
DATA MINING 

LECTURE 2 
Frequent Itemsets 

Association Rules 



INTRODUCTION 

SUMMARY 



What is Data Mining? 

• Data mining is the use of efficient  techniques for the analysis 
of very large collections of data and the extraction of useful and 
possibly unexpected patterns in data. 

 

• “Data mining is the analysis of (often large) observational data 
sets to find unsuspected relationships and to summarize the 
data in novel ways that are both understandable and useful to 
the data analyst” (Hand, Mannila, Smyth) 

 

• “Data mining is the discovery of models for data” (Rajaraman, 
Ullman) 
• We can have the following types of models 

• Models that explain the data (e.g., a single function) 

• Models that predict the future data instances. 

• Models that summarize the data 

• Models the extract the most prominent features of the data. 



Why do we need data mining? 

• Really huge amounts of complex data generated from multiple 
sources and interconnected in different ways 
• Scientific data from different disciplines 

• Weather, astronomy, physics, biological microarrays, genomics 

• Huge text collections 
• The Web, scientific articles, news, tweets, facebook postings. 

• Transaction data 
• Retail store records, credit card records 

• Behavioral data 
• Mobile phone data, query logs, browsing behavior, ad clicks 

• Networked data 
• The Web, Social Networks, IM networks, email network, biological networks. 

• All these types of data can be combined in many ways 
• Facebook has a network, text, images, user behavior, ad transactions. 

• We need to analyze this data to extract knowledge 
• Knowledge can be used for commercial or scientific purposes. 

• Our solutions should scale to the size of the data 

 



Data Mining: Confluence of Multiple Disciplines  

Data Mining 

Database  

Technology 
Statistics 

Machine 

Learning 

Pattern 

Recognition 
Algorithm 

Other 

Disciplines 

Visualization 



An example of a data mining challenge 

• We are given a stream of numbers (identifiers, etc). 
We want to answer simple questions: 
• How many numbers are there? 

• How many distinct numbers are there? 

• What are the most frequent numbers? 

• What is the mean of the numbers? Or the median? 

• How many numbers appear at least K times? 

• Etc. 

• These questions are simple if we have resources 
(time and memory).  

• In our case we have neither, since the data is 
streaming. 



Finding the majority element 

• A stream of identifiers; one of them occurs more 

than 50% of the time 

 

• How can you find it using no more than a few 

memory locations? 

 

• Suggestions? 



Finding the majority element (solution) 

A = first item you see; count = 1 

for each subsequent item x 

 if (A == x) count = count + 1  

 else { 

    count = count - 1   

    if (count == 0) {A=x; count = 1} 

         } 

endfor 

return A 

Why does this work correctly? 



Finding the majority element (solution and 

correctness proof) 

A = first item you see; count = 1 

for each subsequent item x 

 if (A==x) count = count + 1  

 else { 

         count = count - 1   

          if (count == 0)  
  {A=x; count = 1} 

        } 

endfor 

return A 

• An occurrence of an 
identifier u is discarded if 
• A=u and the counter is 

decreased. 

• The identifier u causes the 
counter to decrease  

• Basic observation:  
Whenever we discard an 
occurrence of the 
majority element m we 
also discard an 
occurrence of an 
element u different from 
m 



Finding a number in the top half 

• Given a set of N numbers (N is very large) 

 

• Find a number x such that x is *likely* to be 
larger than the median of the numbers 

 

• Simple solution 
• Sort the numbers and store them in sorted array A 

• Any value larger than A[N/2] is a solution 

 

• Other solutions? 

 

 



Finding a number in the top half 

efficiently 
• A solution that uses small number of operations 

• Randomly sample K numbers from the file 

• Output their maximum 

 

 

 

 

 

• Failure probability (1/2)^K 

median 

N/2 items N/2 items 



FREQUENT ITEMSETS & 

ASSOCIATION RULES 
Thanks to: 

Tan, Steinbach, Kumar, “Introduction to Data Mining” 

Evimaria Terzi 

Evaggelia Pitoura 

 



This is how it all started… 

• Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: 
Mining Association Rules between Sets of Items in 
Large Databases. SIGMOD Conference 1993: 207-
216 

• Rakesh Agrawal, Ramakrishnan Srikant: Fast 
Algorithms for Mining Association Rules in Large 
Databases. VLDB 1994: 487-499 

 

• These two papers are credited with the birth of Data 
Mining 

• For a long time people were fascinated with 
Association Rules and Frequent Itemsets 
• Some people (in industry and academia) still are. 

http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod93.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb94.html


• Given a set of transactions, find combinations of items 
(itemsets) that occur frequently 

Market-Basket transactions 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Examples of frequent itemsets 

{Diaper, Beer} : 3 

{Milk, Bread} : 3 

{Milk, Bread, Diaper}: 2  

Frequent Itemsets 



Binary matrix representation 

• Our data can also be represented as a 0/1 matrix 

• Rows: transactions 

• Columns: items 

• 1: item bought, 0: item not bought 

• Asymmetric: we care more about 1’s than 0’s 

 

• We lose information about counts 

 

• A variety of data can be represented like that 

• E.g., Document-words data, biological data, etc 



Definition: Frequent Itemset 

• Itemset 

• A collection of one or more items 

• Example: {Milk, Bread, Diaper} 

• k-itemset 

• An itemset that contains k items 

• Support count () 

• Frequency of occurrence of an itemset 

• E.g.   ({Milk, Bread,Diaper}) = 2  

• Support 

• Fraction of transactions that contain an 

itemset 

• E.g.   s({Milk, Bread, Diaper}) = 2/5 

• Frequent Itemset 

• An itemset whose support is greater 

than or equal to a minsup threshold 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

 𝑠 𝐼 ≥ minsup 



Mining Frequent Itemsets task 

• Input: A set of transactions T, over a set of items I  

• Output: All itemsets with items in I having  

• support ≥ minsup threshold 

 

• Problem parameters: 

• N = |T|: number of transactions 

• d = |I|: number of (distinct) items 

• w: max width of a transaction 

• Number of possible itemsets?  = 2d 



The itemset lattice 

 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are 

2d possible  itemsets 



A Naïve Algorithm 

• Brute-force approach:  
• Each itemset in the lattice is a candidate frequent itemset 

• Count the support of each candidate by scanning the database 

• Match each transaction against every candidate 

• Time Complexity ~ O(NMw) , Space Complexity ~ O(M) 
•  Expensive since M = 2d !!! 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions List of

Candidates

M

w



Frequent Itemset Generation Strategies 

• Reduce the number of candidates (M) 
• Complete search: M=2d 

• Use pruning techniques to reduce M 
 

• Reduce the number of transactions (N) 
• Reduce size of N as the size of itemset increases 

• Used by DHP and vertical-based mining algorithms 
 

• Reduce the number of comparisons (NM) 
• Use efficient data structures to store the candidates or 

transactions 

• No need to match every candidate against every 
transaction 

Any ideas? 



Reduce the number of candidates 

• Apriori principle (Main observation): 

– If an itemset is frequent, then all of its subsets must 
also be frequent 

 

• Apriori principle holds due to the following 
property of the support measure: 

 

 

– The support of an itemset never exceeds the 
support of its subsets 

– This is known as the anti-monotone property of 
support 

)()()(:, YsXsYXYX 



Illustration of the Apriori principle 

Found to be frequent 

Frequent 

subsets   



Illustration of the Apriori principle 

Found to be 

Infrequent 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDEPruned 

Infrequent supersets 



Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count 

{Bread,Milk,Diaper} 2 

 

Items (1-itemsets)  

Pairs (2-itemsets)  

 
(No need to generate 
candidates involving Coke 
or Eggs)  

Triplets (3-itemsets)  

minsup = 3 

If every subset is considered,  
6
1

 + 
6
2

 + 
6
3

 = 6 + 15 + 20 = 41 

With support-based pruning, 

 
6
1

 + 
4
2

 + 1  = 6 + 6 + 1 = 13 

Illustration of the Apriori principle 

Only this triplet has all subsets to be frequent 

But it is below the minsup threshold 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



1. Find frequent 1-items and put them to Lk (k=1)  

2. Use Lk to generate a collection of candidate 

itemsets Ck+1 with size (k+1)  

3. Scan the database to find which itemsets in 

Ck+1 are frequent and put them into Lk+1 

4. If Lk+1 is not empty 

 k=k+1 

 Goto step 2 

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",  

Proc. of the 20th Int'l Conference on Very Large Databases, 1994.  

The Apriori algorithm 



The Apriori algorithm 

Ck: Candidate itemsets of size k 

Lk : frequent itemsets of size k 
 

L1 = {frequent 1-itemsets}; 

for (k = 2; Lk !=; k++)  

   Ck+1 = GenerateCandidates(Lk)  

 for each transaction t in database do  
  increment count of candidates in Ck+1 that are contained in t 

 endfor 

 Lk+1  = candidates in Ck+1 with support ≥min_sup  

endfor 

return k Lk; 



Generate Candidates Ck+1 

• Any ideas? 

 

• We know the frequent itemsets of size k, Lk  

• We know that every itemset in Ck+1 should have 

frequent subsets 

 

• Construct Ck+1 from the itemsets in Lk 



• Assume the items in Lk are listed in an order (e.g., 

alphabetical)  

• Step 1: self-joining Lk (IN SQL)‏ 

insert into Ck+1 

select p.item1, p.item2, …, p.itemk, q.itemk 

from Lk p, Lk q 

where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk 

Generate Candidates Ck+1 

Create an itemset of size k+1, by joining two 

itemsets of size k, that share the first k-1 items 



• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

{a,c,d} {a,c,e} 

{a,c,d,e} 

Example I 

{a,b,c} {a,b,d} 

{a,b,c,d} 



Example II 

 Itemset Count 

{Beer,Diaper} 3 
{Bread,Diaper} 3 
{Bread,Milk} 3 
{Diaper, Milk} 3 

 

Itemset Count 

{Beer,Diaper} 3 
{Bread,Diaper} 3 
{Bread,Milk} 3 
{Diaper, Milk} 3 

 

Itemset 

{Bread,Diaper,Milk} 

 



• Assume the items in Lk are listed in an order (e.g., 

alphabetical)  

• Step 1: self-joining Lk (IN SQL)‏ 

insert into Ck+1 

select p.item1, p.item2, …, p.itemk, q.itemk 

from Lk p, Lk q 

where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk 

• Step 2: pruning 

forall itemsets c in Ck+1 do 

forall k-subsets s of c do 

if (s is not in Lk) then delete c from Ck+1 

All itemsets of size k that are 

subsets of a new (k+1)-itemset 

should be frequent 

Generate Candidates Ck+1 



• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

• Pruning: 

– abcd is kept since all subset itemsets are 

in L3  

– acde is removed because ade is not in L3 

• C4={abcd} 

{a,c,d} {a,c,e} 

{a,c,d,e} 

acd ace ade cde 
  X 

Example I 
{a,b,c} {a,b,d} 

{a,b,c,d} 

abc abd acd bcd 

    



Example II 

 Itemset Count 

{Beer,Diaper} 3 
{Bread,Diaper} 3 
{Bread,Milk} 3 
{Diaper, Milk} 3 

 

Itemset Count 

{Beer,Diaper} 3 
{Bread,Diaper} 3 
{Bread,Milk} 3 
{Diaper, Milk} 3 

 

Itemset 

{Bread,Diaper,Milk} 

 

{Bread,Diaper} 

{Bread,Milk} 

{Diaper, Milk} 

 

 

 



Example II – Alternative  

 Itemset Count 

{Beer,Diaper} 3 
{Bread,Diaper} 3 
{Bread,Milk} 3 
{Diaper, Milk} 3 

 

Item Count 

Bread 4 
Milk 4 
Beer 3 
Diaper 4 

 

Itemset 

{Beer,Bread,Diaper} 
{Beer,Bread,Milk} 
{Beer,Diaper,Milk} 
{Bread,Diaper,Milk} 

 

Joining with the L1 set generates more candidates that need to be pruned. 



The Apriori algorithm 

Ck: Candidate itemsets of size k 

Lk : frequent itemsets of size k 
 

L1 = {frequent 1-itemsets}; 

for (k = 2; Lk !=; k++)  

   Ck+1 = GenerateCandidates(Lk)  

 for each transaction t in database do  
  increment count of candidates in Ck+1 that are contained in t 

 endfor 

 Lk+1  = candidates in Ck+1 with support ≥min_sup  

endfor 

return k Lk; 



Reducing Number of Comparisons 

• Candidate counting: 
• Scan the database of transactions to determine the 

support of each candidate itemset 

• To reduce the number of comparisons, store the 
candidates in a hash structure 
•  Instead of matching each transaction against every candidate, 

match it against candidates contained in the hashed buckets 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions Hash Structure

k

Buckets



How to Count Supports of Candidates? 

– Method: 

– Candidate itemsets are stored in a hash-tree 

– Leaf node of hash-tree contains a list of itemsets and counts 

– Interior node contains a hash table 

– Subset operation: finds all the candidates contained in a 

transaction 



Generate Hash Tree 

2 3 4 

5 6 7 

1 4 5 
1 3 6 

1 2 4 

4 5 7 1 2 5 

4 5 8 

1 5 9 

3 4 5 3 5 6 

3 5 7 

6 8 9 

3 6 7 

3 6 8 

1,4,7 

2,5,8 

3,6,9 
Hash function = mod 3 

Suppose you have 15 candidate itemsets of length 3:  

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 

5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8} 

You need: 

• Hash function  

• Max leaf size: max number of itemsets stored in a leaf node (if number of 

candidate itemsets exceeds max leaf size, split the node) 

At the i-th level we hash at the i-th item 



Association Rule Discovery: Hash tree 

1 5 9 

1 4 5 1 3 6 

3 4 5 3 6 7 

3 6 8 

3 5 6 

3 5 7 

6 8 9 

2 3 4 

5 6 7 

1 2 4 

4 5 7 

1 2 5 

4 5 8 

1,4,7 

2,5,8 

3,6,9 

Hash Function  Candidate Hash Tree 

Hash on 

1, 4 or 7 



Association Rule Discovery: Hash tree 

1 5 9 

1 4 5 1 3 6 

3 4 5 3 6 7 

3 6 8 

3 5 6 

3 5 7 

6 8 9 

2 3 4 

5 6 7 

1 2 4 

4 5 7 

1 2 5 

4 5 8 

1,4,7 

2,5,8 

3,6,9 

Hash Function Candidate Hash Tree 

Hash on 

2, 5 or 8 



Association Rule Discovery: Hash tree 

1 5 9 

1 4 5 1 3 6 

3 4 5 3 6 7 

3 6 8 

3 5 6 

3 5 7 

6 8 9 

2 3 4 

5 6 7 

1 2 4 

4 5 7 

1 2 5 

4 5 8 

1,4,7 

2,5,8 

3,6,9 

Hash Function Candidate Hash Tree 

Hash on 

3, 6 or 9 



Subset Operation 

1  2  3  5  6

Transaction, t

2  3  5  61 3  5  62

5  61 33  5  61 2 61 5 5  62 3 62 5

5  63

1 2 3

1 2 5

1 2 6

1 3 5

1 3 6
1 5 6

2 3 5

2 3 6
2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what 

are the possible subsets of 

size 3? 



Subset Operation Using Hash Tree 

1 5 9 

1 4 5 1 3 6 

3 4 5 3 6 7 

3 6 8 

3 5 6 

3 5 7 

6 8 9 

2 3 4 

5 6 7 

1 2 4 

4 5 7 

1 2 5 

4 5 8 

1 2 3 5 6 

1 + 2 3 5 6 
3 5 6 2 + 

5 6 3 + 

1,4,7 

2,5,8 

3,6,9 

Hash Function transaction 



Subset Operation Using Hash Tree 

1 5 9 

1 4 5 1 3 6 

3 4 5 3 6 7 

3 6 8 

3 5 6 

3 5 7 

6 8 9 

2 3 4 

5 6 7 

1 2 4 

4 5 7 

1 2 5 

4 5 8 

1,4,7 

2,5,8 

3,6,9 

Hash Function 
1 2 3 5 6 

3 5 6 1 2 + 

5 6 1 3 + 

6 1 5 + 

3 5 6 2 + 

5 6 3 + 

1 + 2 3 5 6 

transaction 



Subset Operation Using Hash Tree 

1 5 9 

1 4 5 1 3 6 

3 4 5 3 6 7 

3 6 8 

3 5 6 

3 5 7 

6 8 9 

2 3 4 

5 6 7 

1 2 4 

4 5 7 

1 2 5 

4 5 8 

1,4,7 

2,5,8 

3,6,9 

Hash Function 
1 2 3 5 6 

3 5 6 1 2 + 

5 6 1 3 + 

6 1 5 + 

3 5 6 2 + 

5 6 3 + 

1 + 2 3 5 6 

transaction 

Match transaction against 9 out of 15 candidates 

Hash-tree enables to enumerate itemsets in transaction  

and match them against candidates 



Factors Affecting Complexity 

• Choice of minimum support threshold 
•  lowering support threshold results in more frequent itemsets 

•  this may increase number of candidates and max length of frequent 
itemsets 

• Dimensionality (number of items) of the data set 
•  more space is needed to store support count of each item 

•  if number of frequent items also increases, both computation and I/O 
costs may also increase 

• Size of database 
•  since Apriori makes multiple passes, run time of algorithm may 

increase with number of transactions 

• Average transaction width 
•  transaction width increases with denser data sets 

• This may increase max length of frequent itemsets and traversals of 
hash tree (number of subsets in a transaction increases with its width) 



ASSOCIATION RULES 



Association Rule Mining 

• Given a set of transactions, find rules that will predict the 
occurrence of an item based on the occurrences of other 
items in the transaction 

Market-Basket transactions 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Example of Association Rules 

{Diaper}  {Beer}, 

{Milk, Bread}  {Eggs,Coke}, 

{Beer, Bread}  {Milk}, 

Implication means co-occurrence, 

not causality! 



Definition: Association Rule 

Example: 

Beer}Diaper,Milk{ 

4.0
5

2

|T|

)BeerDiaper,,Milk(



s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(





c

 Association Rule 

– An implication expression of the form 

X  Y, where X and Y are itemsets 

– Example: 

   {Milk, Diaper}  {Beer}  

 

 

 Rule Evaluation Metrics 

– Support (s) 

 Fraction of transactions that contain 

both X and Y 

– Confidence (c) 

 Measures how often items in Y  

appear in transactions that 

contain X 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Support and Confidence 

• For association rule X  Y: 

• Support s(XY): the probability P(X,Y) that X and Y 

occur together 

• Confidence c(X  Y): the conditional probability P(X|Y) 

that X occurs given that Y has occurred. 

Customer 

buys diaper 

Customer 

buys both 

Customer 

buys beer 

Support, Confidence of rule 

 A  C  (50%, 66.6%)  

 C   A  (50%, 100%)  



Association Rule Mining Task 

• Input: A set of transactions T, over a set of items I  

• Output: All rules with items in I having  

• support ≥ minsup threshold 

• confidence ≥ minconf threshold 

 



Mining Association Rules 
Example of Rules: 
 

{Milk,Diaper}  {Beer} (s=0.4, c=0.67) 

{Milk,Beer}  {Diaper} (s=0.4, c=1.0) 

{Diaper,Beer}  {Milk} (s=0.4, c=0.67) 

{Beer}  {Milk,Diaper} (s=0.4, c=0.67)  

{Diaper}  {Milk,Beer} (s=0.4, c=0.5)  

{Milk}  {Diaper,Beer} (s=0.4, c=0.5) 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Observations: 

• All the above rules are binary partitions of the same itemset:  

 {Milk, Diaper, Beer} 

• Rules originating from the same itemset have identical support but 

  can have different confidence 

• Thus, we may decouple the support and confidence requirements 



Mining Association Rules 

• Two-step approach:  

1. Frequent Itemset Generation 

– Generate all itemsets whose support  minsup 

 

2. Rule Generation 

– Generate high confidence rules from each frequent itemset, 

where each rule is a binary partitioning of a frequent itemset 

 

 



Rule Generation 

• Given a frequent itemset L, find all non-empty 

subsets f  L such that f  L – f satisfies the 

minimum confidence requirement 

• If {A,B,C,D} is a frequent itemset, candidate rules: 

ABC D,  ABD C,  ACD B,  BCD A,  

A BCD, B ACD, C ABD,  D ABC 

AB CD, AC  BD,  AD  BC,  BC AD,  

BD AC,  CD AB,  
 

• If |L| = k, then there are 2k – 2 candidate 

association rules (ignoring L   and   L) 



Rule Generation 

• How to efficiently generate rules from frequent 
itemsets? 
• In general, confidence does not have an anti-monotone 

property 
 c(ABC D) can be larger or smaller than c(AB D) 

 

• But confidence of rules generated from the same 
itemset has an anti-monotone property 

• e.g., L = {A,B,C,D}: 
  
  c(ABC  D)  c(AB  CD)  c(A  BCD) 
  

•  Confidence is anti-monotone w.r.t. number of items on the RHS 
of the rule 



Rule Generation for Apriori Algorithm 
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules 

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned 

Rules 

Low 

Confidence 

Rule 



Rule Generation for Apriori Algorithm 

• Candidate rule is generated by merging two rules 
that share the same prefix 
in the rule consequent 

 

• join(CD=>AB,BD=>AC) 
would produce the candidate 
rule D => ABC 

 

• Prune rule D=>ABC if its 
subset AD=>BC does not have 
high confidence 

BD=>ACCD=>AB

D=>ABC



RESULT  

POST-PROCESSING 



Compact Representation of Frequent 

Itemsets 
• Some itemsets are redundant because they have identical 

support as their supersets 

 

 

 

 

 

 

 
 

 

 

• Number of frequent itemsets 
 

• Need a compact representation 

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1














10

1

10
3

k k



Maximal Frequent Itemset 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Border 

Infrequent 

Itemsets 

Maximal 

Itemsets 

An itemset is maximal frequent if none of its immediate supersets is 

frequent 



Closed Itemset 

• An itemset is closed if none of its immediate supersets 

has the same support as the itemset 

 

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2



Maximal vs Closed Itemsets 

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction 

Ids 

Not supported 

by any 

transactions 



Maximal vs Closed Frequent Itemsets 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2 

# Closed = 9 

# Maximal = 4 

Closed 

and 

maximal 

Closed but not 

maximal 



Maximal vs Closed Itemsets 

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets



Pattern Evaluation 

• Association rule algorithms tend to produce too 
many rules  
• many of them are uninteresting or redundant 

• Redundant if {A,B,C}  {D} and {A,B}  {D}    
have same support & confidence 

 

• Interestingness measures can be used to 
prune/rank the derived patterns 

 

• In the original formulation of association rules, 
support & confidence are the only measures used 



Computing Interestingness Measure 

• Given a rule X  Y, information needed to compute rule 

interestingness can be obtained from a contingency table 

Y Y  

X f11 f10 f1+ 

X  f01 f00 fo+ 

f+1 f+0 |T| 

Contingency table for X  Y 

f11: support of X and Y 

f10: support of X and Y 

f01: support of X and Y 

f00: support of X and Y 

Used to define various measures 

 support, confidence, lift, Gini, 

   J-measure, etc. 



Drawback of Confidence 

 

Coffee 

 

Coffee 

Tea 15 5 20 

Tea 75 5 80 

90 10 100 

           Association Rule: Tea  Coffee 
 

Confidence= P(Coffee|Tea) = 0.75 

but P(Coffee) = 0.9 

 Although confidence is high, rule is misleading 

 P(Coffee|Tea) = 0.9375 



Statistical Independence 

• Population of 1000 students 
• 600 students know how to swim (S) 

• 700 students know how to bike (B) 

• 420 students know how to swim and bike (S,B) 

 

• P(SB) = 420/1000 = 0.42 

• P(S)  P(B) = 0.6  0.7 = 0.42 

 

• P(SB) = P(S)  P(B) => Statistical independence 

• P(SB) > P(S)  P(B) => Positively correlated 

• P(SB) < P(S)  P(B) => Negatively correlated 



Statistical-based Measures 

• Measures that take into account statistical 

dependence 

)](1)[()](1)[(

)()(),(

)()(),(

)()(

),(
or  

)(

)|(

YPYPXPXP

YPXPYXP
tcoefficien

YPXPYXPPS

YPXP

YXP
Interest

YP

XYP
Lift












Text mining: Pointwise Mutual Information  



Example: Lift/Interest 

 

Coffee 

 

Coffee 

Tea 15 5 20 

Tea 75 5 80 

90 10 100 

           Association Rule: Tea  Coffee 
 

Confidence= P(Coffee|Tea) = 0.75 

but P(Coffee) = 0.9 

 Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated) 



Drawback of Lift & Interest 

Y Y 

X 10 0 10 

X 0 90 90 

10 90 100 

Y Y 

X 90 0 90 

X 0 10 10 

90 10 100 

10
)1.0)(1.0(

1.0
Lift 11.1

)9.0)(9.0(

9.0
Lift

Statistical independence: 

If P(X,Y)=P(X)P(Y)  => Lift = 1 

Rare co-occurrences are deemed more interesting 




