
DATA MINING 

LECTURE 3 
Frequent Itemsets 

Association Rules 



• Given a set of transactions, find combinations of items 
(itemsets) that occur frequently 

Market-Basket transactions 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Examples of frequent itemsets 

{Diaper, Beer} : 3 

{Milk, Bread} : 3 

{Milk, Bread, Diaper}: 2  

Frequent Itemsets 

𝑠 𝐼 : support, number of 

transactions that contain I 

𝑠 𝐼 ≥ minsup 



Mining Frequent Itemsets task 

• Input: A set of transactions T, over a set of items I  

• Output: All itemsets with items in I having  

• support ≥ minsup threshold 

 

• Problem parameters: 

• N = |T|: number of transactions 

• d = |I|: number of (distinct) items 

• w: max width of a transaction 

• Number of possible itemsets = 2d 



The itemset lattice 

 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are 

2d possible  itemsets 

Too expensive to test all! 



Reduce the number of candidates 

• Apriori principle (Main observation): 

– If an itemset is frequent, then all of its subsets must also 
be frequent 

– If an itemset is not frequent, then all of its supersets 
cannot be frequent 

 

 

– The support of an itemset never exceeds the support of 
its subsets 

– This is known as the anti-monotone property of 
support 

)()()(:, YsXsYXYX 



Illustration of the Apriori principle 

Found to be frequent 

Frequent 

subsets   



Illustration of the Apriori principle 

Found to be 

Infrequent 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDEPruned 

Infrequent supersets 



1. Find frequent 1-items and put them to Lk (k=1)  

2. Use Lk to generate a collection of candidate 

itemsets Ck+1 with size (k+1)  

3. Scan the database to find which itemsets in 

Ck+1 are frequent and put them into Lk+1 

4. If Lk+1 is not empty 

 k=k+1 

 Goto step 2 

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",  

Proc. of the 20th Int'l Conference on Very Large Databases, 1994.  

The Apriori algorithm 
Level-wise approach 



The Apriori algorithm 

Ck: Candidate itemsets of size k 

Lk : frequent itemsets of size k 
 

L1 = {frequent 1-itemsets}; 

for (k = 2; Lk !=; k++)  

   Ck+1 = GenerateCandidates(Lk)  

 for each transaction t in database do  
  increment count of candidates in Ck+1 that are contained in t 

 endfor 

 Lk+1  = candidates in Ck+1 with support ≥min_sup  

endfor 

return k Lk; 



• Assume the items in Lk are listed in an order (e.g., 

lexicographic)  

• Step 1: self-joining Lk (IN SQL)‏ 

insert into Ck+1 

select p.item1, p.item2, …, p.itemk, q.itemk 

from Lk p, Lk q 

where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk 

Generate Candidates Ck+1 

Create an itemset of size k+1, by joining two 

itemsets of size k, that share the first k-1 items 



• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

Example I 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3 



• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

Example I 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3 



• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

Example I 

{a,b,c} {a,b,d} 

{a,b,c,d} 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3 



• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

{a,c,d} {a,c,e} 

{a,c,d,e} 

Example I 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3 



• Assume the items in Lk are listed in an order (e.g., 

alphabetical)  

• Step 1: self-joining Lk (IN SQL)‏ 

insert into Ck+1 

select p.item1, p.item2, …, p.itemk, q.itemk 

from Lk p, Lk q 

where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk 

• Step 2: pruning 

forall itemsets c in Ck+1 do 

forall k-subsets s of c do 

if (s is not in Lk) then delete c from Ck+1 

All itemsets of size k that are 

subsets of a new (k+1)-itemset 

should be frequent 

Generate Candidates Ck+1 



• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

• Pruning: 

– abcd is kept since all subset itemsets are 

in L3  

– acde is removed because ade is not in L3 

• C4={abcd} 

{a,c,d} {a,c,e} 

{a,c,d,e} 

acd ace ade cde 
  X 

Example I 
{a,b,c} {a,b,d} 

{a,b,c,d} 

abc abd acd bcd 

    



The Apriori algorithm 

Ck: Candidate itemsets of size k 

Lk : frequent itemsets of size k 
 

L1 = {frequent 1-itemsets}; 

for (k = 2; Lk !=; k++)  

   Ck+1 = GenerateCandidates(Lk)  

 for each transaction t in database do  
  increment count of candidates in Ck+1 that are contained in t 

 endfor 

 Lk+1  = candidates in Ck+1 with support ≥min_sup  

endfor 

return k Lk; 



Reducing Number of Comparisons 

• Candidate counting: 
• Scan the database of transactions to determine the 

support of each candidate itemset 

• To reduce the number of comparisons, store the 
candidates in a hash structure 
•  Instead of matching each transaction against every candidate, 

match it against candidates contained in the hashed buckets 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions Hash Structure

k

Buckets



ASSOCIATION RULES 



Association Rule Mining 

• Given a set of transactions, find rules that will predict the 
occurrence of an item based on the occurrences of other 
items in the transaction 

Market-Basket transactions 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Example of Association Rules 

{Diaper}  {Beer}, 

{Milk, Bread}  {Eggs,Coke}, 

{Beer, Bread}  {Milk}, 

Implication means co-occurrence, 

not causality! 



Definition: Association Rule 

Example: 

Beer}Diaper,Milk{ 

4.0
5

2

|T|

)BeerDiaper,,Milk(



s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(





c

 Association Rule 

– An implication expression of the form 

X  Y, where X and Y are itemsets 

– Example: 

   {Milk, Diaper}  {Beer}  

 Rule Evaluation Metrics 

– Support (s) 

 Fraction of transactions that contain 

both X and Y 

 the probability P(X,Y) that X and Y 

occur together 

– Confidence (c) 

 Measures how often items in Y  

appear in transactions that 

contain X 

 the conditional probability P(X|Y) that X 

occurs given that Y has occurred. 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Association Rule Mining Task 

• Input: A set of transactions T, over a set of items I  

• Output: All rules with items in I having  

• support ≥ minsup threshold 

• confidence ≥ minconf threshold 

 



Mining Association Rules 

• Two-step approach:  

1. Frequent Itemset Generation 

– Generate all itemsets whose support  minsup 

 

2. Rule Generation 

– Generate high confidence rules from each frequent itemset, 

where each rule is a partitioning of a frequent itemset into 

Left-Hand-Side (LHS) and Right-Hand-Side (RHS) 

 

 Frequent itemset: {A,B,C,D} 

Rule:           ABCD  



Rule Generation 

• We have all frequent itemsets, how do we get the 

rules? 

• For every frequent itemset S, we find rules of the form          

L  S – L , where L  S, that satisfy the minimum confidence 

requirement 

• Example: L = {A,B,C,D}  

• Candidate rules: 

 A BCD,   B ACD,   C ABD,    D ABC 

AB CD,   AC  BD,   AD  BC,   BD AC,  CD AB,  

          ABC D,     BCD A,      BC AD,   

• If |L| = k, then there are 2k – 2 candidate association 

rules (ignoring L   and   L) 



Rule Generation 

• How to efficiently generate rules from frequent 
itemsets? 
• In general, confidence does not have an anti-monotone 

property 
 c(ABC D) can be larger or smaller than c(AB D) 

 

• But confidence of rules generated from the same 
itemset has an anti-monotone property 

• e.g., L = {A,B,C,D}: 
  
  c(ABC  D)  c(AB  CD)  c(A  BCD) 
  

•  Confidence is anti-monotone w.r.t. number of items on the RHS 
of the rule 



Rule Generation for Apriori Algorithm 
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules created by the RHS 

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned 

Rules 

Low 

Confidence 

Rule 



Rule Generation for Apriori Algorithm 

• Candidate rule is generated by merging two rules that 
share the same prefix 
in the RHS 

 

• join(CDAB,BDAC) 
would produce the candidate 
rule D  ABC 

 

• Prune rule D  ABC if its 
subset ADBC does not have 
high confidence 

 

• Essentially we are doing Apriori on the RHS  

BD->ACCD->AB

D->ABC



RESULT  

POST-PROCESSING 



Compact Representation of Frequent 

Itemsets 
• Some itemsets are redundant because they have identical 

support as their supersets 

 

 

 

 

 

 

 
 

 

 

• Number of frequent itemsets 
 

• Need a compact representation 

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1














10

1

10
3

k k



Maximal Frequent Itemset 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border 

Infrequent 

Itemsets 

Maximal 

Itemsets 

An itemset is maximal frequent if none of its immediate supersets is 

frequent 

Maximal itemsets = positive border 



Negative Border 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border 

Infrequent 

Itemsets 

Itemsets that are not frequent, but all their immediate subsets are 

frequent. 

Minimal: Smallest itemsets with this property 



Border 

• Border = Positive Border + Negative Border 

• Itemsets such that all their immediate subsets are 

frequent and all their immediate supersets are 

infrequent. 

• Either the positive, or the negative border is 

sufficient to summarize all frequent itemsets. 



Closed Itemset 

• An itemset is closed if none of its immediate supersets 

has the same support as the itemset 

 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2



Maximal vs Closed Itemsets 

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction 

Ids 

Not supported 

by any 

transactions 



Maximal vs Closed Frequent Itemsets 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2 

# Closed = 9 

# Maximal = 4 

Closed 

and 

maximal 

Closed but not 

maximal 



Maximal vs Closed Itemsets 

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets



Pattern Evaluation 

• Association rule algorithms tend to produce too 
many rules  
• many of them are uninteresting or redundant 

• Redundant if {A,B,C}  {D} and {A,B}  {D}    
have same support & confidence 

 

• Interestingness measures can be used to 
prune/rank the derived patterns 

 

• In the original formulation of association rules, 
support & confidence are the only measures used 



Computing Interestingness Measure 

• Given a rule X  Y, information needed to compute rule 

interestingness can be obtained from a contingency table 

Y Y  

X f11 f10 f1+ 

X  f01 f00 fo+ 

f+1 f+0 |T| 

Contingency table for X  Y 

f11: support of X and Y 

f10: support of X and Y 

f01: support of X and Y 

f00: support of X and Y 

Used to define various measures 

 support, confidence, lift, Gini, 

   J-measure, etc. 



Drawback of Confidence 

 

Coffee 

 

Coffee 

Tea 15 5 20 

Tea 75 5 80 

90 10 100 

           Association Rule: Tea  Coffee 

 
Confidence= P(Coffee|Tea) = 

15

20
= 0.75 

but P(Coffee) = 
90

100
= 0.9 

•  Although confidence is high, rule is misleading 

•  P(Coffee|Tea) = 0.9375 



Statistical Independence 

• Population of 1000 students 

• 600 students know how to swim (S) 

• 700 students know how to bike (B) 

• 420 students know how to swim and bike (S,B) 

 

• P(SB) = 420/1000 = 0.42 

• P(S)  P(B) = 0.6  0.7 = 0.42 

 

• P(SB) = P(S)  P(B) => Statistical independence 



Statistical Independence 

• Population of 1000 students 

• 600 students know how to swim (S) 

• 700 students know how to bike (B) 

• 500 students know how to swim and bike (S,B) 

 

• P(SB) = 500/1000 = 0.5 

• P(S)  P(B) = 0.6  0.7 = 0.42 

 

• P(SB) > P(S)  P(B) => Positively correlated 



Statistical Independence 

• Population of 1000 students 

• 600 students know how to swim (S) 

• 700 students know how to bike (B) 

• 300 students know how to swim and bike (S,B) 

 

• P(SB) = 300/1000 = 0.3 

• P(S)  P(B) = 0.6  0.7 = 0.42 

 

• P(SB) < P(S)  P(B) => Negatively correlated 



Statistical-based Measures 

• Measures that take into account statistical 

dependence 

)()(),(

)()(

),(
or  

)(

)|(

YPXPYXPPS

YPXP

YXP
Interest

YP

XYP
Lift





Text mining: Pointwise Mutual Information  



Example: Lift/Interest 

 

Coffee 

 

Coffee 

Tea 15 5 20 

Tea 75 5 80 

90 10 100 

           Association Rule: Tea  Coffee 
 

Confidence= P(Coffee|Tea) = 0.75 

but P(Coffee) = 0.9 

 Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated) 



Drawback of Lift & Interest 

Y Y 

X 10 0 10 

X 0 90 90 

10 90 100 

Y Y 

X 90 0 90 

X 0 10 10 

90 10 100 

10
)1.0)(1.0(

1.0
Lift 11.1

)9.0)(9.0(

9.0
Lift

Statistical independence: 

If P(X,Y)=P(X)P(Y)  => Lift = 1 

Rare co-occurrences are deemed more interesting 



ALTERNATIVE FREQUENT 

ITEMSET COMPUTATION 
Slides taken from Mining Massive Datasets course by 

Anand Rajaraman and Jeff Ullman. 



Efficient computation of pairs 

• The operation that takes most resources (mostly 

in terms of memory, but also time) is the 

computation of frequent pairs. 

• How can we make this faster? 



48 

PCY Algorithm 

• During Pass 1 (computing frequent items) of A-

priori, most memory is idle. 

• Use that memory to keep counts of buckets into 

which pairs of items are hashed. 

• Just the count, not the pairs themselves. 



49 

Needed Extensions 

1. Pairs of items need to be generated from the 

input file; they are not present in the file. 

2. We are not just interested in the presence of a 

pair, but we need to see whether it is present 

at least s  (support) times. 



50 

PCY Algorithm – (2) 

• A bucket is frequent  if its count is at least the 

support threshold. 

• If a bucket is not frequent, no pair that hashes to 

that bucket could possibly be a frequent pair. 

• On Pass 2 (frequent pairs), we only count pairs 

that hash to frequent buckets. 



51 

PCY Algorithm – Before Pass 1 Organize Main 

Memory 

• Space to count each item. 

• One (typically) 4-byte integer per item. 

• Use the rest of the space for as many integers, 

representing buckets, as we can. 



52 

Picture of PCY 

Hash 

table 

Item counts 

Pass 1 
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PCY Algorithm – Pass 1 

FOR (each basket) { 

 FOR (each item in the basket) 

  add 1 to item’s count; 

 FOR (each pair of items) { 

  hash the pair to a bucket; 

  add 1 to the count for that  

   bucket 

 } 

} 



54 

Observations About Buckets 

1. A bucket that a frequent pair hashes to is 
surely frequent. 

• We cannot use the hash table to eliminate any 
member of this bucket. 

2. Even without any frequent pair, a bucket can 
be frequent. 

• Again, nothing in the bucket can be eliminated. 

3.   But in the best case, the count for a  bucket is   
less than the support s. 
• Now, all pairs that hash to this bucket can be eliminated 

as candidates, even if the pair consists of two frequent 
items. 
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PCY Algorithm – Between Passes 

• Replace the buckets by a bit-vector: 

• 1 means the bucket is frequent; 0 means it is not. 

• 4-byte integers are replaced by bits, so the bit-

vector requires 1/32 of memory. 

• Also, decide which items are frequent and list 

them for the second pass. 
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Picture of PCY 

Hash 

table 

Item counts 

Bitmap 

Pass 1 Pass 2 

Frequent items 

Counts of 

candidate 

   pairs 



57 

PCY Algorithm – Pass 2 

• Count all pairs {i, j } that meet the conditions 

for being a candidate pair: 

1. Both i  and j  are frequent items. 

2. The pair {i, j }, hashes to a bucket number whose bit 

in the bit vector is 1. 

• Notice both these conditions are necessary for 

the pair to have a chance of being frequent. 
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All (Or Most) Frequent Itemsets In < 2 

Passes 

• A-Priori, PCY, etc., take k  passes to find 

frequent itemsets of size k. 

• Other techniques use 2 or fewer passes for all 

sizes: 

• Simple sampling algorithm. 

• SON (Savasere, Omiecinski, and Navathe). 

• Toivonen. 
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Simple Sampling Algorithm – (1) 

• Take a random sample of the market baskets. 

• Run a-priori or one of its improvements (for sets 

of all sizes, not just pairs) in main memory, so 

you don’t pay for disk I/O each time you increase 

the size of itemsets. 

• Be sure you leave enough space for counts. 
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Main-Memory Picture 

Copy of 

sample 

baskets 

Space 

  for 

counts 



61 

Simple Algorithm – (2) 

• Use as your support threshold a suitable, 

scaled-back number. 

• E.g., if your sample is 1/100 of the baskets, use  s 

/100 as your support threshold instead of s . 
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Simple Algorithm – Option 

• Optionally, verify that your guesses are truly 

frequent in the entire data set by a second 

pass (eliminate false positives) 

• But you don’t catch sets frequent in the whole 

but not in the sample. (false negatives) 

• Smaller threshold, e.g., s /125, helps catch more 

truly frequent itemsets. 

• But requires more space. 
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SON Algorithm – (1) 

• Repeatedly read small subsets of the baskets into 

main memory and perform the first pass of the 

simple algorithm on each subset. 

• An itemset becomes a candidate if it is found to 

be frequent in any  one or more subsets of the 

baskets. 

• Threshold = s/number of subsets 
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SON Algorithm – (2) 

• On a second pass, count all the candidate 

itemsets and determine which are frequent in the 

entire set. 

• Key “monotonicity” idea: an itemset cannot be 

frequent in the entire set of baskets unless it is 

frequent in at least one subset. 

• Why? 



65 

SON Algorithm – Distributed Version 

• This idea lends itself to distributed data 

mining. 

• If baskets are distributed among many nodes, 

compute frequent itemsets at each node, then 

distribute the candidates from each node. 

• Finally, accumulate the counts of all 

candidates. 
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Toivonen’s Algorithm – (1) 

• Start as in the simple sampling algorithm, but 

lower the threshold slightly for the sample. 

• Example: if the sample is 1% of the baskets, use s /125 

as the support threshold rather than s /100. 

• Goal is to avoid missing any itemset that is frequent in 

the full set of baskets. 
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Toivonen’s Algorithm – (2) 

• Add to the itemsets that are frequent in the 

sample the negative border  of these itemsets. 

• An itemset is in the negative border if it is not 

deemed frequent in the sample, but all  its 

immediate subsets are. 



68 

Reminder: Negative Border 

• ABCD  is in the negative border if and only if: 

1. It is not frequent in the sample, but 

2. All of ABC, BCD, ACD, and ABD  are. 

• A  is in the negative border if and only if it is 

not frequent in the sample. 

 Because the empty set is always frequent. 

 Unless there are fewer baskets than the support 

threshold (silly case). 



Negative Border 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border 

Infrequent 

Itemsets 

Itemsets that are not frequent, but all their immediate subsets are 

frequent. 
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Picture of Negative Border 

    … 

 

triples 

 

pairs 

 

singletons 

Negative Border 

Frequent Itemsets 

from Sample 
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Toivonen’s Algorithm – (3) 

• In a second pass, count all candidate frequent 

itemsets from the first pass, and also count their 

negative border. 

• If no itemset from the negative border turns out to 

be frequent, then the candidates found to be 

frequent in the whole data are exactly  the 

frequent itemsets. 
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Toivonen’s Algorithm – (4) 

• What if we find that something in the negative 

border is actually frequent? 

• We must start over again! 

• Try to choose the support threshold so the 

probability of failure is low, while the number of 

itemsets checked on the second pass fits in main-

memory. 
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If Something in the Negative Border is 

Frequent . . . 

    … 

 

tripletons 

 

doubletons 

 

singletons 

Negative Border 

Frequent Itemsets 

from Sample 

We broke through the 

negative border.  How 

far does the problem 

        go? 
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Theorem: 

• If there is an itemset that is frequent in the whole, 

but not frequent in the sample, then there is a 

member of the negative border for the sample 

that is frequent in the whole. 
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• Proof: Suppose not; i.e.; 

1. There is an itemset S  frequent in the whole but not 

frequent in the sample, and 

2. Nothing in the negative border is frequent in the 

whole. 

• Let T  be a smallest subset of S  that is not 

frequent in the sample. 

• T  is frequent in the whole (S  is frequent + 

monotonicity). 

• T  is in the negative border (else not 

“smallest”). 



Example 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border 

Infrequent 

Itemsets 



THE FP-TREE AND THE 

FP-GROWTH ALGORITHM 
Slides from course lecture of E. Pitoura 



Overview 

• The FP-tree contains a compressed 

representation of the transaction database. 

• A trie (prefix-tree) data structure is used 

• Each transaction is a path in the tree – paths can 

overlap. 

 

• Once the FP-tree is constructed the recursive, 

divide-and-conquer FP-Growth algorithm is used 

to enumerate all frequent itemsets. 



FP-tree Construction 

• The FP-tree is a trie (prefix tree) 

• Since transactions are sets of 

items, we need to transform them 

into ordered sequences so that 

we can have prefixes  

• Otherwise, there is no common prefix 

between sets {A,B} and {B,C,A} 

• We need to impose an order to 

the items 

• Initially, assume a lexicographic order. 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}



FP-tree Construction 

• Initially the tree is empty 

null 
TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}



FP-tree Construction 

• Reading transaction TID = 1 

 

 

 

 

 

 

 

 

 

• Each node in the tree has a label consisting of the item 
and the support (number of transactions that reach that 
node, i.e. follow that path) 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null 

A:1 

B:1 

Node label =  item:support 



FP-tree Construction 

• Reading transaction TID = 2 

 

 

 

 

 

 

 

• We add pointers between nodes that refer to the 

same item 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null 

A:1 

B:1 

B:1 

C:1 

D:1 

Each transaction is a path in the tree 



FP-tree Construction 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null 

A:1 

B:1 

B:1 

C:1 

D:1 

After reading 

transactions TID=1, 2: 

Item Pointer

A

B

C

D

E

Header Table 

The Header Table and the 

pointers assist in  

computing the itemset 

support 



FP-tree Construction 

• Reading transaction TID = 3 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null 

A:1 

B:1 

B:1 

C:1 

Item Pointer

A

B

C

D

E

A:1 

D:1 



FP-tree Construction 

• Reading transaction TID = 3 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null 

B:1 

B:1 

C:1 

D:1 

Item Pointer

A

B

C

D

E

A:2 

C:1 

D:1 

E:1 



FP-tree Construction 

• Reading transaction TID = 3 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null 

B:1 

B:1 

C:1 

D:1 

Item Pointer

A

B

C

D

E

A:2 

C:1 

D:1 

E:1 

Each transaction is a path in the tree 



FP-Tree Construction 

null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 
C:3 

D:1 

D:1 

E:1 

E:1 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

Pointers are used to assist 

frequent itemset generation 

D:1 

E:1 

Transaction 

Database 

Item Pointer

A

B

C

D

E

Header table 

Each transaction is a path in the tree 



FP-tree size 

• Every transaction is a path in the FP-tree 

• The size of the tree depends on the 

compressibility of the data 

• Extreme case: All transactions are the same, the FP-

tree is a single branch 

• Extreme case: All transactions are different the size of 

the tree is the same as that of the database (bigger 

actually since we need additional pointers) 



Item ordering 

• The size of the tree also depends on the ordering of the items. 

• Heuristic: order the items in according to their frequency from 
larger to smaller. 
• We would need to do an extra pass over the dataset to count 

frequencies  

• Example: 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

TID Items 
1 {Β,Α} 
2 {B,C,D} 
3 {A,C,D,E} 
4 {A,D,E} 
5 {Β,Α,C} 
6 {Β,Α,C,D} 
7 {B,C} 
8 {Β,Α,C} 
9 {Β,Α,D} 
10 {B,C,E} 

σ(Α)=7, σ(Β)=8, 
σ(C)=7, σ(D)=5, 
σ(Ε)=3 

Ordering : Β,Α,C,D,E 



Finding Frequent Itemsets 

• Input: The FP-tree 

• Output: All Frequent Itemsets and their support 

• Method: 

• Divide and Conquer: 

• Consider all itemsets that end in: E, D, C, B, A 

• For each possible ending item, consider the itemsets with last 

items one of items preceding it in the ordering 

• E.g, for E, consider all itemsets with last item D, C, B, A. This 

way we get all the itesets ending at DE, CE, BE, AE 

• Proceed recursively this way.  

• Do this for all items. 



Frequent itemsets 

All Itemsets 

                             Ε                         D              C  B                A 

DE                CE             BE          AE CD     BD     AD BC            AC AB 

CDE   BDE  ADE BCE    ACE ABE BCD      ACD ABD ABC 

ACDE  BCDE ABDE ABCE ABCD 

ABCDE 



Frequent Itemsets 

All Itemsets 

                             Ε                            D              C  B                A 

DE                CE            BE          AE CD     BD     AD BC            AC AB 

CDE  BDE ADE BCE    ACE ABE BCD      ACD ABD ABC 

ACDE BCDE ABDE ABCE ABCD 

ABCDE 

Frequent?; 

Frequent?; 

Frequent? 

Frequent? 



Frequent Itemsets 

All Itemsets 

                             Ε                           D              C  B                A 

DE                CE            BE          AE CD     BD     AD BC            AC AB 

CDE  BDE ADE BCE    ACE ABE BCD      ACD ABD ABC 

ACDE BCDE ABDE ABCE ABCD 

ABCDE 

Frequent? 

Frequent? 

Frequent? 

Frequent? 

Frequent? 



Frequent Itemsets 

All Itemsets 

                             Ε                          D              C  B                A 

DE                CE            BE          AE CD     BD     AD BC            AC AB 

CDE  BDE ADE BCE    ACE ABE BCD      ACD ABD ABC 

ACDE BCDE ABDE ABCE ABCD 

ABCDE 

Frequent? 

Frequent? 

Frequent? 

We can generate all itemsets this way 

We expect the FP-tree to contain a lot less 



Using the FP-tree to find frequent itemsets 

null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 
C:3 

D:1 

D:1 

E:1 

E:1 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

Bottom-up traversal of the tree. 

First, itemsets ending in E, then D, 

etc, each time a suffix-based class 

D:1 

E:1 

Transaction 

Database 

Item Pointer

A

B

C

D

E

Header table 



null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 
C:3 

D:1 

D:1 

E:1 E:1 
D:1 

E:1 

Item Pointer

A

B

C

D

E

Header table 

Subproblem: find frequent 

itemsets ending in E 

 We will  then see how to compute the support for the possible itemsets 

Finding Frequent Itemsets 



null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 
C:3 

D:1 

D:1 

E:1 E:1 
D:1 

E:1 

Item Pointer

A

B

C

D

E

Header table 

Ending in D 

Finding Frequent Itemsets 



null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 
C:3 

D:1 

D:1 

E:1 E:1 
D:1 

E:1 

Item Pointer

A

B

C

D

E

Header table 

Ending in C 

Finding Frequent Itemsets 



null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 
C:3 

D:1 

D:1 

E:1 E:1 
D:1 

E:1 

Item Pointer

A

B

C

D

E

Header table 

Ending in B 

Finding Frequent Itemsets 



null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 
C:3 

D:1 

D:1 

E:1 E:1 
D:1 

E:1 

Item Pointer

A

B

C

D

E

Header table 

Ending in Α 

Finding Frequent Itemsets 



Algorithm 

• For each suffix X 

• Phase 1 
• Construct the prefix tree for X as shown before, and 

compute the support using the header table and the 
pointers 

 

• Phase 2 
• If X is frequent, construct the conditional FP-tree for X in 

the following steps 
1. Recompute support 

2. Prune infrequent items 

3. Prune leaves and recurse 



null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 
C:3 

D:1 

D:1 

E:1 E:1 
D:1 

E:1 

Item Pointer

A

B

C

D

E

Header table 

Phase 1 – construct 

prefix tree  

Find all prefix paths that 

contain E 

Prexi Paths for Ε:  

{E}, {D,E}, {C,D,E}, {A,D,Ε}, {A,C,D,E}, {C,E}, {B,C,E} 

Example 



null 

A:7 B:3 

C:3 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

Phase 1 – construct 

prefix tree  

Find all prefix paths that 

contain E 

Prexi Paths for Ε:  

{E}, {D,E}, {C,D,E}, {A,D,Ε}, {A,C,D,E}, {C,E}, {B,C,E} 

Example 



null 

A:7 B:3 

C:3 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

Compute Support for E 

(minsup = 2) 

How?  

Follow pointers while 

summing up counts: 

1+1+1 = 3 > 2 

E is frequent 

{E} is frequent so we can now consider suffixes DE, CE, BE, AE 

Example 



null 

A:7 B:3 

C:3 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

Phase 2 

Convert the prefix tree of E into a 

conditional FP-tree 

Two changes 

(1) Recompute support 

(2) Prune infrequent 

Example 

E is frequent so we proceed with Phase 2 



null 

A:7 B:3 

C:3 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

Example 

Recompute Support 

The support counts for some of the 

nodes include transactions that do 

not end in E 

 

For example in null->B->C->E we 

count  {B, C} 

 

The support of any node is equal to 

the sum of the support of leaves 

with label E in its subtree 



null 

B:3 

C:3 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

A:7 

Example 



null 

B:3 

C:1 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

A:7 

Example 



null 

A:7 B:1 

C:1 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

Example 



null 

A:7 B:1 

C:1 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

Example 



null 

A:7 B:1 

C:1 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

Example 



null 

A:2 B:1 

C:1 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

Example 



null 

A:2 B:1 

C:1 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

Example 



null 

A:2 B:1 

C:1 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

Truncate 

Delete the nodes of  Ε 

Example 



null 

A:2 B:1 

C:1 
C:1 

D:1 

D:1 

E:1 E:1 

E:1 

Truncate 

Delete the nodes of  Ε 

Example 



null 

A:2 B:1 

C:1 
C:1 

D:1 

D:1 

Truncate 

Delete the nodes of  Ε 

Example 



null 

A:2 B:1 

C:1 
C:1 

D:1 

D:1 

Prune infrequent 

In the conditional FP-tree 

some nodes may have 

support less than minsup 

e.g., B needs to be 

pruned 

This means that B 

appears with E less than 

minsup times 

Example 



null 

A:2 B:1 

C:1 
C:1 

D:1 

D:1 

Example 



null 

A:2 C:1 

C:1 

D:1 

D:1 

Example 



null 

A:2 C:1 

C:1 

D:1 

D:1 

The conditional FP-tree for E 

Repeat the algorithm for {D, E}, {C, E}, {A, E} 

Example 



null 

A:2 C:1 

C:1 

D:1 

D:1 

Example 

Phase 1 

 

Find all prefix paths that contain D (DE) in the conditional FP-tree 



null 

A:2 

C:1 

D:1 

D:1 

Example 

Phase 1 

 

Find all prefix paths that contain D (DE) in the conditional FP-tree 



null 

A:2 

C:1 

D:1 

D:1 

Example 

Compute the support of {D,E} by following the pointers in the tree 

1+1 = 2 ≥ 2 = minsup 

 

{D,E} is frequent 



null 

A:2 

C:1 

D:1 

D:1 

Example 

Phase 2 

 

Construct the conditional FP-tree 

1. Recompute Support 

2. Prune nodes 



null 

A:2 

C:1 

D:1 

D:1 

Example 

Recompute support 



null 

A:2 

C:1 

D:1 

D:1 

Example 

Prune nodes 



null 

A:2 

C:1 

Example 

Prune nodes 



null 

A:2 

C:1 
Small support 

Example 

Prune nodes 



null 

A:2 

Example 

Final condition FP-tree for {D,E} 

 

The support of A is ≥ minsup so {A,D,E} is frequent 

Since the tree has a single node we return to the next 

subproblem 



null 

A:2 C:1 

C:1 

D:1 

D:1 

Example 

The conditional FP-tree for E 

 

We repeat the algorithm for {D,E}, {C,E}, {A,E} 



null 

A:2 C:1 

C:1 

D:1 

D:1 

Example 

Phase 1 

 

Find all prefix paths that contain C (CE) in the conditional FP-tree 



null 

A:2 C:1 

C:1 

Example 

Phase 1 

 

Find all prefix paths that contain C (CE) in the conditional FP-tree 



null 

A:2 C:1 

C:1 

Example 

Compute the support of {C,E} by following the pointers in the tree 

1+1 = 2 ≥ 2 = minsup 

 

{C,E} is frequent 



null 

A:2 C:1 

C:1 

Example 

Phase 2 

 

Construct the conditional FP-tree 

1. Recompute Support 

2. Prune nodes 



null 

A:1 C:1 

C:1 

Example 

Recompute support 



null 

A:1 C:1 

C:1 

Example 

Prune nodes 



null 

A:1 

Example 

Prune nodes 



null 

A:1 

Example 

Prune nodes 



null 

Example 

Prune nodes 

Return to the previous subproblem 



null 

A:2 C:1 

C:1 

D:1 

D:1 

Example 

The conditional FP-tree for E 

 

We repeat the algorithm for {D,E}, {C,E}, {A,E} 



null 

A:2 C:1 

C:1 

D:1 

D:1 

Example 

Phase 1 

 

Find all prefix paths that contain A (AE) in the conditional FP-tree 



null 

A:2 

Example 

Phase 1 

 

Find all prefix paths that contain A (AE) in the conditional FP-tree 



null 

A:2 

Example 

Compute the support of {A,E} by following the pointers in the tree 

2 ≥  minsup 

 

{A,E} is frequent 

 

There is no conditional FP-tree for {A,E} 



Example 

• So for E we have the following frequent itemsets 

{E}, {D,E}, {C,E}, {A,E} 

 

• We proceed with D 



null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 
C:3 

D:1 

D:1 

E:1 E:1 
D:1 

E:1 

Item Pointer

A

B

C

D

E

Header table 

Ending in D 

Example 



null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 
C:3 

D:1 

D:1 

D:1 

Phase 1 – construct 

prefix tree  

Find all prefix paths that 

contain D 

Support 5 > minsup, D is 

frequent 

Phase 2 

Convert prefix tree into 

conditional FP-tree 

Example 



null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 
C:1 

D:1 

D:1 

D:1 

Recompute support 

Example 



null 

A:7 

B:2 

B:3 

C:3 

D:1 

C:1 

D:1 
C:1 

D:1 

D:1 

D:1 

Recompute support 

Example 



null 

A:3 

B:2 

B:3 

C:3 

D:1 

C:1 

D:1 
C:1 

D:1 

D:1 

D:1 

Recompute support 

Example 



null 

A:3 

B:2 

B:3 

C:1 

D:1 

C:1 

D:1 
C:1 

D:1 

D:1 

D:1 

Recompute support 

Example 



null 

A:3 

B:2 

B:1 

C:1 

D:1 

C:1 

D:1 
C:1 

D:1 

D:1 

D:1 

Recompute support 

Example 



null 

A:3 

B:2 

B:1 

C:1 

D:1 

C:1 

D:1 
C:1 

D:1 

D:1 

D:1 

Prune nodes 

Example 



null 

A:3 

B:2 

B:1 

C:1 
C:1 

C:1 

Prune nodes 

Example 



null 

A:3 

B:2 

B:1 

C:1 
C:1 

C:1 

Construct conditional FP-trees for {C,D}, {B,D}, {A,D} 

 

And so on…. 

Example 



Observations 

• At each recursive step we solve a subproblem 

• Construct the prefix tree 

• Compute the new support 

• Prune nodes 

• Subproblems are disjoint so we never consider 

the same itemset twice 

 

• Support computation is efficient – happens 

together with the computation of the frequent 

itemsets. 



Observations 

• The efficiency of the algorithm depends on the 

compaction factor of the dataset 

 

• If the tree is bushy then the algorithm does not 

work well, it increases a lot of number of 

subproblems that need to be solved. 



FREQUENT ITEMSET 

RESEARCH 




