
DATA MINING 

LECTURE 13 
Pagerank, Absorbing Random Walks 

 

Coverage Problems 



PAGERANK 



PageRank algorithm 

• The PageRank random walk 

• Start from a page chosen uniformly at random 

• With probability α follow a random outgoing link  

• With probability 1- α jump to a random page 

chosen uniformly at random 

• Repeat until convergence  

• The PageRank Update Equations 
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The PageRank random walk 

• What about sink nodes? 

• When at a node with no outgoing links jump to a page 

chosen uniformly at random 
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The PageRank random walk 

• The PageRank transition probability matrix 

• P was sparse, P’’ is dense. 

P’’ = αP’ + (1-α)uvT,   
where u is the vector of all 1s, u = (1,1,…,1) 
and v is the uniform vector, v = (1/n,1/n,…,1/n) 



A PageRank implementation 

• Performing vanilla power method is now too 

expensive – the matrix is not sparse 

q0 = v 

t = 1 

repeat 

  

  

     t = t +1  

until δ < ε 
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Efficient computation of qt = (P’’)T qt-1 
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P = normalized adjacency matrix 

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s 

P’ = P + dvT, where di is 1 if i is sink and 0 o.w. 



A PageRank implementation 

• For every node 𝑖: 

𝑦𝑖 = 𝛼  
𝑞𝑗
𝑡−1 

𝑂𝑢𝑡(𝑗)
𝑗:𝑗→𝑖

 

𝛽 = 1 − 𝑦𝑖
𝑖

 

𝑞𝑖
𝑡 = 𝑦𝑖 + 𝛽
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Why does this work? 

 𝑦𝑖 = 

𝑖

𝛼 1 −  
𝑞𝑗
𝑡−1

𝑛
𝑗:𝑗 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑘𝑖

= 𝛼 − 𝛼  𝑞𝑗
𝑡−1

𝑗:𝑗 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑘

 

𝛽 =  𝛼  𝑞𝑗
𝑡−1

𝑗:𝑗 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑘

+ (1 − 𝛼) 

𝑞𝑖
𝑡 = 𝛼  

𝑞𝑗
𝑡−1 

𝑂𝑢𝑡(𝑗)
𝑗:𝑗→𝑖

+  𝛼  
𝑞𝑗
𝑡−1

𝑛
𝑗:𝑗 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑘

+ 1 − 𝛼
1

𝑛
 



Implementation details 

• If you use Matlab, you can use the matrix-vector 

operations directly. 

• If you want to implement this at large scale 

• Store the graph as an adjacency list 

• Or, store the graph as a set of edges,  

• You need the out-degree Out(v) of each vertex v 

• For each edge 𝑢 → 𝑣add weight 
𝑞𝑢
𝑡−1

𝑂𝑢𝑡 𝑢
 to the weight 𝑞𝑣

𝑡  

• This way we compute vector y, andthen we can 

compute qt 



ABSORBING RANDOM 

WALKS 



Random walk with absorbing nodes 

• What happens if we do a random walk on this 
graph? What is the stationary distribution? 

 

 

 

 

 

 

• All the probability mass on the red sink node: 
• The red node is an absorbing node 



Random walk with absorbing nodes 

• What happens if we do a random walk on this graph? 

What is the stationary distribution? 

 

 

 

 

 

 

• There are two absorbing nodes: the red and the blue. 

• The probability mass will be divided between the two 



Absorption probability 

• If there are more than one absorbing nodes in the 

graph a random walk that starts from a non-

absorbing node will be absorbed in one of them 

with some probability 

• The probability of absorption gives an estimate of how 

close the node is to red or blue 

 

 

 



Absorption probability 

• Computing the probability of being absorbed is very 
easy 
• Take the (weighted) average of the absorption probabilities of 

your neighbors  
• if one of the neighbors is the absorbing node, it has probability 1 

• Repeat until convergence (very small change in probs) 

• The absorbing nodes have probability 1 of being absorbed in 
themselves and zero of being absorbed in another node. 

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
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Absorption probability 

• The same idea can be applied to the case of 

undirected graphs 

• The absorbing nodes are still absorbing, so the edges 

to them are (implicitly) directed. 

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
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Propagating values 

• Assume that Red has a positive value and Blue a 
negative value 
• Positive/Negative class, Positive/Negative opinion 

• We can compute a value for all the other nodes in the 
same way 
• This is the expected value for the node 

𝑉(𝑃𝑖𝑛𝑘) =
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Electrical networks and random walks 

• Our graph corresponds to an electrical network 

• There is a positive voltage of +1 at the Red node, and a 
negative voltage -1 at the Blue node 

• There are resistances on the edges inversely proportional to 
the weights (or conductance proportional to the weights) 

• The computed values are the voltages at the nodes 

+1 

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛) 

𝑉 𝐺𝑟𝑒𝑒𝑛 =  
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5
 

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =  
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6
 

+1 

-1 
2 

2 

1 

1 

1 
2 

1 

0.05 -0.16 

0.16 



Transductive learning 

• If we have a graph of relationships and some labels on 
these edges we can propagate them to the remaining 
nodes  
• E.g., a social network where some people are tagged as spammers 

• E.g., the movie-actor graph where some movies are tagged as 
action or comedy.  

 

• This is a form of semi-supervised learning  
• We make use of the unlabeled data, and the relationships 

• It is also called transductive learning because it does not 
produce a model, but just labels the unlabeled data that is 
at hand. 
• Contrast to inductive learning that learns a model and can label any 

new example 



Implementation details 

• Implementation is in many ways similar to the 

PageRank implementation 

• For an edge (𝑢, 𝑣)instead of updating the value of v we 

update the value of u.  

• The value of a node is the average of its neighbors 

• We need to check for the case that a node u is 

absorbing, in which case the value of the node is not 

updated. 

• Repeat the updates until the change in values is very 

small. 



COVERAGE 



Example 

• Promotion campaign on a social network 
• We have a social network as a graph.  

• People are more likely to buy a product if they have a friend who 
has bought it.  

• We want to offer the product for free to some people such that 
every person in the graph is covered (they have a friend who has 
the product). 

• We want the number of free products to be as small as possible 



Example 

• Promotion campaign on a social network 
• We have a social network as a graph.  

• People are more likely to buy a product if they have a friend who 
has bought it.  

• We want to offer the product for free to some people such that 
every person in the graph is covered (they have a friend who has 
the product). 

• We want the number of free products to be as small as possible 

One possible selection 



Example 

• Promotion campaign on a social network 
• We have a social network as a graph.  

• People are more likely to buy a product if they have a friend who 
has bought it.  

• We want to offer the product for free to some people such that 
every person in the graph is covered (they have a friend who has 
the product). 

• We want the number of free products to be as small as possible 

A better selection 



Dominating set 

• Our problem is an instance of the dominating set 

problem  

 

• Dominating Set: Given a graph 𝐺 = (𝑉, 𝐸), a set 

of vertices 𝐷 ⊆ 𝑉 is a dominating set if  for each 

node u in V, either u is in D, or u has a neighbor 

in D. 

 

• The Dominating Set Problem: Given a graph 

𝐺 = (𝑉, 𝐸) find a dominating set of minimum size. 

 



Set Cover 

• The dominating set problem is a special case of 

the Set Cover problem 

 

• The Set Cover problem: 

• We have a universe of elements 𝑈 = 𝑥1, … , 𝑥𝑁  

• We have a collection of subsets of U, 𝑺 = {𝑆1, … , 𝑆𝑛}, 
such that  𝑆𝑖𝑖 = 𝑈 

• We want to find the smallest subcollection𝑪 ⊆ 𝑺of S, 

such that  𝑆𝑖 = 𝑈𝑆𝑖∈𝑪
 

• The sets in Ccover the elements of U 



Applications 

• Dominating Set (or Promotion Campaign) as Set 
Cover: 
• The universe U is the set of nodes V 

• Each node 𝑢 defines a set 𝑆𝑢 consisting of the node 𝑢 and all 
of its neighbors 

• We want the minimum number of sets 𝑆𝑢 (nodes) that cover 
all the nodes in the graph. 

• Document summarization 
• We have a document that consists of a set of terms T (the 

universe U of elements), and a set of sentensesS, where 
each sentence is a set of terms. 

• Find the smallest number of sentences C, that cover all the 
terms in the document. 

• Many more… 



Best selection variant 

• Suppose that we have a budget K of how big our 

set cover can be 

• We only have K products to give out for free. 

• We want to cover as many customers as possible. 

 

• Maximum-Coverage Problem: Given a universe 

of elements U, a collection of S of subsets of U, 

and a budget K, find a sub-collection 𝑪 ⊆ 𝑺, such 

that  𝑆𝑖𝑆𝑖∈𝑪
 is maximized. 



Complexity 

• Both the Set Cover and the Maximum Coverage 

problems are NP-complete 

• What does this mean? 

• Why do we care? 

 

• There is no algorithm that can guarantee to find 

the best solution in polynomial time 

• Can we find an algorithm that can guarantee to find a 

solution that is close to the optimal? 

• Approximation Algorithms. 



Approximation Algorithms 

• Suppose you have an (combinatorial) 

optimization problem 

• E.g., find the minimum set cover 

• E.g., find the set that maximizes coverage 

• If X is an instance of the problem, let OPT(X) be 

the value of the optimal solution, and ALG(X) the 

value of an algorithm ALG. 

• ALG is a good approximation algorithm if the ratio 

of OPT and ALG is bounded. 

 



Approximation Algorithms 

• For a minimization problem, the algorithm ALG is 
an 𝛼-approximation algorithm, for 𝛼 > 1, if for all 
input instances X,  

𝐴𝐿𝐺 𝑋 ≤ 𝛼𝑂𝑃𝑇 𝑋  

 

• For a maximization problem, the algorithm ALG is 
an 𝛼-approximation algorithm, for 𝛼 > 1, if for all 
input instances X,  

𝐴𝐿𝐺 𝑋 ≥ 𝛼𝑂𝑃𝑇 𝑋  

 

• 𝛼 is the approximation ratio of the algorithm 

 



Approximation ratio 

• For a minimization problem (resp. maximization), 

we want the approximation ratio 𝛼 to be as small 

(resp. as big) as possible. 

• Best case: 𝛼 = 1 + 𝜖(resp. 𝛼 = 1 − 𝜖) and 𝜖 → 0, as 

𝑛 → ∞(e.g., 𝜖 =
1

𝑛
)  

• Good case: 𝛼 = 𝑂(1)is a constant 

• OK case: 𝛼 = O(log 𝑛) (resp. 𝛼 = 𝑂
1

log 𝑛 
) 

• Bad case 𝛼 = O(𝑛𝜖) (resp. 𝛼 = 𝑂 𝑛−𝜖 ) 

 



A simple approximation ratio for set cover 

• Any algorithm for set cover has approximation 

ratio  = |Smax|, where Smax is the set in S with the 

largest cardinality  

 

• Proof: 

• OPT(X)≥N/|Smax|  N ≤ |smax|OPT(I) 

• ALG(X) ≤ N ≤ |smax|OPT(X) 

 

• This is true for any algorithm. 

• Not a good bound since it can be that |Smax|=O(N) 



An algorithm for Set Cover 

• What is the most natural algorithm for Set Cover? 

 

• Greedy: each time add to the collection C the set 

Si from S that covers the most of the remaining 

elements. 



The GREEDY algorithm 

GREEDY(U,S) 

X= U 

C = {} 

while X is not empty do 

For all 𝑆𝑖 ∈ 𝑺let gain(𝑆𝑖) = 𝑆𝑖 ∩ 𝑋 

Let 𝑆∗be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximal 

C = C U {S*} 

X = X\ S* 

S = S\ S* 



Approximation ratio of GREEDY 

• Good news: the approximation ratio of GREEDY 

is  

𝛼 =  𝐻 𝑆max = 1 +  ln 𝑆max , 𝐻 𝑛 =  
1

𝑘

𝑛

𝑘=1

 

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≤ 1 +  ln 𝑆max 𝑂𝑃𝑇 𝑋 , for all X 

• The approximation ratio is tight up to a constant 

(we can find a counter example) 

OPT(X) = 2 

GREEDY(X) = logN 

=½logN 



Maximum Coverage 

• What is a reasonable algorithm? 

GREEDY(U,S,K) 

X = U 

C = {} 

while |C| < K  

For all 𝑆𝑖 ∈ 𝑺let gain(𝑆𝑖) = 𝑆𝑖 ∩ 𝑋 

Let 𝑆∗ be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximal 

C = C U {S*} 

X = X\ S* 

S= S\ S* 

 



Approximation Ratio for Max-K Coverage 

• Better news! The GREEDY algorithm has 

approximation ratio 𝛼 = 1 −
1

𝑒
 

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 𝑋 , for all X 

 



Proof of approximation ratio 

• For a collection C, let 𝐹 𝐶 =  𝑆𝑖𝑆𝑖∈𝑪
 be the 

number of elements that are covered. 

• The function F has two properties: 

 

• F is monotone: 

𝐹 𝐴 ≤ 𝐹 𝐵  𝑖𝑓 𝐴 ⊆ 𝐵 

 

• F is submodular: 

𝐹 𝐴 ∪ 𝑆 − 𝐹 𝐴 ≥ 𝐹 𝐵 ∪ 𝑆 − 𝐹 𝐵   𝑖𝑓 𝐴 ⊆ 𝐵 

• Diminishing returns property 



Optimizing submodular functions 

• Theorem: A greedy algorithm that optimizes a 

monotone and submodularfunction F, each time 

adding to the solution C, the set S that maximizes 

the gain 𝐹 𝐶 ∪ 𝑆 − 𝐹(𝐶)has approximation 

ratio 𝛼 =  1 −
1

𝑒
 



Other variants of Set Cover 

• Hitting Set: select a set of elements so that you 
hit all the sets (the same as the set cover, 
reversing the roles) 

• Vertex Cover: Select a subset of vertices such 
that you cover all edges (an endpoint of each 
edge is in the set) 
• There is a 2-approximation algorithm 

• Edge Cover: Select a set of edges that cover all 
vertices (there is one edge that has endpoint the 
vertex) 
• There is a polynomial algorithm 



Parting thoughts 

• In this class you saw a set of tools for analyzing 
data 
• Association Rules 

• Sketching 

• Clustering 

• Classification 

• Signular Value Decomposition 

• Random Walks 

• Coverage 

• All these are useful when trying to make sense of 
the data. A lot more variants exist. 


