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Similarity and Distance
Sketching, Locality Sensitive Hashing




SIMILARITY AND
DISTANCE

Thanks to:
Tan, Steinbach, and Kumar, “Introduction to Data Mining”

Rajaraman and Ullman, “Mining Massive Datasets”



Similarity and Distance

For many different problems we need to quantify how
close two objects are.

Examples:

- For an item bought by a customer, find other similar items

- Group together the customers of site so that similar customers are
shown the same ad.

- Group together web documents so that you can separate the ones
that talk about politics and the ones that talk about sports.

- Find all the near-duplicate mirrored web documents.
- Find credit card transactions that are very different from previous
transactions.

To solve these problems we need a definition of similarity,
or distance.

- The definition depends on the type of data that we have



-
What Is Data?
Attributes

Collection of data objects and AL

their attributes - I
Tid Refund Marital Taxable

Status Income Cheat

An attribute is a property or arer PR pE—
. . . es Ingle (6]
characteristic of an object N y > N
(0] arrie (0]
Examples: eye color of a person, 2 |no B o< o
temperature, etc.

.p . 4 |Yes Married |120K No
Attribute is also known as e In o i |osk y
variable, field, characteristic, or ~ Objects < ° WOree =
feature 6 |[No Married |60K No

: : : 7 Y Divorced |220K  |N
A collection of attributes describe R .

- 8 |No Single 85K Yes

an object

. . 9 [No Married |75K No
Object is also known as record, _
point, case, sample, entity, or N LU CUSEN
instance

Dimensionality: Number of attributes



-
Types of Attributes

There are different types of attributes

- Nominal — Categorical
Examples: ID numbers, eye color, zip codes
There is no known ordering or comparison

- Ordinal

Examples: rankings (e.g, good, fair, bad), grades (A,B,C),
height in {tall, medium, short}

We can order, but not always clear how to compare
= Interval

Examples: calendar dates, temperatures in Celsius or
Numeric= Fahrenheit.

We can take the difference in order to compare

- Ratio
Examples: temperature in Kelvin, length, time, counts
We can take differences as well as ratios.




Discrete and Continuous Attributes

Discrete Attribute
- Has only a finite or countably infinite set of values

- Examples: zip codes, counts, or the set of words in a collection of
documents

- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute
- Has real numbers as attribute values
- Examples: temperature, height, or weight.

- Practically, real values can only be measured and represented
using a finite number of digits.

- Continuous attributes are typically represented as floating-point
variables.



Numeric Data

If data objects have the same fixed set of numeric
attributes, then the data objects can be thought of as
points in a multi-dimensional space, where each
dimension represents a distinct attribute

Such data set can be represented by an m by n maitrix,
where there are m rows, one for each object, and n
columns, one for each attribute

Projection Projection Distance Thickness
of x Load of y load

10.23 5.27
12.65 6.25




Categorical Data

Data that consists of a collection of records, each
of which consists of a fixed set of categorical

attrIbUteS Tid Refund Marital Taxable
Status  Income Cheat
1 |Yes Single High No
2 |No Married |Medium |No
3 [No Single Low No
4 |Yes Married |High No
5 |No Divorced |Medium |Yes
6 [No Married |Low No
7 |Yes Divorced |High No
8 |No Single Medium |Yes
9 |No Married |Medium |[No
10 |No Single Medium |Yes




Document Data

Each document becomes a term' vector,
- each term is a component (attribute) of the vector,

- the value of each component is the number of times the
corresponding term occurs in the document.

- Bag-of-words representation — no ordering

= Q 0 Q _ = &
S8 |<zlg |8 |8 |-z|35 |33
3 S = ® o) - g =
Document 1 3 0 5 0 2 6 0 2 0 2
Document 2 0 7 0 2 1 0 0 3 0 0
Document 3 0 1 0 0 1 2 2 0 3 0




Transaction Data

Each record (transaction) is a set of items.

Bread, Coke, Milk

Beer, Bread

Beer, Coke, Diaper, Milk
Beer, Bread, Diaper, Milk
Coke, Diaper, Milk

Ol &~ W N -

A set of items can also be represented as a binary
vector, where each attribute is an item.

A document can also be represented as a set of
words (no counts)



e
Ordered Data

Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC
CGCAGGGCCCGCCCCGCGCCGTC
GAGAAGGGCCCGCCTGGCGGGCG
GGGGGAGGCGGGGCCGCCCGAGC
CCAACCGAGTCCGACCAGGTGCC
CCCTCTGCTCGGCCTAGACCTGA
GCTCATTAGGCGGCAGCGGACAG
GCCAAGTAGAACACGCGAAGCGC
TGGGCTGCCTGCTGCGACCAGGG

Data is a long ordered string



-
Types of data

Numeric data: Each object is a point in a
multidimensional space

Categorical data: Each object is a vector of
categorical values

Setl data: Each object is a set of values (with or
without counts)

- Sets can also be represented as binary vectors, or
vectors of counts

Ordered seqguences: Each object is an ordered
sequence of values.



Similarity and Distance

Similarity

- Numerical measure of how alike two data objects are.
A function that maps pairs of objects to real values

- Is higher when objects are more alike.

- Often falls in the range [0,1]

- Sometimes in [-1,1]

Distance

- Numerical measure of how different are two data objects
A function that maps pairs of objects to real values

- Lower when objects are more alike
- Minimum dissimilarity is often O
- Upper limit varies

Closeness refers to a similarity or distance



Similarity/Dissimilarity for Simple Attributes

p and g are the attribute values for two data objects.

Attribute Dissimilarity Similarity
Type
0 ifp= 1 ifp=
Nominal d = 1 p=d s = 1 p=d
1 ifp#gq 0 ifp#gq
d — p—d
n—1 B
Ordinal (values mapped to integers 0 ton—1, | s =1 — J—Li_':{
where n is the number of values)
Interval or Ratio | d = |p — ¢ s=—d, s = ﬁ or
_ d—min_d
s=1- maz_d—min_d

Table 5.1. Similarity and dissimilarity for simple attributes




Distance Metric

- A distance function d Is a distance metric if itis a
function from pairs of objects to real numbers
such that:

d(x,y) > 0. (non-negativity)

d(x,y) = 0 iff x = y. (identity)

d(x,y) = d(y,x). (symmetry)

d(x,y) < d(x,z) + d(z,y) (triangle inequality ).

W noe



Triangle Inequality

Triangle inequality guarantees that the distance
function 1s well-behaved.
- The direct connection is the shortest distance

It is useful also for proving properties about the
data

- For example, suppose | want to find an object that
minimizes the sum of distances to all points in my
dataset

- If | select the best point from my dataset, the sum of
distances | get is at most twice that of the optimal point.



Properties of Similarity

- Desirable properties for similarity

1. s(p, g) =1 (or maximum similarity) only if p = q.
(Identity)

2. s(p,q)=s(q, p) forall pandqg. (Symmetry)



Distances for real vectors

-Vectors x = (xy, ..., xg) and y = (¥4, ..., V4)

s Lp norms or Minkowski distance:
1
Ly, y) = [lx; —y1|P + -+ |xqg — yalP]7P

- L, norm: Euclidean distance:
Ly(x,y) =Ix1 =12+ -+ lxg — yal?

- L, norm: Manhattan distance:
Li(x,y) =[xy =yl + -+ |xqg — Y4l



Example of Distances

L,-norm: b =(9.8)

dist(x,y) =
V(@+37)
=5

L,-norm:

4 dist(x,y) =
4+3 =7

a=(5,55)



Another Minkowski distance

-Vectors x = (xy, ..., xg) and y = (¥4, ..., V4)

s Lp norms or Minkowsk| distance:
1
Ly(6,y) = [lx; —y1|P + -+ |xqg — yalP] 7P

- L norm:
Loo(x'y) — max{lxl o ylli LW’ |xd o ydl}

- The limit of L ; as p goes to infinity.



Example of Distances

L,-norm: b =(9.8)

dist(x,y) =
V(@+37)
=5

L,-norm:
A dist(x,y) =
a = (5.5) 4+3 =7
L_-norm:
dist(x,y) =

max{3,4} =4



e
Minkowski Distance

3 L1 pl p2 p3 p4
pl 0 4 4 6
2¢n 3 ) p2 4 0 2 4
. . o p3 4 2 0 2
02 p4 6 4 2 0
0 . . . . |
0 1 2 3 4 6 L2 pl p2 p3 p4
pl o 2828] 3162 5099
Soint " y 02 2.828 o] 1414] 3.162
o2 > 0 p4 5099]  3.162 2 0
p3 3 1 L. pl p2 p3 pd
p4 S 1 0l 0 2 3 5
02 2 0 1 3
03 3 1 0 2
04 5 3 2 0

Distance Matrix



Example

X = (X1, ., %)

Green: All points y at distance L,(x,y) = r from point x
Blue: All points y at distance L,(x,y) = r from point X

Red: All points y at distance L_(x,y) = r from point x



Lp distances for sets

We can apply all the L, distances to the cases of
sets of attributes, with or without counts, if we
represent the sets as vectors

- E.g., a transaction is a 0/1 vector

- E.g., a document is a vector of counts.



Cosine Similarity

- If d, and d, are two vectors, then
cos(d;,d,)= (dyedy)/[[d]l [[dy]l
where e indicates vector dot product and || d || is the length of vector d.

- Example:

d,=3205000200
d,=1000000102

d, e d,= 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 =5
|d,|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)°5 = (42) 05 = 6.481
|ld,|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 05 = (6) 05 = 2.245

cos(d,, d,)=.3150



Cosine Similarity

Geometric Interpretation

Figure 2.16. Geometric illustration of the cosine measure.

If the vectors are angle is zero degrees and cosine is 1

If the vectors are ort! (no common coordinates) angle is 90
degrees and cosine is O

Note that if one vector is a multiple of another cosine is still 1
(maximum)

Cosine is commonly used for comparing documents, where we
assume that the vectors are by the document length.



Example

Apple
D1 10 20 0 0

D2 20 40 0 0
D2 0 0 10 20

cos(D1,D2) =1
cos(D1,D3) = cos(D2,03) =0



Example

Apple
D1 1/3 2/3 0 0

D2 1/3 2/3 0 0
D2 0 0 1/3 2/3

cos(D1,D2) =1
cos(D1,D3) = cos(D2,03) =0



Jaccard Similarity of Sets

The Jaccard similarity (Jaccard coefficient) of two
sets C,, C, Is the size of their intersection divided
by the size of their union.

3 in intersection.

8 in union.

Jaccard similarity
= 3/8

Jaccard distance Jdist = 1 - JSIm



Example with documents

D1 = {apple, released, new, iIPhone}
D2 = {apple, released, new, IPad}
D3 = {new, apple, pie, recipie}

JSim(D1,D2) = 3/5
JSim(D1,D3) = JSim(D2,D3) = 2/6



-
Similarity Between Binary Vectors

Objects, p and g, have only binary attributes
- We can view them as sets and compute Jaccard
- We also compute the Simple Matching Coefficient

Compute similarities using the following quantities
My, = the number of attributes where p was 0 and g was 1
M;, = the number of attributes where p was 1 and q was O
Mg, = the number of attributes where p was 0 and g was O
M, = the number of attributes where p was 1 and q was 1

Simple Matching and Jaccard Coefficients
SMC = number of matches / number of attributes
= (Mg + Myg) / (Mg + My + My + M)

J = number of 11 matches / number of not-both-zero attributes values

=(My) I Mgy + Mg+ Myy) Jaccard treats 1’s asymmetrically



-
SMC versus Jaccard: Example

p=1000000000
g=0000001001

Myp; =2 (the number of attributes where p was 0 and q was 1)
M, =1 (the number of attributes where p was 1 and q was 0)
Moo = 7 (the number of attributes where p was 0 and q was 0)
My, =0 (the number of attributes where p was 1 and q was 1)

SMC = (M, + My))/((My; + My, + My, + M) = (0+7) / (2+1+0+7) = 0.7

J=My)/(My; + My +M,))=0/(2+1+0)=0



Hamming Distance

Hamming distance is the number of positions in
which bit-vectors differ.

Example: p, =10101; p, = 10011.
- d(p,, p,) = 2 because the bit-vectors differ in the 3" and 4

positions.
- The L, norm for the binary vectors

Hamming distance between two vectors of
categorical attributes Is the number of positions in

which they differ.

Example: x = (married, low income, cheat),
y = (single, low income, not cheat)

- d(x,y) =2



Why Hamming Distance Is a Distance
Metric

d(x,x) = 0 since no positions differ.
d(x,y) = d(y,x) by symmetry of “different from.’

d(x,y) > O since strings cannot differ in a
negative number of positions.

Triangle inequality: changing x to z and then
toy Is one way to change x toy.

)




Edit Distance for strings

The edit distance of two strings is the number of

nserts and deletes of characters needed to turn
one Iinto the other.

Exampe: X = abcde ; y = bcduve.

- Turn X intoy by deleting a, then inserting u and v
after d.

- Edit distance = 3.

Minimum number of operations can be computed
using

Common distance measure for comparing DNA
sequences




Why Edit Distance Is a Distance Metric

d(x,x) = 0 because 0 edits suffice.

d(x,y) = d(y,x) because insert/delete are
iInverses of each other.

d(x,y) > 0: no notion of negative edits.

Triangle inequality: changing x to z and then
toy Is one way to change x toy.



Variant Edit Distances

Allow insert, delete, and mutate.

- Change one character into another.
Minimum number of inserts, deletes, and
mutates also forms a distance measure.

Same for any set of operations on strings.

- Example: or OK
for DNA sequences

- Example: IS used for spelling



Distances between distributions

- We can view a document as a distribution over the words

Apple

0.35 0.05
D2 0.4 0.4 0.1 0.1
D2 0.05 0.05 0.6 0.3

- KL-divergence (Kullback-Leibler) for distributions P,Q
p(x)

D (P1IQ) = Z (9)lo
KL p 83 (%)

- KL-divergence is asymmeltric. We can make it symmetric by
taking the average of both sides

- JS-divergence (Jensen-Shannon)

JS(P,Q) = 3Dk (PlIQ) + 3 Dx (QIIP)



SKETCHING

AND

LOCALITY SENSITIVE
HASHING

Thanks to:
Rajaraman and Ullman, “Mining Massive Datasets”
Evimaria Terzi, slides for Data Mining Course.



Finding near-duplicates documents

We will now consider the problem of finding
duplicate and near-duplicate documents from a
web crawl.

Why Is it important:

- Identify mirrored web pages, and avoid indexing them,
or serving them multiple times

- |[dentify plagiarism

- Find replicated stories in news and cluster them under a
single story.

What if we wanted exact duplicates?



Main issues

What is the right representation of the document
when we check for similarity?

- E.g., representing a document as a set of characters
will not do

When we have billions of documents, keeping the
full text In memory Is not an option.
- We need to find a shorter representation

How do we do pairwise comparisons we billions
of documents?

- |f exact match was the issue it would be ok, can we
replicate this idea?



Three Essential Techniques for Similar
Documents

Shingling : convert documents, emails, etc.,
to sets.

Minhashing : convert large sets to short
signatures, while preserving similarity.

Locality-sensitive hashing : focus on pairs of
signatures likely to be similar.



The Big Picture

\ \ Capdidate
: pairs :
Docu- __Jghingling _ Minhash- | é_:rfgltllt\ile _, those pairs
ment ing s of signatures
/ / that we need
to test for
The set Signatures : similarity.
of strings short integer
of length k vectors that
that appear represent the
in the doc- sets, and
ument reflect their

similarity



Shingles

A k -shingle (or k -gram) for a document is a

sequence of k characters that appears in the
document.

Example: k=2; doc = abcab. Set of 2-shingles =
{ab, bc, ca}.

- Option: regard shingles as a bag, and count ab twice.
Represent a doc by its set of k-shingles.



-
Shingling

- Shingle: a sequence of k contiguous characters

a rose 1s a rose 1s a rose
a rose 1s
rose 1is
rose 1is
ose 1s

se 1s

U [ R

Xro

is

(]

rose

S a rose 1i
rose 1is
rose 1is

(\)

(]




Working Assumption

Documents that have lots of shingles in common
have similar text, even if the text appears in
different order.

Careful: you must pick k large enough, or most
documents will have most shingles.

- k =5 1s OK for short documents; k = 10 is better for long
documents.



Shingles: Compression Option

To compress long shingles, we can hash them
to (say) 4 bytes.

Represent a doc by the set of hash values of
Its k-shingles.

Two documents could (rarely) appear to have
shingles in common, when in fact only the
hash-values were shared.



Rabin’s fingerprinting technique

Comparing two strings of size n

a = 10110 a=b?
b = 11010 O(n) too expensive!
f(a)=£(b)?

A=1%2%+0%2° +1%2° +1x2' +0%2°
B=1%2*4+1%23+0%2%+1%2' +0%2°

f(a)= A mod p p = small random prime
f(b)= B mod p size O(logn loglogn)

If a=b then £ (a)=£ (b)
If £(a)=£ (b)then a=b with high probability



Thought Question

-Why is it better to hash 9-shingles (say) to 4
bytes than to use 4-shingles?

- Hint: How random are the 32-bit sequences that
result from 4-shingling?



Basic Data Model: Sets

Document: A document Is represented as a set
shingles (more accurately, hashes of shingles)

Document similarity: Jaccard similarity of the sets
of shingles.

- Common shingles over the union of shingles

- Sim (C,, C,) = |C;nC,[/|C,uC,.

Although we use the documents as our driving
example the techniques we will describe apply to
any kind of sets.

E.g., similar customers or products.



From Sets to Boolean Matrices

Rows = elements of the universal set (shingles)
Columns = sets (documents)

linrowe andcolumn S ifandonlyife Is a
member of S.

Column similarity is the Jaccard similarity of the
sets of their rows with 1.

Typical matrix Is sparse.



Example: Jaccard Similarity of Columns

C1CZ
0 1 *

1+« SIm(Cy, C,) =
2/[5=0.4

O O Fr K
o



Aside

We might not really represent the data by a
boolean matrix.

Sparse matrices are usually better

represented by the list of places where there Is
a non-zero value.

But the matrix picture is conceptually useful.



Outline: Finding Similar Columns

Compute signatures of columns = small
summaries of columns.

Examine pairs of signatures to find similar
signatures.
. similarities of signatures and columns
are related. The signatures preserve similarity.
. check that columns with similar
signatures are really similar.



Warnings

Comparing all pairs of signatures may take too
much time, even if not too much space.

A job for Locality-Sensitive Hashing.
These methods can produce false negatives,

and even false positives (if the optional check
IS not made).



Signatures

- Keyidea: "hash” each column C to a small
signature Sig (C), such that:

1. Sig (C)is small enough that we can fit a
signature in main memory for each column.

2. SIm (C,, C,) is (almost) the same as the
“similarity” of Sig (C,) and Sig (C,).



Four Types of Rows
- Given documents X and Y, _

1 1
- Rows may be classified as: 1 0
0) 0
type [ X |Y
7 -C
0) 0
R, 1 1
— T s - 1
= 1 1
R, 0 1
R, O O



Four Types of Rows
- Given documents X and Y, _

- Rows may be classified as:

1 1

1 0

0 0

il B
bit | bit 0 0

1 1

1 1

Rll

[N
)

10
ROl

ROO

o O
o



Four Types of Rows
- Given documents X and Y, _

- Rows may be classified as:

1 1

1 0

0 0

) »
bit | bit 0 0

1 1

1 1

Rll

[N
)

10
ROl

ROO

o O
o



Four Types of Rows
- Given documents X and Y, _

1 1
- Rows may be classified as: ; 8
II —r
bit | bit 0 0
Ry 1 1
Ro 1 O 1 1

R, 0 1 0O

o
o

ROO



Four Types of Rows
- Given documents X and Y, _

1 1

- Rows may be classified as: ; 8

)

bit | bit 0 0

R, 1 1 3 1 1

R, 1 0 1 1 1
R, 0 1 0O
Ro, 0 0 3



Four Types of Rows
- Glven documents X and Y, _

- Rows may be classified as: 1 (1)
=
bit | bit 0 0
R, 1 1 3 0 0
R, 1 0 1 ! -
Ry, 0 1 0 - -

Ry, 0 0 3

- Also, R,; =# rows of type R, , etc.
- Note Sim (X,Y) =Ry, /(R + Rig+ Rpy).



Minhashing

- Imagine the rows permuted randomly.

- Define “hash” function h (C ) = the number of the
first (in the permuted order) row in which column
C has 1.

- Use several (e.g., 100) independent hash
functions to create a signature.



0
1

1
0

1
1

Example of minhash signatures

a2 a3 (xa
0

* Input matrix
A

0



Example of minhash sighatures

* Input matrix

-mmu

=)

m|(@® mm| o> ®|O

O M m O O W
) B, O O O K

©O O r B L O O
) B, O O O O .
©O O P LB P L O




0
1

1
0

1
1

Example of minhash signatures

a2 a3 (xa
0

* Input matrix
A

0



Surprising Property

The probability (over all permutations of the

rows) that h (C,) = h (C,) Is the same as

Sim (C,, C)).

Both are R, /(R; + R+ Ryy)!

Why?

- Look down the permuted columns C; and C, until
we see a 1.

- If it's a type-R,; row, then h (C,) =h (C,). Ifa
type-R,, ortype-R,, row, then not.



Similarity for Signatures

- The similarity of signatures Is the fraction of the
hash functions in which they agree.



* Input matrix

-mmu

G MM m QO O ™

Example of minhash signatures

R B, O O O ¥

o O r = - O O

R -~ O O O O =

O O kP L KL R, O

X1 X2 [x3 x4

(x1,x2)
(x1,x3)
(x1,x4)
(x2,x3)
(x2,x4)
(x3,x4)

0.75 2/3
1/7 0
0 0
0.75 1
0 0



-
Minhash algorithm

- Pick k (e.g., 100) permutations of the rows
- Think of Sig(x) as a new vector

- Let Sig(x)[1]: In the I-th permutation, the index of
the first row that has 1 for object x



IS It now feasible?

- Assume a billion rows
- Hard to pick a random permutation of 1...billion

- Even representing a random permutation
requires 1 billion entries!!!

- How about accessing rows in permuted order?
-®



Being more practical

- Approximating row permutations: pick k=100 (?)
hash functions (h,...,1,)

for each row r
for each column ¢
If c has 1 Inrow r

for each hash function 1, do

If . (r ) is a smaller value than VI(i,c) then
M (1,c) = h; (r);




Example

Row C1 C2
1 1 0
2 0 1
3 1 1
4 1 0
S 0 1
h(x) = x mod 5

g(x) = 2x+1 mod 5

h(1) = 1
g(1)=3

h(2) = 2
9(2)=0

h(3) = 3
g9(3) =2

h(4) = 4
g(4) =4

h(5) =0
g(d) =1

N

onN

OonN

o o



Implementation — (4)

- Often, data is given by column, not row.
- E.g., columns = documents, rows = shingles.

- If so, sort matrix once so it is by row.

- And always compute h, (r ) only once for each
row.



Finding Similar Pairs

Suppose we have, in main memory, data
representing a large number of objects.

- May be the objects themselves .

- May be sighatures as in minhashing.

We want to compare each to each, finding those
pairs that are sufficiently similar.



Checking All Pairs is Hard

While the signatures of all columns may fit in
main memory, comparing the signatures of all
pairs of columns is quadratic in the number of
columns.

Example: 10° columns implies 5*10% column-
comparisons.

At 1 microsecond/comparison: 6 days.



Locality-Sensitive Hashing

General idea: Use a function f(x,y) that tells
whether or not x and y Is a candidate pair: a pair
of elements whose similarity must be evaluated.

For minhash matrices: Hash columns to many
buckets, and make elements of the same bucket
candidate pairs.



Candidate Generation From Minhash
Signatures

Pick a similarity threshold s, a fraction < 1.
A pair of columns x and y is a candidate pair
If their signatures agree in at least fraction s of

the rows.
-l.e.,, M(i,c)=M(i,d) foratleast fraction s values

of I.



LSH for Minhash Signatures

- Big idea: hash columns of signature matrix M
several times.

- Arrange that (only) similar columns are likely
to hash to the same bucket.

- While dissimilar columns are less likely to hash
to the same bucket

- Candidate pairs are those that hash at least
once to the same bucket.



Partition Into Bands

b bands

™

AN

AN

N

Matrix M

I rows
per band

One
signature



Partition into Bands — (2)

Divide matrix M into b bands of r rows.

For each band, hash its portion of each column to
a hash table with k buckets.

- Make k as large as possible.

Candidate column pairs are those that hash to the
same bucket for > 1 band.

Tune b and r to catch most similar pairs, but few
non-similar pairs.



Bugkets Al Columns 2 and 6
f o 1 / T are probably identical.
~ Columns 6 and 7 are
Madlix M \T surely different.

r TOWS b bands




Simplifying Assumption

- There are enough buckets that columns are
unlikely to hash to the same bucket unless they
are identical in a particular band.

- Hereafter, we assume that “same bucket” means
“identical in that band.”



Example: Effect of Bands

Suppose 100,000 columns.
Signatures of 100 integers.
Therefore, signatures take 40MDb.
Want all 80%-similar pairs.

5,000,000,000 pairs of signatures can take a
while to compare.

Choose 20 bands of 5 integers/band.
7 bands oL2nteg

b I



Suppose C,, C, are 80% Similar

Probability C,, C, identical in one particular band:
(0.8)> = 0.328.

Probability C,, C, are not similar in any of the 20
bands: (1-0.328)2° = .00035 .

- I.e., about 1/3000th of the 80%-similar column pairs are
false negatives.



.- N
Suppose C,, C, Only 40% Similar

- Probability C,, C, identical in any one particular

pand: (0.4)°> =0.01.

- Probability C,, C, identical in > 1 of 20 bands:
<20*0.01=0.2.

- But false positives much lower for similarities
<< 40%.




LSH Involves a Tradeoff

Pick the number of minhashes, the number of
pands, and the number of rows per band to
palance false positives/negatives.

Example: if we had only 15 bands of 5 rows, the
number of false positives would go down, but the
number of false negatives would go up.




Analysis of LSH — What We Want

/

Probability
[ =1lifs>t

Probability No chance
of sharing ifs<t

a bucket \

Similarity s oftwo sets —*

t



B
What One Band of One Row Gives You

Probability Remember:
probability of
equal hash-values
= similarity

of sharing
a bucket

t

Similarity s oftwo sets ——*



What b Bands of r Rows Gives You

( At least
one band NO bands

identical  !dentical

\

~ r 1- (1-S" )b
Probability t~(1/b) ( )

of sharing lf/
a bucket

Some row All rows
E— — of a band of a band

t unequal are equal

Similarity s oftwo sets ——*



Example:b =20;r =5

1-(1-s")b

.006

.047

.186

470

.802

975

0N O|uUD | W[N|@

.9996

Probability
of becoming
a candidate

y

Jaccard similarity
—_— -
of documents

Figure 3.7: The S-curve




LSH Summary

Tune to get almost all pairs with similar

signatures, but eliminate most pairs that do not
have similar signhatures.

Check in main memory that candidate pairs
really do have similar signatures.

. In another pass through data, check
that the remaining candidate pairs really
represent similar sets .



Locality-sensitive hashing (LSH)

Big Picture: Construct hash functions h: R¢=> U
such that for any pair of points p,q:

- If D(p,q)=r, then Prih(p)=n(qg)] is high

- If D(p,q)=zcr, then Pr[h(p)=h(g)] is small

Then, we can solve the “approximate NN’
problem by hashing

LSH is a general framework; for a given distance
function D we need to find the right h



