team	coach	pla y	ball	score	game	n Wi	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction Data

Each record (transaction) is a set of items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

- A set of items can also be represented as a binary vector, where each attribute is an item.
- A document can also be represented as a set of words (no counts)

Ordered Data

Genomic sequence data

GGTTCCGCCTTCAGCCCGCGCC CGCAGGGCCCGCCCGCGCGCGTC GAGAAGGGCCCGCCTGGCGGGGCG GGGGGAGGCGGGGGCCGCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC

Data is a long ordered string

Types of data

- Numeric data: Each object is a point in a multidimensional space
- Categorical data: Each object is a vector of categorical values
- Set data: Each object is a set of values (with or without counts)
 - Sets can also be represented as binary vectors, or vectors of counts
- Ordered sequences: Each object is an ordered sequence of values.

Similarity and Distance

Similarity

- Numerical measure of how alike two data objects are.
 - A function that maps pairs of objects to real values
- Is higher when objects are more alike.
- Often falls in the range [0,1]
- Sometimes in [-1,1]

Distance

- Numerical measure of how different are two data objects
 - A function that maps pairs of objects to real values
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Closeness refers to a similarity or distance

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity	
Type			
Nominal	$igg \ d = \left\{ egin{array}{cc} 0 & ext{if} \ p = q \ 1 & ext{if} \ p eq q \end{array} ight.$	$s = \left\{egin{array}{ccc} 1 & ext{if} \; p = q \ 0 & ext{if} \; p eq q \end{array} ight.$	
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$	
Interval or Ratio	d = p - q	$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$	

 Table 5.1.
 Similarity and dissimilarity for simple attributes

Distance Metric

- A distance function d is a distance metric if it is a function from pairs of objects to real numbers such that:
 - 1. $d(x,y) \ge 0$. (non-negativity)
 - 2. d(x,y) = 0 iff x = y. (identity)
 - 3. d(x,y) = d(y,x). (symmetry)
 - 4. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).

Triangle Inequality

- Triangle inequality guarantees that the distance function is well-behaved.
 - The direct connection is the shortest distance
- It is useful also for proving properties about the data
 - For example, suppose I want to find an object that minimizes the sum of distances to all points in my dataset
 - If I select the best point from my dataset, the sum of distances I get is at most twice that of the optimal point.

Properties of Similarity

- Desirable properties for similarity
 - s(p, q) = 1 (or maximum similarity) only if p = q. (Identity)
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

Distances for real vectors

• Vectors
$$x = (x_1, ..., x_d)$$
 and $y = (y_1, ..., y_d)$

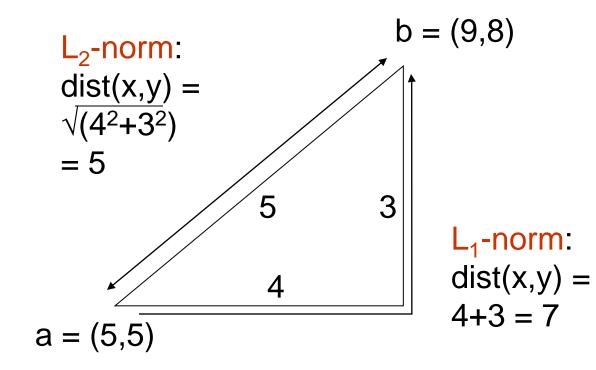
• L_p norms or Minkowski distance:

$$L_p(x, y) = [|x_1 - y_1|^p + \dots + |x_d - y_d|^p]^{1/p}$$

• L₂ norm: Euclidean distance: $L_2(x, y) = \sqrt{|x_1 - y_1|^2 + \dots + |x_d - y_d|^2}$

• L₁ norm: Manhattan distance: $L_1(x, y) = |x_1 - y_1| + \dots + |x_d - y_d|$

Example of Distances



Another Minkowski distance

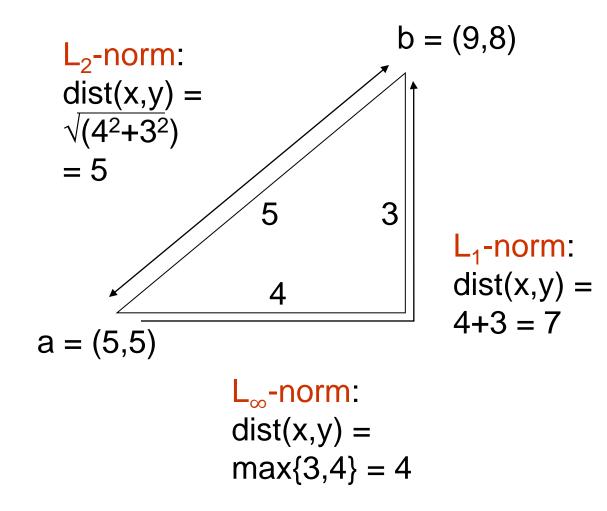
• Vectors
$$x = (x_1, ..., x_d)$$
 and $y = (y_1, ..., y_d)$

• L_p norms or Minkowski distance: $L_p(x, y) = [|x_1 - y_1|^p + \dots + |x_d - y_d|^p]^{1/p}$

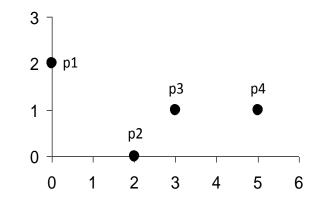
• L_{∞} norm: $L_{\infty}(x, y) = \max\{|x_1 - y_1|, ..., |x_d - y_d|\}$

The limit of L_p as p goes to infinity.

Example of Distances



Minkowski Distance



point	X	У
p1	0	2
p2	2	0
p3	3	1
p4	5	1

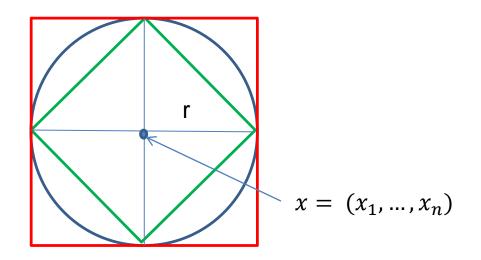
L1	p1	p2	p3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	p3	p4
p1	0	2	3	5
p2	2	0	1	3
p3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Example



Green: All points y at distance $L_1(x,y) = r$ from point x Blue: All points y at distance $L_2(x,y) = r$ from point x Red: All points y at distance $L_{\infty}(x,y) = r$ from point x

$L_{\rm p}$ distances for sets

- We can apply all the L_p distances to the cases of sets of attributes, with or without counts, if we represent the sets as vectors
 - E.g., a transaction is a 0/1 vector
 - E.g., a document is a vector of counts.

Cosine Similarity

• If d_1 and d_2 are two vectors, then $\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$,

where \bullet indicates vector dot product and || d || is the length of vector d.

• Example:

 $d_1 = 3205000200 \\ d_2 = 100000102$

 $d_1 \bullet d_2 = 3^*1 + 2^*0 + 0^*0 + 5^*0 + 0^*0 + 0^*0 + 0^*0 + 2^*1 + 0^*0 + 0^*2 = 5$

 $||d_1|| = (3^{3}+2^{2}+0^{0}+5^{5}+0^{0}+0^{0}+0^{0}+0^{2}+0^{0}+0^{0}+0^{0})^{0.5} = (42)^{0.5} = 6.481$

 $||d_2|| = (1^{1}+0^{0}+0^{0}+0^{0}+0^{0}+0^{0}+0^{0}+0^{1}+1^{1}+0^{0}+2^{2})^{0.5} = (6)^{0.5} = 2.245$

 $\cos(d_1, d_2) = .3150$

Cosine Similarity

Geometric Interpretation

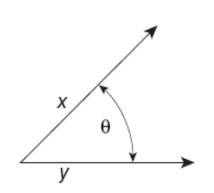


Figure 2.16. Geometric illustration of the cosine measure.

- If the vectors are correlated angle is zero degrees and cosine is 1
- If the vectors are orthogonal (no common coordinates) angle is 90 degrees and cosine is 0
- Note that if one vector is a multiple of another cosine is still 1 (maximum)
- Cosine is commonly used for comparing documents, where we assume that the vectors are normalized by the document length.

Example

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	20	40	0	0
D2	0	0	10	20

cos(D1,D2) = 1cos(D1,D3) = cos(D2,D3) = 0

Example

document	Apple	Microsoft	Obama	Election
D1	1/3	2/3	0	0
D2	1/3	2/3	0	0
D2	0	0	1/3	2/3

cos(D1,D2) = 1cos(D1,D3) = cos(D2,D3) = 0

Jaccard Similarity of Sets

- The Jaccard similarity (Jaccard coefficient) of two sets C₁, C₂ is the size of their intersection divided by the size of their union.
 - JSim (C₁, C₂) = $|C_1 \cap C_2| / |C_1 \cup C_2|$.



3 in intersection. 8 in union. Jaccard similarity = 3/8

Jaccard distance Jdist = 1 - JSim

Example with documents

- D1 = {apple, released, new, iPhone}
- D2 = {apple, released, new, iPad}
- D3 = {new, apple, pie, recipie}
- JSim(D1,D2) = 3/5
- JSim(D1,D3) = JSim(D2,D3) = 2/6

Similarity Between Binary Vectors

- Objects, *p* and *q*, have only binary attributes
 - We can view them as sets and compute Jaccard
 - We also compute the Simple Matching Coefficient
- Compute similarities using the following quantities M_{01} = the number of attributes where p was 0 and q was 1 M_{10} = the number of attributes where p was 1 and q was 0 M_{00} = the number of attributes where p was 0 and q was 0 M_{11} = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients SMC = number of matches / number of attributes

 $= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$ Jaccard treats 1's asymmetrically

SMC versus Jaccard: Example

p = 10000000000q = 00000001001

 $M_{01} = 2 \quad (the number of attributes where p was 0 and q was 1) \\ M_{10} = 1 \quad (the number of attributes where p was 1 and q was 0) \\ M_{00} = 7 \quad (the number of attributes where p was 0 and q was 0) \\ M_{11} = 0 \quad (the number of attributes where p was 1 and q was 1)$

 $SMC = (M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Hamming Distance

- Hamming distance is the number of positions in which bit-vectors differ.
- Example: $p_1 = 10101$; $p_2 = 10011$.
 - d(p₁, p₂) = 2 because the bit-vectors differ in the 3rd and 4th positions.
 - The L₁ norm for the binary vectors
- Hamming distance between two vectors of categorical attributes is the number of positions in which they differ.
- Example: x = (married, low income, cheat), y = (single, low income, not cheat)

•
$$d(x,y) = 2$$

Why Hamming Distance Is a Distance Metric

- d(x,x) = 0 since no positions differ.
- d(x,y) = d(y,x) by symmetry of "different from."
- d(x,y) > 0 since strings cannot differ in a negative number of positions.
- Triangle inequality: changing x to z and then to y is one way to change x to y.

Edit Distance for strings

- The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other.
- Exampe: x = abcde ; y = bcduve.
 - Turn x into y by deleting a, then inserting u and v after d.
 - Edit distance = 3.
- Minimum number of operations can be computed using dynamic programming
- Common distance measure for comparing DNA sequences

Why Edit Distance Is a Distance Metric

- d(x,x) = 0 because 0 edits suffice.
- d(x,y) = d(y,x) because insert/delete are inverses of each other.
- $d(x,y) \ge 0$: no notion of negative edits.
- Triangle inequality: changing x to z and then to y is one way to change x to y.

Variant Edit Distances

- Allow insert, delete, and mutate.
 - Change one character into another.
- Minimum number of inserts, deletes, and mutates also forms a distance measure.
- Same for any set of operations on strings.
 - Example: substring reversal or block transposition OK for DNA sequences
 - Example: character transposition is used for spelling

Distances between distributions

• We can view a document as a distribution over the words

document	Apple	Microsoft	Obama	Election
D1	0.35	0.5	0.1	0.05
D2	0.4	0.4	0.1	0.1
D2	0.05	0.05	0.6	0.3

KL-divergence (Kullback-Leibler) for distributions P,Q

$$D_{KL}(P||Q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- KL-divergence is asymmetric. We can make it symmetric by taking the average of both sides
- JS-divergence (Jensen-Shannon)

$$JS(P,Q) = \frac{1}{2}D_{KL}(P||Q) + \frac{1}{2}D_{KL}(Q||P)$$

SKETCHING AND LOCALITY SENSITIVE HASHING

Thanks to:

Rajaraman and Ullman, "Mining Massive Datasets" Evimaria Terzi, slides for Data Mining Course.

Finding near-duplicates documents

- We will now consider the problem of finding duplicate and near-duplicate documents from a web crawl.
- Why is it important:
 - Identify mirrored web pages, and avoid indexing them, or serving them multiple times
 - Identify plagiarism
 - Find replicated stories in news and cluster them under a single story.
- What if we wanted exact duplicates?

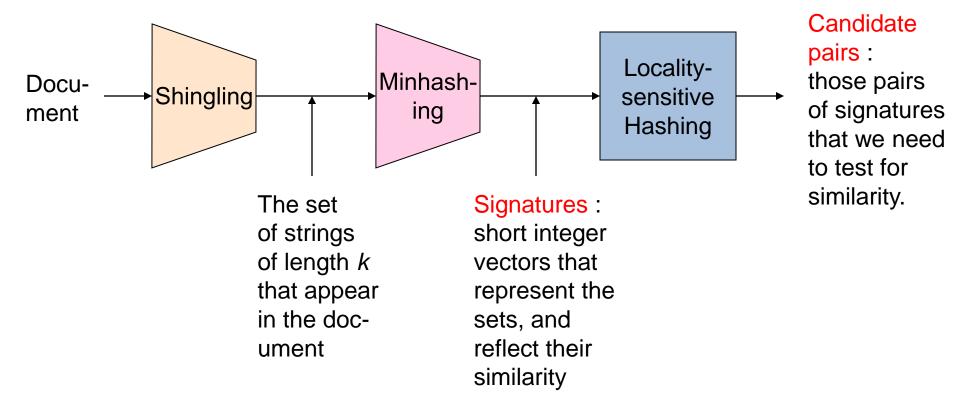
Main issues

- What is the right representation of the document when we check for similarity?
 - E.g., representing a document as a set of characters will not do
- When we have billions of documents, keeping the full text in memory is not an option.
 - We need to find a shorter representation
- How do we do pairwise comparisons we billions of documents?
 - If exact match was the issue it would be ok, can we replicate this idea?

Three Essential Techniques for Similar Documents

- 1. Shingling : convert documents, emails, etc., to sets.
- 2. Minhashing : convert large sets to short signatures, while preserving similarity.
- 3. Locality-sensitive hashing : focus on pairs of signatures likely to be similar.

The Big Picture



43

Shingles

- A k -shingle (or k -gram) for a document is a sequence of k characters that appears in the document.
- Example: k=2; doc = abcab. Set of 2-shingles = {ab, bc, ca}.
 - Option: regard shingles as a bag, and count ab twice.
- Represent a doc by its set of k-shingles.

Shingling

Shingle: a sequence of k contiguous characters

<u>a</u>	rose	is	a	rose	is	a	rose
<u>a</u>	rose	is	_				
_	rose	is	a				
	rose	is	a				
	ose	is	a	r			
	se	is	a	ro			
	e	is	a	ros			
		is	a	rose			
		is	a	rose			
		S	a	rose	i		
			a	rose	is		
			a	rose			

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order.
- Careful: you must pick k large enough, or most documents will have most shingles.
 - k = 5 is OK for short documents; k = 10 is better for long documents.

Shingles: Compression Option

- To compress long shingles, we can hash them to (say) 4 bytes.
- Represent a doc by the set of hash values of its k-shingles.
- Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.

Rabin's fingerprinting technique

Comparing two strings of size n

a = 10110 a=b? b = 11010 O(n) too expensive! f(a) = f(b)?

 $A = 1 * 2^{4} + 0 * 2^{3} + 1 * 2^{2} + 1 * 2^{1} + 0 * 2^{0}$ $B = 1 * 2^{4} + 1 * 2^{3} + 0 * 2^{2} + 1 * 2^{1} + 0 * 2^{0}$

f(a) = A mod p p = small random prime
f(b) = B mod p size O(logn loglogn)

• if a=b then f(a)=f(b)

if f(a) = f(b) then a=b with high probability

Thought Question

- Why is it better to hash 9-shingles (say) to 4 bytes than to use 4-shingles?
- Hint: How random are the 32-bit sequences that result from 4-shingling?

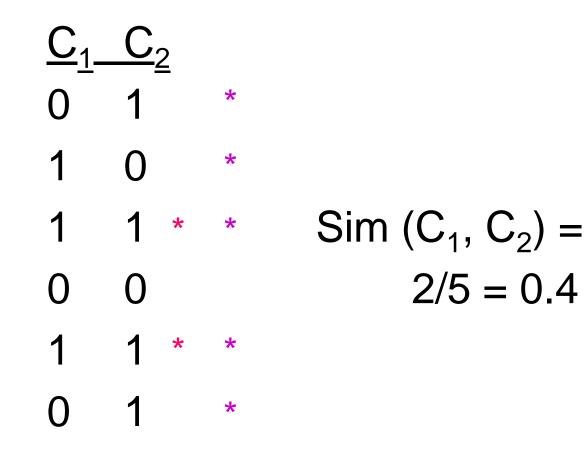
Basic Data Model: Sets

- Document: A document is represented as a set shingles (more accurately, hashes of shingles)
- Document similarity: Jaccard similarity of the sets of shingles.
 - Common shingles over the union of shingles
 - Sim $(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$.
- Although we use the documents as our driving example the techniques we will describe apply to any kind of sets.
 - E.g., similar customers or products.

From Sets to Boolean Matrices

- Rows = elements of the universal set (shingles)
- Columns = sets (documents)
- 1 in row e and column S if and only if e is a member of S.
- Column similarity is the Jaccard similarity of the sets of their rows with 1.
- Typical matrix is sparse.

Example: Jaccard Similarity of Columns



Aside

- We might not really represent the data by a boolean matrix.
- Sparse matrices are usually better represented by the list of places where there is a non-zero value.
- But the matrix picture is conceptually useful.

Outline: Finding Similar Columns

- Compute signatures of columns = small summaries of columns.
- 2. Examine pairs of signatures to find similar signatures.
 - Essential: similarities of signatures and columns are related. The signatures preserve similarity.
- 3. Optional: check that columns with similar signatures are really similar.

Warnings

- 1. Comparing all pairs of signatures may take too much time, even if not too much space.
 - A job for Locality-Sensitive Hashing.
- 2. These methods can produce false negatives, and even false positives (if the optional check is not made).

Signatures

- Key idea: "hash" each column C to a small signature Sig (C), such that:
 - 1. Sig (C) is small enough that we can fit a signature in main memory for each column.
 - 2. Sim (C_1, C_2) is (almost) the same as the "similarity" of Sig (C_1) and Sig (C_2) .

- Given documents X and Y,
- Rows may be classified as:

type	X bit	Y bit
R ₁₁	1	1
R ₁₀	1	0
R ₀₁	0	1
R_{00}	0	0

Х	Y
1	1
1	0
0	0
0	0
0	0
1	1
1	1

- Given documents X and Y,
- Rows may be classified as:

type	X bit	Y bit	
R ₁₁	1	1	3
R ₁₀	1	0	
R ₀₁	0	1	
R ₀₀	0	0	

Х	Υ
1	1
1	0
0	0
0	0
0	0
1	1
1	1

- Given documents X and Y,
- Rows may be classified as:

type	X bit	Y bit	
R ₁₁	1	1	3
R ₁₀	1	0	1
R ₀₁	0	1	
R ₀₀	0	0	

Х	Y
1	1
1	0
0	0
0	0
0	0
1	1
1	1

- Given documents X and Y,
- Rows may be classified as:

type	X bit	Y bit	
R ₁₁	1	1	3
R ₁₀	1	0	1
R ₀₁	0	1	0
R ₀₀	0	0	

Х	Y
1	1
1	0
0	0
0	0
0	0
1	1
1	1

- Given documents X and Y,
- Rows may be classified as:

type	X bit	Y bit	
R ₁₁	1	1	3
R ₁₀	1	0	1
R ₀₁	0	1	0
R ₀₀	0	0	3

Х	Υ
1	1
1	0
0	0
0	0
0	0
1	1
1	1

- Given documents X and Y,
- Rows may be classified as:

type	X bit	Y bit	
R ₁₁	1	1	3
R ₁₀	1	0	1
R ₀₁	0	1	0
R ₀₀	0	0	3

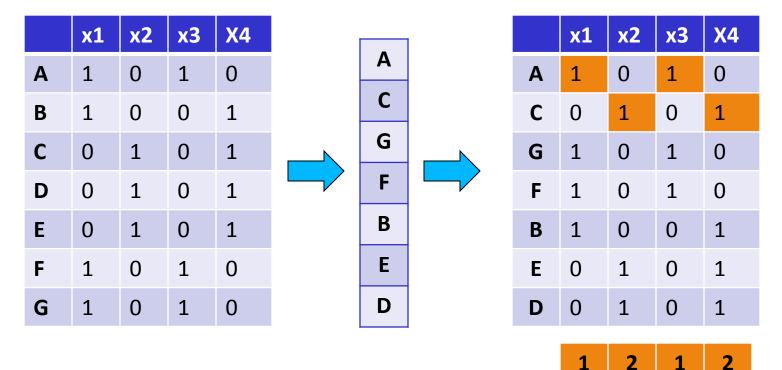
Х	Υ
1	1
1	0
0	0
0	0
0	0
1	1
1	1

- Also, $R_{11} = \#$ rows of type R_{11} , etc.
- Note Sim (X,Y) = $R_{11} / (R_{11} + R_{10} + R_{01})$.

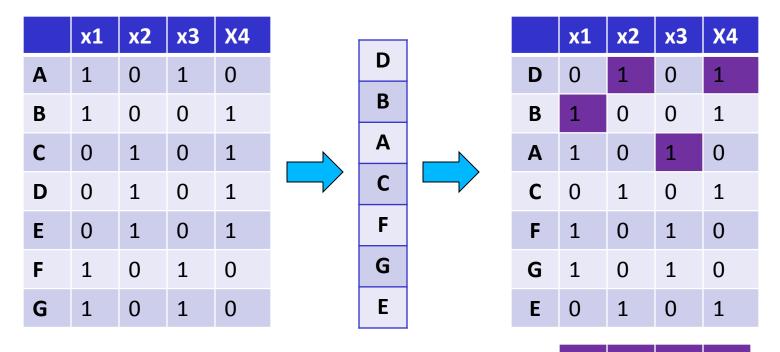
Minhashing

- Imagine the rows permuted randomly.
- Define "hash" function h (C) = the number of the first (in the permuted order) row in which column C has 1.
- Use several (e.g., 100) independent hash functions to create a signature.

• Input matrix

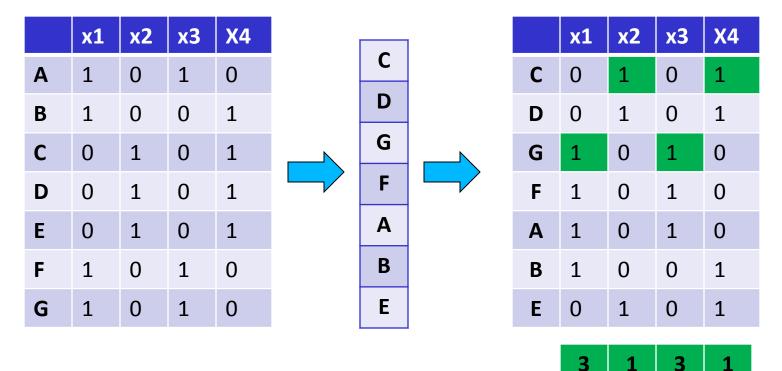


• Input matrix



3

Input matrix



3

1

1

Surprising Property

- The probability (over all permutations of the rows) that $h(C_1) = h(C_2)$ is the same as Sim (C_1, C_2) .
- Both are $R_{11} / (R_{11} + R_{10} + R_{01})!$
- Why?
 - Look down the permuted columns C₁ and C₂ until we see a 1.
 - If it's a type- R_{11} row, then $h(C_1) = h(C_2)$. If a type- R_{10} or type- R_{01} row, then not.

Similarity for Signatures

 The similarity of signatures is the fraction of the hash functions in which they agree.

• Input matrix

	x1	x2	х3	X4
Α	1	0	1	0
В	1	0	0	1
С	0	1	0	1
D	0	1	0	1
Ε	0	1	0	1
F	1	0	1	0
G	1	0	1	0

x1	x2	х3	X4
1	2	1	2
2	1	3	1
3	1	3	1

	actual	Sig
(x1,x2)	0	0
(x1,x3)	0.75	2/3
(x1,x4)	1/7	0
(x2,x3)	0	0
(x2,x4)	0.75	1
(x3,x4)	0	0

Minhash algorithm

- Pick k (e.g., 100) permutations of the rows
- Think of Sig(x) as a new vector
- Let Sig(x)[i]: in the i-th permutation, the index of the first row that has 1 for object x

Is it now feasible?

Assume a billion rows

- Hard to pick a random permutation of 1...billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order?

Being more practical

 Approximating row permutations: pick k=100 (?) hash functions (h₁,...,h_k)

for each row r

for each column c

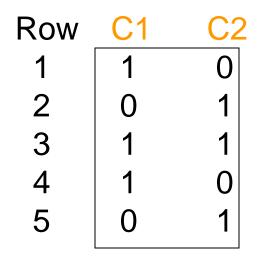
if c has 1 in row r

for each hash function h_i do if h_i (r) is a smaller value than M(i,c) then M (i,c) = h_i (r);

M(i,c) will become the smallest value of h_i(r) for which column
 c has 1 in row r; i.e., h_i(r) gives order of rows for i-th
 permutation

Example

	Sig1	Sig2
h(1) = 1 g(1) = 3	1 3	-
h(2) = 2	1	2
g(2) = 0	3	0
h(3) = 3	1	2
g(3) = 2	2	0
h(4) = 4	1	2
g(4) = 4	2	0
h(5) = 0	1	<mark>0</mark>
g(5) = 1	2	0



 $h(x) = x \mod 5$ $g(x) = 2x+1 \mod 5$

Implementation -(4)

- Often, data is given by column, not row.
 - E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- And always compute h_i(r) only once for each row.

Finding Similar Pairs

- Suppose we have, in main memory, data representing a large number of objects.
 - May be the objects themselves .
 - May be signatures as in minhashing.
- We want to compare each to each, finding those pairs that are sufficiently similar.

Checking All Pairs is Hard

- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- Example: 10⁶ columns implies 5*10¹¹ columncomparisons.
- At 1 microsecond/comparison: 6 days.

Locality-Sensitive Hashing

- General idea: Use a function f(x,y) that tells whether or not x and y is a candidate pair: a pair of elements whose similarity must be evaluated.
- For minhash matrices: Hash columns to many buckets, and make elements of the same bucket candidate pairs.

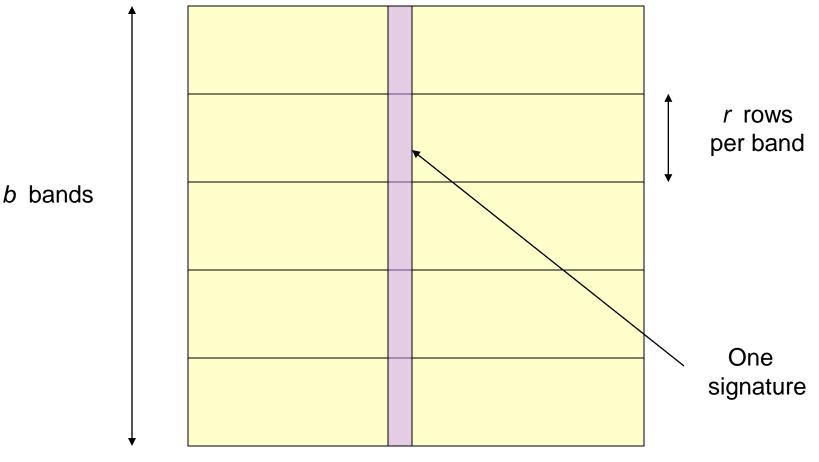
Candidate Generation From Minhash Signatures

- Pick a similarity threshold s, a fraction < 1.
- A pair of columns x and y is a candidate pair if their signatures agree in at least fraction s of the rows.
 - I.e., M(i, c) = M(i, d) for at least fraction s values of *i*.

LSH for Minhash Signatures

- Big idea: hash columns of signature matrix M several times.
- Arrange that (only) similar columns are likely to hash to the same bucket.
- While dissimilar columns are less likely to hash to the same bucket
- Candidate pairs are those that hash at least once to the same bucket.

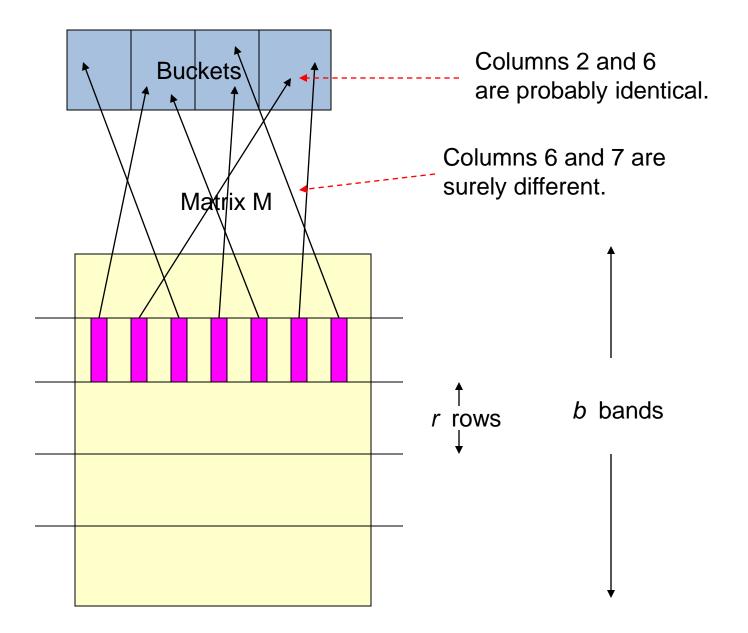
Partition Into Bands



Matrix M

Partition into Bands – (2)

- Divide matrix *M* into *b* bands of *r* rows.
- For each band, hash its portion of each column to a hash table with k buckets.
 - Make *k* as large as possible.
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band.
- Tune b and r to catch most similar pairs, but few non-similar pairs.



Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band.
- Hereafter, we assume that "same bucket" means "identical in that band."

Example: Effect of Bands

- Suppose 100,000 columns.
- Signatures of 100 integers.
- Therefore, signatures take 40Mb.
- Want all 80%-similar pairs.
- 5,000,000,000 pairs of signatures can take a while to compare.
- Choose 20 bands of 5 integers/band.
 b r

Suppose C₁, C₂ are 80% Similar

- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$.
- Probability C_1 , C_2 are not similar in any of the 20 bands: $(1-0.328)^{20} = .00035$.
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives.

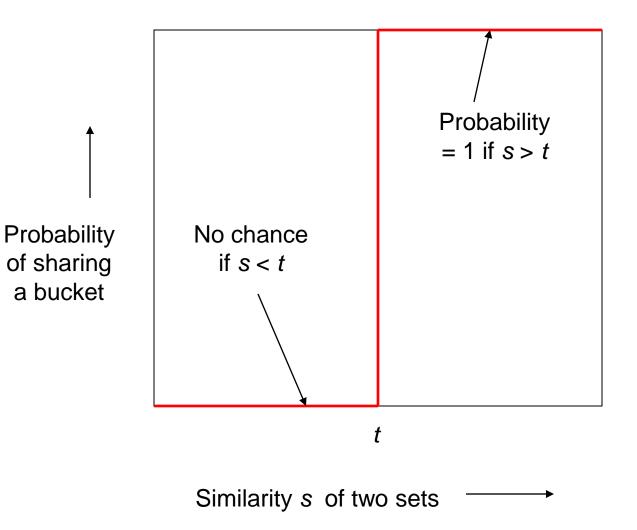
Suppose C₁, C₂ Only 40% Similar

- Probability C_1 , C_2 identical in any one particular band: $(0.4)^5 = 0.01$.
- Probability C_1 , C_2 identical in ≥ 1 of 20 bands: $\leq 20 * 0.01 = 0.2$.
- But false positives much lower for similarities << 40%.

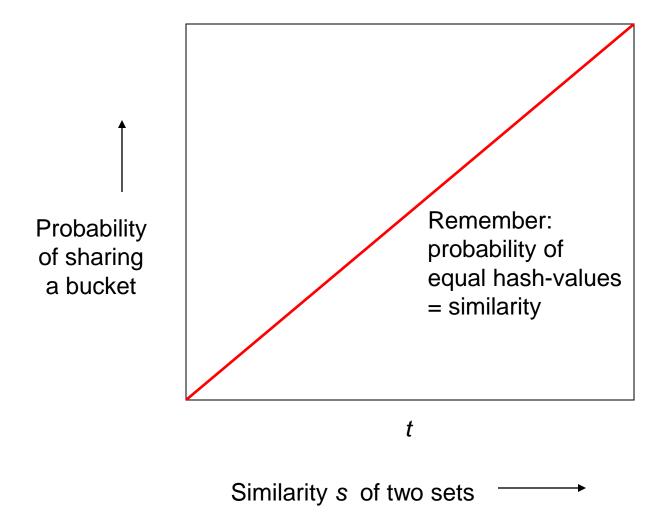
LSH Involves a Tradeoff

- Pick the number of minhashes, the number of bands, and the number of rows per band to balance false positives/negatives.
- Example: if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up.

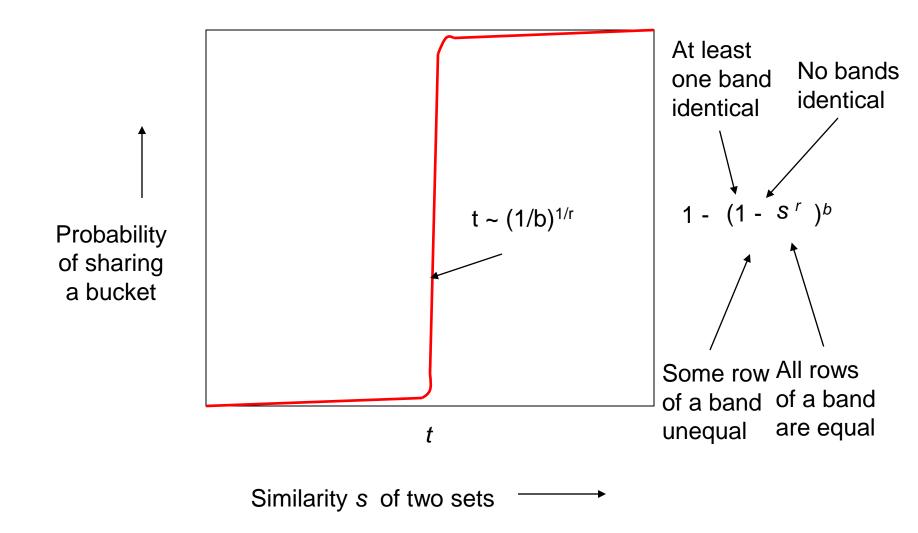
Analysis of LSH – What We Want



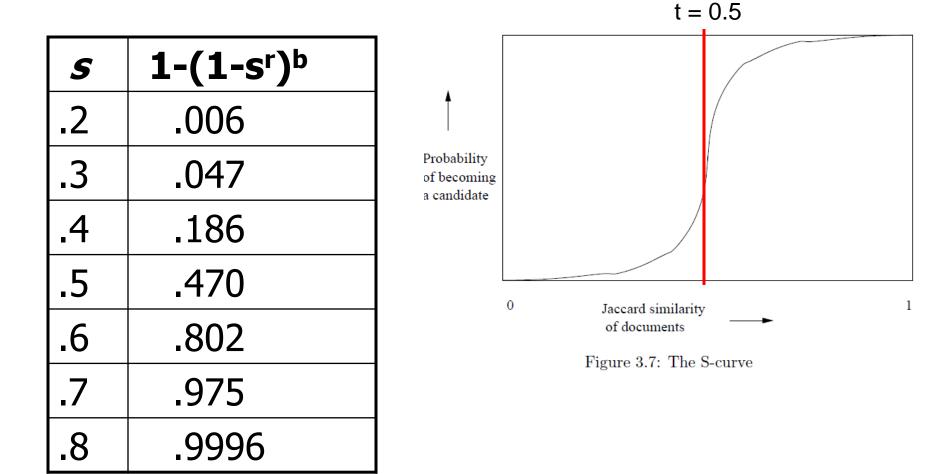
What One Band of One Row Gives You



What *b* Bands of *r* Rows Gives You



Example: b = 20; r = 5



LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.

Locality-sensitive hashing (LSH)

- Big Picture: Construct hash functions h: R^d→ U such that for any pair of points p,q:
 - If D(p,q)≤r, then Pr[h(p)=h(q)] is high
 - If D(p,q)≥cr, then Pr[h(p)=h(q)] is small
- Then, we can solve the "approximate NN" problem by hashing
- LSH is a general framework; for a given distance function D we need to find the right h