
DATA MINING

LECTURE 3
Frequent Itemsets

Association Rules

• Given a set of transactions, find combinations of items
(itemsets) that occur frequently

Market-Basket transactions

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Examples of frequent itemsets

{Diaper, Beer} : 3

{Milk, Bread} : 3

{Milk, Bread, Diaper}: 2

Frequent Itemsets

𝑠 𝐼 : support, number of

transactions that contain I

𝑠 𝐼 ≥ minsup

Mining Frequent Itemsets task

• Input: A set of transactions T, over a set of items I

• Output: All itemsets with items in I having

• support ≥ minsup threshold

• Problem parameters:

• N = |T|: number of transactions

• d = |I|: number of (distinct) items

• w: max width of a transaction

• Number of possible itemsets = 2d

The itemset lattice

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are

2d possible itemsets

Too expensive to test all!

Reduce the number of candidates

• Apriori principle (Main observation):

– If an itemset is frequent, then all of its subsets must also
be frequent

– If an itemset is not frequent, then all of its supersets
cannot be frequent

– The support of an itemset never exceeds the support of
its subsets

– This is known as the anti-monotone property of
support

)()()(:, YsXsYXYX 

Illustration of the Apriori principle

Found to be frequent

Frequent

subsets

Illustration of the Apriori principle

Found to be

Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDEPruned

Infrequent supersets

1. Find frequent 1-items and put them to Lk (k=1)

2. Use Lk to generate a collection of candidate

itemsets Ck+1 with size (k+1)

3. Scan the database to find which itemsets in

Ck+1 are frequent and put them into Lk+1

4. If Lk+1 is not empty

 k=k+1

 Goto step 2

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",

Proc. of the 20th Int'l Conference on Very Large Databases, 1994.

The Apriori algorithm
Level-wise approach

The Apriori algorithm

Ck: Candidate itemsets of size k

Lk : frequent itemsets of size k

L1 = {frequent 1-itemsets};

for (k = 2; Lk !=; k++)

 Ck+1 = GenerateCandidates(Lk)

 for each transaction t in database do
 increment count of candidates in Ck+1 that are contained in t

 endfor

 Lk+1 = candidates in Ck+1 with support ≥min_sup

endfor

return k Lk;

• Assume the items in Lk are listed in an order (e.g.,

lexicographic)

• Step 1: self-joining Lk (IN SQL)‏

insert into Ck+1

select p.item1, p.item2, …, p.itemk, q.itemk

from Lk p, Lk q

where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk

Generate Candidates Ck+1

Create an itemset of size k+1, by joining two

itemsets of size k, that share the first k-1 items

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

Example I

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

Example I

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

Example I

{a,b,c} {a,b,d}

{a,b,c,d}

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

{a,c,d} {a,c,e}

{a,c,d,e}

Example I

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3

• Assume the items in Lk are listed in an order (e.g.,

alphabetical)

• Step 1: self-joining Lk (IN SQL)‏

insert into Ck+1

select p.item1, p.item2, …, p.itemk, q.itemk

from Lk p, Lk q

where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk

• Step 2: pruning

forall itemsets c in Ck+1 do

forall k-subsets s of c do

if (s is not in Lk) then delete c from Ck+1

All itemsets of size k that are

subsets of a new (k+1)-itemset

should be frequent

Generate Candidates Ck+1

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

• Pruning:

– abcd is kept since all subset itemsets are

in L3

– acde is removed because ade is not in L3

• C4={abcd}

{a,c,d} {a,c,e}

{a,c,d,e}

acd ace ade cde
  X

Example I
{a,b,c} {a,b,d}

{a,b,c,d}

abc abd acd bcd

   

The Apriori algorithm

Ck: Candidate itemsets of size k

Lk : frequent itemsets of size k

L1 = {frequent 1-itemsets};

for (k = 2; Lk !=; k++)

 Ck+1 = GenerateCandidates(Lk)

 for each transaction t in database do
 increment count of candidates in Ck+1 that are contained in t

 endfor

 Lk+1 = candidates in Ck+1 with support ≥min_sup

endfor

return k Lk;

Reducing Number of Comparisons

• Candidate counting:
• Scan the database of transactions to determine the

support of each candidate itemset

• To reduce the number of comparisons, store the
candidates in a hash structure
• Instead of matching each transaction against every candidate,

match it against candidates contained in the hashed buckets

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions Hash Structure

k

Buckets

ASSOCIATION RULES

Association Rule Mining

• Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other
items in the transaction

Market-Basket transactions

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Association Rules

{Diaper}  {Beer},

{Milk, Bread}  {Eggs,Coke},

{Beer, Bread}  {Milk},

Implication means co-occurrence,

not causality!

Definition: Association Rule

Example:

Beer}Diaper,Milk{ 

4.0
5

2

|T|

)BeerDiaper,,Milk(



s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(





c

 Association Rule

– An implication expression of the form

X  Y, where X and Y are itemsets

– Example:

 {Milk, Diaper}  {Beer}

 Rule Evaluation Metrics

– Support (s)

 Fraction of transactions that contain

both X and Y

 the probability P(X,Y) that X and Y

occur together

– Confidence (c)

 Measures how often items in Y

appear in transactions that

contain X

 the conditional probability P(X|Y) that X

occurs given that Y has occurred.

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Association Rule Mining Task

• Input: A set of transactions T, over a set of items I

• Output: All rules with items in I having

• support ≥ minsup threshold

• confidence ≥ minconf threshold

Mining Association Rules

• Two-step approach:

1. Frequent Itemset Generation

– Generate all itemsets whose support  minsup

2. Rule Generation

– Generate high confidence rules from each frequent itemset,

where each rule is a partitioning of a frequent itemset into

Left-Hand-Side (LHS) and Right-Hand-Side (RHS)

 Frequent itemset: {A,B,C,D}

Rule: ABCD

Rule Generation

• We have all frequent itemsets, how do we get the

rules?

• For every frequent itemset S, we find rules of the form

L  S – L , where L  S, that satisfy the minimum confidence

requirement

• Example: L = {A,B,C,D}

• Candidate rules:

 A BCD, B ACD, C ABD, D ABC

AB CD, AC  BD, AD  BC, BD AC, CD AB,

 ABC D, BCD A, BC AD,

• If |L| = k, then there are 2k – 2 candidate association

rules (ignoring L   and   L)

Rule Generation

• How to efficiently generate rules from frequent
itemsets?
• In general, confidence does not have an anti-monotone

property
 c(ABC D) can be larger or smaller than c(AB D)

• But confidence of rules generated from the same
itemset has an anti-monotone property

• e.g., L = {A,B,C,D}:

 c(ABC  D)  c(AB  CD)  c(A  BCD)

• Confidence is anti-monotone w.r.t. number of items on the RHS
of the rule

Rule Generation for Apriori Algorithm
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules created by the RHS

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned

Rules

Low

Confidence

Rule

Rule Generation for Apriori Algorithm

• Candidate rule is generated by merging two rules that
share the same prefix
in the RHS

• join(CDAB,BDAC)
would produce the candidate
rule D  ABC

• Prune rule D  ABC if its
subset ADBC does not have
high confidence

• Essentially we are doing Apriori on the RHS

BD->ACCD->AB

D->ABC

RESULT

POST-PROCESSING

Compact Representation of Frequent

Itemsets
• Some itemsets are redundant because they have identical

support as their supersets

• Number of frequent itemsets

• Need a compact representation

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 1 1 1 1 1 1 1 1 1 1 0

2 1 1 1 1 1 1 1 1 1 1 0

3 1 1 1 1 1 1 1 1 1 1 0

4 1 1 1 1 1 1 1 1 1 1 0

5 1 1 1 1 1 1 1 1 1 1 0

6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

11 0 1 1 1 1 1 1 1 1 1 1

12 0 1 1 1 1 1 1 1 1 1 1

13 0 1 1 1 1 1 1 1 1 1 1

14 0 1 1 1 1 1 1 1 1 1 1

15 0 1 1 1 1 1 1 1 1 1 1














10

1

10
3

k k

Maximal Frequent Itemset

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

Infrequent

Itemsets

Maximal

Itemsets

An itemset is maximal frequent if none of its immediate supersets is

frequent

Maximal itemsets = positive border

Negative Border

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

Infrequent

Itemsets

Itemsets that are not frequent, but all their immediate subsets are

frequent.

Minimal: Smallest itemsets with this property

Border

• Border = Positive Border + Negative Border

• Itemsets such that all their immediate subsets are

frequent and all their immediate supersets are

infrequent.

• Either the positive, or the negative border is

sufficient to summarize all frequent itemsets.

Closed Itemset

• An itemset is closed if none of its immediate supersets

has the same support as the itemset

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2

Maximal vs Closed Itemsets

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction

Ids

Not supported

by any

transactions

Maximal vs Closed Frequent Itemsets

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

Closed = 9

Maximal = 4

Closed

and

maximal

Closed but not

maximal

Maximal vs Closed Itemsets

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets

Pattern Evaluation

• Association rule algorithms tend to produce too
many rules
• many of them are uninteresting or redundant

• Redundant if {A,B,C}  {D} and {A,B}  {D}
have same support & confidence

• Interestingness measures can be used to
prune/rank the derived patterns

• In the original formulation of association rules,
support & confidence are the only measures used

Computing Interestingness Measure

• Given a rule X  Y, information needed to compute rule

interestingness can be obtained from a contingency table

Y Y

X f11 f10 f1+

X f01 f00 fo+

f+1 f+0 |T|

Contingency table for X  Y

f11: support of X and Y

f10: support of X and Y

f01: support of X and Y

f00: support of X and Y

Used to define various measures

 support, confidence, lift, Gini,

 J-measure, etc.

Drawback of Confidence

Coffee

Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

 Association Rule: Tea  Coffee

Confidence= P(Coffee|Tea) =

15

20
= 0.75

but P(Coffee) =
90

100
= 0.9

• Although confidence is high, rule is misleading

• P(Coffee|Tea) = 0.9375

Statistical Independence

• Population of 1000 students

• 600 students know how to swim (S)

• 700 students know how to bike (B)

• 420 students know how to swim and bike (S,B)

• P(SB) = 420/1000 = 0.42

• P(S)  P(B) = 0.6  0.7 = 0.42

• P(SB) = P(S)  P(B) => Statistical independence

Statistical Independence

• Population of 1000 students

• 600 students know how to swim (S)

• 700 students know how to bike (B)

• 500 students know how to swim and bike (S,B)

• P(SB) = 500/1000 = 0.5

• P(S)  P(B) = 0.6  0.7 = 0.42

• P(SB) > P(S)  P(B) => Positively correlated

Statistical Independence

• Population of 1000 students

• 600 students know how to swim (S)

• 700 students know how to bike (B)

• 300 students know how to swim and bike (S,B)

• P(SB) = 300/1000 = 0.3

• P(S)  P(B) = 0.6  0.7 = 0.42

• P(SB) < P(S)  P(B) => Negatively correlated

Statistical-based Measures

• Measures that take into account statistical

dependence

)()(),(

)()(

),(
or

)(

)|(

YPXPYXPPS

YPXP

YXP
Interest

YP

XYP
Lift





Text mining: Pointwise Mutual Information

Example: Lift/Interest

Coffee

Coffee

Tea 15 5 20

Tea 75 5 80

90 10 100

 Association Rule: Tea  Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Drawback of Lift & Interest

Y Y

X 10 0 10

X 0 90 90

10 90 100

Y Y

X 90 0 90

X 0 10 10

90 10 100

10
)1.0)(1.0(

1.0
Lift 11.1

)9.0)(9.0(

9.0
Lift

Statistical independence:

If P(X,Y)=P(X)P(Y) => Lift = 1

Rare co-occurrences are deemed more interesting

ALTERNATIVE FREQUENT

ITEMSET COMPUTATION
Slides taken from Mining Massive Datasets course by

Anand Rajaraman and Jeff Ullman.

Efficient computation of pairs

• The operation that takes most resources (mostly

in terms of memory, but also time) is the

computation of frequent pairs.

• How can we make this faster?

48

PCY Algorithm

• During Pass 1 (computing frequent items) of A-

priori, most memory is idle.

• Use that memory to keep counts of buckets into

which pairs of items are hashed.

• Just the count, not the pairs themselves.

49

Needed Extensions

1. Pairs of items need to be generated from the

input file; they are not present in the file.

2. We are not just interested in the presence of a

pair, but we need to see whether it is present

at least s (support) times.

50

PCY Algorithm – (2)

• A bucket is frequent if its count is at least the

support threshold.

• If a bucket is not frequent, no pair that hashes to

that bucket could possibly be a frequent pair.

• On Pass 2 (frequent pairs), we only count pairs

that hash to frequent buckets.

51

PCY Algorithm – Before Pass 1 Organize Main

Memory

• Space to count each item.

• One (typically) 4-byte integer per item.

• Use the rest of the space for as many integers,

representing buckets, as we can.

52

Picture of PCY

Hash

table

Item counts

Pass 1

53

PCY Algorithm – Pass 1

FOR (each basket) {

 FOR (each item in the basket)

 add 1 to item’s count;

 FOR (each pair of items) {

 hash the pair to a bucket;

 add 1 to the count for that

 bucket

 }

}

54

Observations About Buckets

1. A bucket that a frequent pair hashes to is
surely frequent.

• We cannot use the hash table to eliminate any
member of this bucket.

2. Even without any frequent pair, a bucket can
be frequent.

• Again, nothing in the bucket can be eliminated.

3. But in the best case, the count for a bucket is
less than the support s.
• Now, all pairs that hash to this bucket can be eliminated

as candidates, even if the pair consists of two frequent
items.

55

PCY Algorithm – Between Passes

• Replace the buckets by a bit-vector:

• 1 means the bucket is frequent; 0 means it is not.

• 4-byte integers are replaced by bits, so the bit-

vector requires 1/32 of memory.

• Also, decide which items are frequent and list

them for the second pass.

56

Picture of PCY

Hash

table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Counts of

candidate

 pairs

57

PCY Algorithm – Pass 2

• Count all pairs {i, j } that meet the conditions

for being a candidate pair:

1. Both i and j are frequent items.

2. The pair {i, j }, hashes to a bucket number whose bit

in the bit vector is 1.

• Notice both these conditions are necessary for

the pair to have a chance of being frequent.

58

All (Or Most) Frequent Itemsets In < 2

Passes

• A-Priori, PCY, etc., take k passes to find

frequent itemsets of size k.

• Other techniques use 2 or fewer passes for all

sizes:

• Simple sampling algorithm.

• SON (Savasere, Omiecinski, and Navathe).

• Toivonen.

59

Simple Sampling Algorithm – (1)

• Take a random sample of the market baskets.

• Run a-priori or one of its improvements (for sets

of all sizes, not just pairs) in main memory, so

you don’t pay for disk I/O each time you increase

the size of itemsets.

• Be sure you leave enough space for counts.

60

Main-Memory Picture

Copy of

sample

baskets

Space

 for

counts

61

Simple Algorithm – (2)

• Use as your support threshold a suitable,

scaled-back number.

• E.g., if your sample is 1/100 of the baskets, use s

/100 as your support threshold instead of s .

62

Simple Algorithm – Option

• Optionally, verify that your guesses are truly

frequent in the entire data set by a second

pass (eliminate false positives)

• But you don’t catch sets frequent in the whole

but not in the sample. (false negatives)

• Smaller threshold, e.g., s /125, helps catch more

truly frequent itemsets.

• But requires more space.

63

SON Algorithm – (1)

• Repeatedly read small subsets of the baskets into

main memory and perform the first pass of the

simple algorithm on each subset.

• An itemset becomes a candidate if it is found to

be frequent in any one or more subsets of the

baskets.

• Threshold = s/number of subsets

64

SON Algorithm – (2)

• On a second pass, count all the candidate

itemsets and determine which are frequent in the

entire set.

• Key “monotonicity” idea: an itemset cannot be

frequent in the entire set of baskets unless it is

frequent in at least one subset.

• Why?

65

SON Algorithm – Distributed Version

• This idea lends itself to distributed data

mining.

• If baskets are distributed among many nodes,

compute frequent itemsets at each node, then

distribute the candidates from each node.

• Finally, accumulate the counts of all

candidates.

66

Toivonen’s Algorithm – (1)

• Start as in the simple sampling algorithm, but

lower the threshold slightly for the sample.

• Example: if the sample is 1% of the baskets, use s /125

as the support threshold rather than s /100.

• Goal is to avoid missing any itemset that is frequent in

the full set of baskets.

67

Toivonen’s Algorithm – (2)

• Add to the itemsets that are frequent in the

sample the negative border of these itemsets.

• An itemset is in the negative border if it is not

deemed frequent in the sample, but all its

immediate subsets are.

68

Reminder: Negative Border

• ABCD is in the negative border if and only if:

1. It is not frequent in the sample, but

2. All of ABC, BCD, ACD, and ABD are.

• A is in the negative border if and only if it is

not frequent in the sample.

 Because the empty set is always frequent.

 Unless there are fewer baskets than the support

threshold (silly case).

Negative Border

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

Infrequent

Itemsets

Itemsets that are not frequent, but all their immediate subsets are

frequent.

70

Picture of Negative Border

 …

triples

pairs

singletons

Negative Border

Frequent Itemsets

from Sample

71

Toivonen’s Algorithm – (3)

• In a second pass, count all candidate frequent

itemsets from the first pass, and also count their

negative border.

• If no itemset from the negative border turns out to

be frequent, then the candidates found to be

frequent in the whole data are exactly the

frequent itemsets.

72

Toivonen’s Algorithm – (4)

• What if we find that something in the negative

border is actually frequent?

• We must start over again!

• Try to choose the support threshold so the

probability of failure is low, while the number of

itemsets checked on the second pass fits in main-

memory.

73

If Something in the Negative Border is

Frequent . . .

 …

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets

from Sample

We broke through the

negative border. How

far does the problem

 go?

74

Theorem:

• If there is an itemset that is frequent in the whole,

but not frequent in the sample, then there is a

member of the negative border for the sample

that is frequent in the whole.

75

• Proof: Suppose not; i.e.;

1. There is an itemset S frequent in the whole but not

frequent in the sample, and

2. Nothing in the negative border is frequent in the

whole.

• Let T be a smallest subset of S that is not

frequent in the sample.

• T is frequent in the whole (S is frequent +

monotonicity).

• T is in the negative border (else not

“smallest”).

Example

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border

Infrequent

Itemsets

THE FP-TREE AND THE

FP-GROWTH ALGORITHM
Slides from course lecture of E. Pitoura

Overview

• The FP-tree contains a compressed

representation of the transaction database.

• A trie (prefix-tree) data structure is used

• Each transaction is a path in the tree – paths can

overlap.

• Once the FP-tree is constructed the recursive,

divide-and-conquer FP-Growth algorithm is used

to enumerate all frequent itemsets.

FP-tree Construction

• The FP-tree is a trie (prefix tree)

• Since transactions are sets of

items, we need to transform them

into ordered sequences so that

we can have prefixes

• Otherwise, there is no common prefix

between sets {A,B} and {B,C,A}

• We need to impose an order to

the items

• Initially, assume a lexicographic order.

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

FP-tree Construction

• Initially the tree is empty

null
TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

FP-tree Construction

• Reading transaction TID = 1

• Each node in the tree has a label consisting of the item
and the support (number of transactions that reach that
node, i.e. follow that path)

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:1

B:1

Node label = item:support

FP-tree Construction

• Reading transaction TID = 2

• We add pointers between nodes that refer to the

same item

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:1

B:1

B:1

C:1

D:1

Each transaction is a path in the tree

FP-tree Construction

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:1

B:1

B:1

C:1

D:1

After reading

transactions TID=1, 2:

Item Pointer

A

B

C

D

E

Header Table

The Header Table and the

pointers assist in

computing the itemset

support

FP-tree Construction

• Reading transaction TID = 3

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:1

B:1

B:1

C:1

Item Pointer

A

B

C

D

E

A:1

D:1

FP-tree Construction

• Reading transaction TID = 3

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

B:1

B:1

C:1

D:1

Item Pointer

A

B

C

D

E

A:2

C:1

D:1

E:1

FP-tree Construction

• Reading transaction TID = 3

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

B:1

B:1

C:1

D:1

Item Pointer

A

B

C

D

E

A:2

C:1

D:1

E:1

Each transaction is a path in the tree

FP-Tree Construction

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1

E:1

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

Pointers are used to assist

frequent itemset generation

D:1

E:1

Transaction

Database

Item Pointer

A

B

C

D

E

Header table

Each transaction is a path in the tree

FP-tree size

• Every transaction is a path in the FP-tree

• The size of the tree depends on the

compressibility of the data

• Extreme case: All transactions are the same, the FP-

tree is a single branch

• Extreme case: All transactions are different the size of

the tree is the same as that of the database (bigger

actually since we need additional pointers)

Item ordering

• The size of the tree also depends on the ordering of the items.

• Heuristic: order the items in according to their frequency from
larger to smaller.
• We would need to do an extra pass over the dataset to count

frequencies

• Example:

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

TID Items
1 {Β,Α}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {Β,Α,C}
6 {Β,Α,C,D}
7 {B,C}
8 {Β,Α,C}
9 {Β,Α,D}
10 {B,C,E}

σ(Α)=7, σ(Β)=8,
σ(C)=7, σ(D)=5,
σ(Ε)=3

Ordering : Β,Α,C,D,E

Finding Frequent Itemsets

• Input: The FP-tree

• Output: All Frequent Itemsets and their support

• Method:

• Divide and Conquer:

• Consider all itemsets that end in: E, D, C, B, A

• For each possible ending item, consider the itemsets with last

items one of items preceding it in the ordering

• E.g, for E, consider all itemsets with last item D, C, B, A. This

way we get all the itesets ending at DE, CE, BE, AE

• Proceed recursively this way.

• Do this for all items.

Frequent itemsets

All Itemsets

 Ε D C B A

DE CE BE AE CD BD AD BC AC AB

CDE BDE ADE BCE ACE ABE BCD ACD ABD ABC

ACDE BCDE ABDE ABCE ABCD

ABCDE

Frequent Itemsets

All Itemsets

 Ε D C B A

DE CE BE AE CD BD AD BC AC AB

CDE BDE ADE BCE ACE ABE BCD ACD ABD ABC

ACDE BCDE ABDE ABCE ABCD

ABCDE

Frequent?;

Frequent?;

Frequent?

Frequent?

Frequent Itemsets

All Itemsets

 Ε D C B A

DE CE BE AE CD BD AD BC AC AB

CDE BDE ADE BCE ACE ABE BCD ACD ABD ABC

ACDE BCDE ABDE ABCE ABCD

ABCDE

Frequent?

Frequent?

Frequent?

Frequent?

Frequent?

Frequent Itemsets

All Itemsets

 Ε D C B A

DE CE BE AE CD BD AD BC AC AB

CDE BDE ADE BCE ACE ABE BCD ACD ABD ABC

ACDE BCDE ABDE ABCE ABCD

ABCDE

Frequent?

Frequent?

Frequent?

We can generate all itemsets this way

We expect the FP-tree to contain a lot less

Using the FP-tree to find frequent itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1

E:1

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

Bottom-up traversal of the tree.

First, itemsets ending in E, then D,

etc, each time a suffix-based class

D:1

E:1

Transaction

Database

Item Pointer

A

B

C

D

E

Header table

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1 E:1
D:1

E:1

Item Pointer

A

B

C

D

E

Header table

Subproblem: find frequent

itemsets ending in E

 We will then see how to compute the support for the possible itemsets

Finding Frequent Itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1 E:1
D:1

E:1

Item Pointer

A

B

C

D

E

Header table

Ending in D

Finding Frequent Itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1 E:1
D:1

E:1

Item Pointer

A

B

C

D

E

Header table

Ending in C

Finding Frequent Itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1 E:1
D:1

E:1

Item Pointer

A

B

C

D

E

Header table

Ending in B

Finding Frequent Itemsets

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1 E:1
D:1

E:1

Item Pointer

A

B

C

D

E

Header table

Ending in Α

Finding Frequent Itemsets

Algorithm

• For each suffix X

• Phase 1
• Construct the prefix tree for X as shown before, and

compute the support using the header table and the
pointers

• Phase 2
• If X is frequent, construct the conditional FP-tree for X in

the following steps
1. Recompute support

2. Prune infrequent items

3. Prune leaves and recurse

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1 E:1
D:1

E:1

Item Pointer

A

B

C

D

E

Header table

Phase 1 – construct

prefix tree

Find all prefix paths that

contain E

Prexi Paths for Ε:

{E}, {D,E}, {C,D,E}, {A,D,Ε}, {A,C,D,E}, {C,E}, {B,C,E}

Example

null

A:7 B:3

C:3
C:1

D:1

D:1

E:1 E:1

E:1

Phase 1 – construct

prefix tree

Find all prefix paths that

contain E

Prexi Paths for Ε:

{E}, {D,E}, {C,D,E}, {A,D,Ε}, {A,C,D,E}, {C,E}, {B,C,E}

Example

null

A:7 B:3

C:3
C:1

D:1

D:1

E:1 E:1

E:1

Compute Support for E

(minsup = 2)

How?

Follow pointers while

summing up counts:

1+1+1 = 3 > 2

E is frequent

{E} is frequent so we can now consider suffixes DE, CE, BE, AE

Example

null

A:7 B:3

C:3
C:1

D:1

D:1

E:1 E:1

E:1

Phase 2

Convert the prefix tree of E into a

conditional FP-tree

Two changes

(1) Recompute support

(2) Prune infrequent

Example

E is frequent so we proceed with Phase 2

null

A:7 B:3

C:3
C:1

D:1

D:1

E:1 E:1

E:1

Example

Recompute Support

The support counts for some of the

nodes include transactions that do

not end in E

For example in null->B->C->E we

count {B, C}

The support of any node is equal to

the sum of the support of leaves

with label E in its subtree

null

B:3

C:3
C:1

D:1

D:1

E:1 E:1

E:1

A:7

Example

null

B:3

C:1
C:1

D:1

D:1

E:1 E:1

E:1

A:7

Example

null

A:7 B:1

C:1
C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:7 B:1

C:1
C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:7 B:1

C:1
C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:2 B:1

C:1
C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:2 B:1

C:1
C:1

D:1

D:1

E:1 E:1

E:1

Example

null

A:2 B:1

C:1
C:1

D:1

D:1

E:1 E:1

E:1

Truncate

Delete the nodes of Ε

Example

null

A:2 B:1

C:1
C:1

D:1

D:1

E:1 E:1

E:1

Truncate

Delete the nodes of Ε

Example

null

A:2 B:1

C:1
C:1

D:1

D:1

Truncate

Delete the nodes of Ε

Example

null

A:2 B:1

C:1
C:1

D:1

D:1

Prune infrequent

In the conditional FP-tree

some nodes may have

support less than minsup

e.g., B needs to be

pruned

This means that B

appears with E less than

minsup times

Example

null

A:2 B:1

C:1
C:1

D:1

D:1

Example

null

A:2 C:1

C:1

D:1

D:1

Example

null

A:2 C:1

C:1

D:1

D:1

The conditional FP-tree for E

Repeat the algorithm for {D, E}, {C, E}, {A, E}

Example

null

A:2 C:1

C:1

D:1

D:1

Example

Phase 1

Find all prefix paths that contain D (DE) in the conditional FP-tree

null

A:2

C:1

D:1

D:1

Example

Phase 1

Find all prefix paths that contain D (DE) in the conditional FP-tree

null

A:2

C:1

D:1

D:1

Example

Compute the support of {D,E} by following the pointers in the tree

1+1 = 2 ≥ 2 = minsup

{D,E} is frequent

null

A:2

C:1

D:1

D:1

Example

Phase 2

Construct the conditional FP-tree

1. Recompute Support

2. Prune nodes

null

A:2

C:1

D:1

D:1

Example

Recompute support

null

A:2

C:1

D:1

D:1

Example

Prune nodes

null

A:2

C:1

Example

Prune nodes

null

A:2

C:1
Small support

Example

Prune nodes

null

A:2

Example

Final condition FP-tree for {D,E}

The support of A is ≥ minsup so {A,D,E} is frequent

Since the tree has a single node we return to the next

subproblem

null

A:2 C:1

C:1

D:1

D:1

Example

The conditional FP-tree for E

We repeat the algorithm for {D,E}, {C,E}, {A,E}

null

A:2 C:1

C:1

D:1

D:1

Example

Phase 1

Find all prefix paths that contain C (CE) in the conditional FP-tree

null

A:2 C:1

C:1

Example

Phase 1

Find all prefix paths that contain C (CE) in the conditional FP-tree

null

A:2 C:1

C:1

Example

Compute the support of {C,E} by following the pointers in the tree

1+1 = 2 ≥ 2 = minsup

{C,E} is frequent

null

A:2 C:1

C:1

Example

Phase 2

Construct the conditional FP-tree

1. Recompute Support

2. Prune nodes

null

A:1 C:1

C:1

Example

Recompute support

null

A:1 C:1

C:1

Example

Prune nodes

null

A:1

Example

Prune nodes

null

A:1

Example

Prune nodes

null

Example

Prune nodes

Return to the previous subproblem

null

A:2 C:1

C:1

D:1

D:1

Example

The conditional FP-tree for E

We repeat the algorithm for {D,E}, {C,E}, {A,E}

null

A:2 C:1

C:1

D:1

D:1

Example

Phase 1

Find all prefix paths that contain A (AE) in the conditional FP-tree

null

A:2

Example

Phase 1

Find all prefix paths that contain A (AE) in the conditional FP-tree

null

A:2

Example

Compute the support of {A,E} by following the pointers in the tree

2 ≥ minsup

{A,E} is frequent

There is no conditional FP-tree for {A,E}

Example

• So for E we have the following frequent itemsets

{E}, {D,E}, {C,E}, {A,E}

• We proceed with D

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1 E:1
D:1

E:1

Item Pointer

A

B

C

D

E

Header table

Ending in D

Example

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

D:1

Phase 1 – construct

prefix tree

Find all prefix paths that

contain D

Support 5 > minsup, D is

frequent

Phase 2

Convert prefix tree into

conditional FP-tree

Example

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:1

D:1

D:1

D:1

Recompute support

Example

null

A:7

B:2

B:3

C:3

D:1

C:1

D:1
C:1

D:1

D:1

D:1

Recompute support

Example

null

A:3

B:2

B:3

C:3

D:1

C:1

D:1
C:1

D:1

D:1

D:1

Recompute support

Example

null

A:3

B:2

B:3

C:1

D:1

C:1

D:1
C:1

D:1

D:1

D:1

Recompute support

Example

null

A:3

B:2

B:1

C:1

D:1

C:1

D:1
C:1

D:1

D:1

D:1

Recompute support

Example

null

A:3

B:2

B:1

C:1

D:1

C:1

D:1
C:1

D:1

D:1

D:1

Prune nodes

Example

null

A:3

B:2

B:1

C:1
C:1

C:1

Prune nodes

Example

null

A:3

B:2

B:1

C:1
C:1

C:1

Construct conditional FP-trees for {C,D}, {B,D}, {A,D}

And so on….

Example

Observations

• At each recursive step we solve a subproblem

• Construct the prefix tree

• Compute the new support

• Prune nodes

• Subproblems are disjoint so we never consider

the same itemset twice

• Support computation is efficient – happens

together with the computation of the frequent

itemsets.

Observations

• The efficiency of the algorithm depends on the

compaction factor of the dataset

• If the tree is bushy then the algorithm does not

work well, it increases a lot of number of

subproblems that need to be solved.

FREQUENT ITEMSET

RESEARCH

