# DATA MINING LECTURE 13

Pagerank, Absorbing Random Walks

**Coverage Problems** 

## PAGERANK

## PageRank algorithm

- The PageRank random walk
  - Start from a page chosen uniformly at random
  - With probability a follow a random outgoing link
  - With probability 1-  $\alpha$  jump to a random page chosen uniformly at random
  - Repeat until convergence
- The PageRank Update Equations

$$PR(p) = \alpha \sum_{q \to p} \frac{PR(q)}{|Out(q)|} + (1 - \alpha) \frac{1}{n}$$

 $\alpha = 0.85$  in most cases



### The PageRank random walk

- What about sink nodes?
  - When at a node with no outgoing links jump to a page chosen uniformly at random



#### The PageRank random walk

- The PageRank transition probability matrix
  - P was sparse, P" is dense.

$$\mathsf{P''} = \alpha \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix} + (1 - \alpha) \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}$$

 $\mathsf{P}^{\prime\prime} = \alpha \mathsf{P}^{\prime} + (1 \text{-} \alpha) \mathsf{u} \mathsf{v}^{\mathsf{T}},$ 

where u is the vector of all 1s, u = (1,1,...,1)and v is the uniform vector, v = (1/n,1/n,...,1/n)

## A PageRank implementation

 Performing vanilla power method is now too expensive – the matrix is not sparse



#### A PageRank implementation

$$y = \alpha P^{T} q^{t-1}$$
$$\beta = 1 - ||y||_{1}$$
$$q^{t} = y + \beta v$$

• For every node *i*:  $y_{i} = \alpha \sum_{j: j \to i} \frac{q_{j}^{t-1}}{Out(j)}$   $\beta = 1 - \sum_{i} y_{i}$   $q_{i}^{t} = y_{i} + \beta \frac{1}{n}$ 

Why does this work?

$$\sum_{i} y_{i} = \alpha \left( 1 - \sum_{i} \sum_{j:j \text{ is a sink}} \frac{q_{j}^{t-1}}{n} \right) = \alpha - \alpha \sum_{j:j \text{ is a sink}} q_{j}^{t-1}$$
$$\beta = \alpha \sum_{j:j \text{ is a sink}} q_{j}^{t-1} + (1 - \alpha)$$
$$q_{i}^{t} = \alpha \sum_{j:j \to i} \frac{q_{j}^{t-1}}{Out(j)} + \alpha \sum_{j:j \text{ is a sink}} \frac{q_{j}^{t-1}}{n} + (1 - \alpha) \frac{1}{n}$$

#### Implementation details

- If you use Matlab, you can use the matrix-vector operations directly.
- If you want to implement this at large scale
  - Store the graph as an adjacency list
  - Or, store the graph as a set of edges,
  - You need the out-degree Out(v) of each vertex v
  - For each edge  $u \to v$  add weight  $\frac{q_u^{t-1}}{Out(u)}$  to the weight  $q_v^t$
  - This way we compute vector y, andthen we can compute q<sup>t</sup>

# ABSORBING RANDOM WALKS

## Random walk with absorbing nodes

 What happens if we do a random walk on this graph? What is the stationary distribution?



- All the probability mass on the red sink node:
  - The red node is an absorbing node

## Random walk with absorbing nodes

What happens if we do a random walk on this graph?
 What is the stationary distribution?



- There are two absorbing nodes: the red and the blue.
- The probability mass will be divided between the two

## Absorption probability

- If there are more than one absorbing nodes in the graph a random walk that starts from a nonabsorbing node will be absorbed in one of them with some probability
  - The probability of absorption gives an estimate of how close the node is to red or blue



## Absorption probability

- Computing the probability of being absorbed is very easy
  - Take the (weighted) average of the absorption probabilities of your neighbors
    - if one of the neighbors is the absorbing node, it has probability 1
  - Repeat until convergence (very small change in probs)
  - The absorbing nodes have probability 1 of being absorbed in themselves and zero of being absorbed in another node.

$$P(Red|Pink) = \frac{2}{3}P(Red|Yellow) + \frac{1}{3}P(Red|Green)$$

$$P(Red|Green) = \frac{1}{4}P(Red|Yellow) + \frac{1}{4}$$

$$P(Red|Yellow) = \frac{2}{3}$$



## Absorption probability

- The same idea can be applied to the case of undirected graphs
  - The absorbing nodes are still absorbing, so the edges to them are (implicitly) directed.

2

0.42

$$P(Red|Pink) = \frac{2}{3}P(Red|Yellow) + \frac{1}{3}P(Red|Green) \qquad 0.57 \quad 2$$

$$P(Red|Green) = \frac{1}{5}P(Red|Yellow) + \frac{1}{5}P(Red|Pink) + \frac{1}{5} \qquad 2$$

$$P(Red|Yellow) = \frac{1}{6}P(Red|Green) + \frac{1}{3}P(Red|Pink) + \frac{1}{3} \qquad 0.52$$

#### **Propagating values**

- Assume that Red has a positive value and Blue a negative value
  - Positive/Negative class, Positive/Negative opinion
- We can compute a value for all the other nodes in the same way
  - This is the expected value for the node

$$V(Pink) = \frac{2}{3}V(Yellow) + \frac{1}{3}V(Green)$$
$$V(Green) = \frac{1}{5}V(Yellow) + \frac{1}{5}V(Pink) + \frac{1}{5} - \frac{2}{5}$$
$$V(Yellow) = \frac{1}{6}V(Green) + \frac{1}{3}V(Pink) + \frac{1}{3} - \frac{1}{6}$$



#### Electrical networks and random walks

- Our graph corresponds to an electrical network
- There is a positive voltage of +1 at the Red node, and a negative voltage -1 at the Blue node
- There are resistances on the edges inversely proportional to the weights (or conductance proportional to the weights)
- The computed values are the voltages at the nodes

$$V(Pink) = \frac{2}{3}V(Yellow) + \frac{1}{3}V(Green)$$
$$V(Green) = \frac{1}{5}V(Yellow) + \frac{1}{5}V(Pink) + \frac{1}{5} - \frac{2}{5}$$
$$V(Yellow) = \frac{1}{6}V(Green) + \frac{1}{3}V(Pink) + \frac{1}{3} - \frac{1}{6}$$



## **Transductive learning**

- If we have a graph of relationships and some labels on these edges we can propagate them to the remaining nodes
  - E.g., a social network where some people are tagged as spammers
  - E.g., the movie-actor graph where some movies are tagged as action or comedy.
- This is a form of semi-supervised learning
  - We make use of the unlabeled data, and the relationships
- It is also called transductive learning because it does not produce a model, but just labels the unlabeled data that is at hand.
  - Contrast to inductive learning that learns a model and can label any new example

#### Implementation details

- Implementation is in many ways similar to the PageRank implementation
  - For an edge (u, v)instead of updating the value of v we update the value of u.
    - The value of a node is the average of its neighbors
  - We need to check for the case that a node u is absorbing, in which case the value of the node is not updated.
  - Repeat the updates until the change in values is very small.

## COVERAGE

## Example

- Promotion campaign on a social network
  - We have a social network as a graph.
  - People are more likely to buy a product if they have a friend who has bought it.
  - We want to offer the product for free to some people such that every person in the graph is covered (they have a friend who has the product).
  - We want the number of free products to be as small as possible



## Example

- Promotion campaign on a social network
  - We have a social network as a graph.
  - People are more likely to buy a product if they have a friend who has bought it.
  - We want to offer the product for free to some people such that every person in the graph is covered (they have a friend who has the product).
  - We want the number of free products to be as small as possible



One possible selection

## Example

- Promotion campaign on a social network
  - We have a social network as a graph.
  - People are more likely to buy a product if they have a friend who has bought it.
  - We want to offer the product for free to some people such that every person in the graph is covered (they have a friend who has the product).
  - We want the number of free products to be as small as possible



A better selection

### Dominating set

- Our problem is an instance of the dominating set problem
- Dominating Set: Given a graph G = (V, E), a set of vertices D ⊆ V is a dominating set if for each node u in V, either u is in D, or u has a neighbor in D.
- The Dominating Set Problem: Given a graph G = (V, E) find a dominating set of minimum size.

## Set Cover

 The dominating set problem is a special case of the Set Cover problem

#### • The Set Cover problem:

- We have a universe of elements  $U = \{x_1, ..., x_N\}$
- We have a collection of subsets of U,  $S = \{S_1, ..., S_n\}$ , such that  $\bigcup_i S_i = U$
- We want to find the smallest subcollection  $C \subseteq S$  of S, such that  $\bigcup_{S_i \in C} S_i = U$ 
  - The sets in Ccover the elements of U

## Applications

- Dominating Set (or Promotion Campaign) as Set Cover:
  - The universe U is the set of nodes V
  - Each node u defines a set  $S_u$  consisting of the node u and all of its neighbors
  - We want the minimum number of sets  $S_u$  (nodes) that cover all the nodes in the graph.

#### Document summarization

- We have a document that consists of a set of terms *T* (the universe *U* of elements), and a set of sentenses *S*, where each sentence is a set of terms.
- Find the smallest number of sentences *C*, that cover all the terms in the document.
- Many more…

#### Best selection variant

- Suppose that we have a budget K of how big our set cover can be
  - We only have K products to give out for free.
  - We want to cover as many customers as possible.
- Maximum-Coverage Problem: Given a universe of elements U, a collection of S of subsets of U, and a budget K, find a sub-collection C ⊆ S, such that U<sub>Si∈C</sub> S<sub>i</sub> is maximized.

## Complexity

- Both the Set Cover and the Maximum Coverage problems are NP-complete
  - What does this mean?
  - Why do we care?
- There is no algorithm that can guarantee to find the best solution in polynomial time
  - Can we find an algorithm that can guarantee to find a solution that is close to the optimal?
  - Approximation Algorithms.

## **Approximation Algorithms**

- Suppose you have an (combinatorial) optimization problem
  - E.g., find the minimum set cover
  - E.g., find the set that maximizes coverage
- If X is an instance of the problem, let OPT(X) be the value of the optimal solution, and ALG(X) the value of an algorithm ALG.
- ALG is a good approximation algorithm if the ratio of OPT and ALG is bounded.

## **Approximation Algorithms**

 For a minimization problem, the algorithm ALG is an α-approximation algorithm, for α > 1, if for all input instances X,

 $ALG(X) \leq \alpha OPT(X)$ 

• For a maximization problem, the algorithm ALG is an  $\alpha$ -approximation algorithm, for  $\alpha > 1$ , if for all input instances X,  $ALG(X) \ge \alpha OPT(X)$ 

•  $\alpha$  is the approximation ratio of the algorithm

#### **Approximation ratio**

- For a minimization problem (resp. maximization), we want the approximation ratio α to be as small (resp. as big) as possible.
  - Best case:  $\alpha = 1 + \epsilon$  (resp.  $\alpha = 1 \epsilon$ ) and  $\epsilon \to 0$ , as  $n \to \infty$  (e.g.,  $\epsilon = \frac{1}{n}$ )
  - Good case:  $\alpha = O(1)$  is a constant
  - OK case:  $\alpha = O(\log n)$  (resp.  $\alpha = O\left(\frac{1}{\log n}\right)$ )
  - Bad case  $\alpha = O(n^{\epsilon})$  (resp.  $\alpha = O(n^{-\epsilon})$ )

#### A simple approximation ratio for set cover

- Any algorithm for set cover has approximation ratio  $\alpha = |S_{max}|$ , where  $S_{max}$  is the set in S with the largest cardinality
- Proof:
  - OPT(X) $\geq$ N/|S<sub>max</sub>|  $\Rightarrow$  N  $\leq$  |s<sub>max</sub>|OPT(I)
  - $ALG(X) \le N \le |s_{max}|OPT(X)|$
- This is true for any algorithm.
- Not a good bound since it can be that |S<sub>max</sub>|=O(N)

## An algorithm for Set Cover

- What is the most natural algorithm for Set Cover?
- Greedy: each time add to the collection C the set
   S<sub>i</sub> from S that covers the most of the remaining elements.

## The GREEDY algorithm

**GREEDY(U,S)** X = U**C** = {} while X is not empty do For all  $S_i \in S$  let  $gain(S_i) = S_i \cap X$ Let  $S_*$  be such that  $gain(S_*)$  is maximal  $C = C \cup \{S_*\}$  $X = X \setminus S_*$  $S = S \setminus S_*$ 

## Approximation ratio of GREEDY

Good news: the approximation ratio of GREEDY is

$$\alpha = H(|S_{\max}|) = 1 + \ln|S_{\max}|, \qquad H(n) = \sum_{k=1}^{\infty} \frac{1}{k}$$

 $GREEDY(X) \le (1 + \ln|S_{\max}|)OPT(X)$ , for all X

 The approximation ratio is tight up to a constant (we can find a counter example)



$$OPT(X) = 2$$
  
 $GREEDY(X) = logN$   
 $\alpha = \frac{1}{2}logN$ 

n

## Maximum Coverage

What is a reasonable algorithm?

```
GREEDY(U,S,K)
  X = U
   C = {}
  while |C| < K
     For all S_i \in S let gain(S_i) = S_i \cap X
     Let S_* be such that gain(S_*) is maximal
     C = C \cup \{S_*\}
     X = X \setminus S_*
     S= S\ S<sub>*</sub>
```

#### **Approximation Ratio for Max-K Coverage**

• Better news! The GREEDY algorithm has approximation ratio  $\alpha = 1 - \frac{1}{e}$ 

 $GREEDY(X) \ge \left(1 - \frac{1}{e}\right)OPT(X)$ , for all X

#### Proof of approximation ratio

- For a collection C, let  $F(C) = \bigcup_{S_i \in C} S_i$  be the number of elements that are covered.
- The function F has two properties:
- F is monotone:

 $F(A) \leq F(B)$  if  $A \subseteq B$ 

- F is submodular:  $F(A \cup \{S\}) - F(A) \ge F(B \cup \{S\}) - F(B) \text{ if } A \subseteq B$
- Diminishing returns property

## **Optimizing submodular functions**

• Theorem: A greedy algorithm that optimizes a monotone and submodularfunction F, each time adding to the solution C, the set S that maximizes the gain  $F(C \cup \{S\}) - F(C)$ has approximation ratio  $\alpha = \left(1 - \frac{1}{e}\right)$ 

## Other variants of Set Cover

- Hitting Set: select a set of elements so that you hit all the sets (the same as the set cover, reversing the roles)
- Vertex Cover: Select a subset of vertices such that you cover all edges (an endpoint of each edge is in the set)
  - There is a 2-approximation algorithm
- Edge Cover: Select a set of edges that cover all vertices (there is one edge that has endpoint the vertex)
  - There is a polynomial algorithm

## Parting thoughts

- In this class you saw a set of tools for analyzing data
  - Association Rules
  - Sketching
  - Clustering
  - Classification
  - Signular Value Decomposition
  - Random Walks
  - Coverage
- All these are useful when trying to make sense of the data. A lot more variants exist.