
DATA MINING

LECTURE 13
Pagerank, Absorbing Random Walks

Coverage Problems

PAGERANK

PageRank algorithm

• The PageRank random walk

• Start from a page chosen uniformly at random

• With probability α follow a random outgoing link

• With probability 1- α jump to a random page

chosen uniformly at random

• Repeat until convergence

• The PageRank Update Equations

 
nqOut

qPR
pPR

pq

1
1

)(

)(
)(  



𝛼 = 0.85 in most cases

























0210021

00313131

00010

5151515151

0021210

P'

The PageRank random walk

• What about sink nodes?

• When at a node with no outgoing links jump to a page

chosen uniformly at random

 
nn

qPR

qOut

qPR
pPR

pq qq

1
1

)(

)(

)(
)(

sink is :

   


















































5151515151

5151515151

5151515151

5151515151

5151515151

2100021

00313131

00010

5151515151

0021210

'P')1(

The PageRank random walk

• The PageRank transition probability matrix

• P was sparse, P’’ is dense.

P’’ = αP’ + (1-α)uvT,
where u is the vector of all 1s, u = (1,1,…,1)
and v is the uniform vector, v = (1/n,1/n,…,1/n)

A PageRank implementation

• Performing vanilla power method is now too

expensive – the matrix is not sparse

q0 = v

t = 1

repeat

 t = t +1

until δ < ε

  1tTt q'P'q 
1tt qqδ 

Efficient computation of qt = (P’’)T qt-1

βvyq

y1 β

qαPy

1

1T





 

t

t

P = normalized adjacency matrix

P’’ = αP’ + (1-α)uvT, where u is the vector of all 1s

P’ = P + dvT, where di is 1 if i is sink and 0 o.w.

A PageRank implementation

• For every node 𝑖:

𝑦𝑖 = 𝛼
𝑞𝑗
𝑡−1

𝑂𝑢𝑡(𝑗)
𝑗:𝑗→𝑖

𝛽 = 1 − 𝑦𝑖
𝑖

𝑞𝑖
𝑡 = 𝑦𝑖 + 𝛽

1

𝑛

βvyq

y1 β

qαPy

1

1T





 

t

t

Why does this work?

 𝑦𝑖 =

𝑖

𝛼 1 −
𝑞𝑗
𝑡−1

𝑛
𝑗:𝑗 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑘𝑖

= 𝛼 − 𝛼 𝑞𝑗
𝑡−1

𝑗:𝑗 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑘

𝛽 = 𝛼 𝑞𝑗
𝑡−1

𝑗:𝑗 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑘

+ (1 − 𝛼)

𝑞𝑖
𝑡 = 𝛼

𝑞𝑗
𝑡−1

𝑂𝑢𝑡(𝑗)
𝑗:𝑗→𝑖

+ 𝛼
𝑞𝑗
𝑡−1

𝑛
𝑗:𝑗 𝑖𝑠 𝑎 𝑠𝑖𝑛𝑘

+ 1 − 𝛼
1

𝑛

Implementation details

• If you use Matlab, you can use the matrix-vector

operations directly.

• If you want to implement this at large scale

• Store the graph as an adjacency list

• Or, store the graph as a set of edges,

• You need the out-degree Out(v) of each vertex v

• For each edge 𝑢 → 𝑣add weight
𝑞𝑢
𝑡−1

𝑂𝑢𝑡 𝑢
 to the weight 𝑞𝑣

𝑡

• This way we compute vector y, andthen we can

compute qt

ABSORBING RANDOM

WALKS

Random walk with absorbing nodes

• What happens if we do a random walk on this
graph? What is the stationary distribution?

• All the probability mass on the red sink node:
• The red node is an absorbing node

Random walk with absorbing nodes

• What happens if we do a random walk on this graph?

What is the stationary distribution?

• There are two absorbing nodes: the red and the blue.

• The probability mass will be divided between the two

Absorption probability

• If there are more than one absorbing nodes in the

graph a random walk that starts from a non-

absorbing node will be absorbed in one of them

with some probability

• The probability of absorption gives an estimate of how

close the node is to red or blue

Absorption probability

• Computing the probability of being absorbed is very
easy
• Take the (weighted) average of the absorption probabilities of

your neighbors
• if one of the neighbors is the absorbing node, it has probability 1

• Repeat until convergence (very small change in probs)

• The absorbing nodes have probability 1 of being absorbed in
themselves and zero of being absorbed in another node.

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
2

3

2

2

1

1

1
2

1

Absorption probability

• The same idea can be applied to the case of

undirected graphs

• The absorbing nodes are still absorbing, so the edges

to them are (implicitly) directed.

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

3

2

2

1

1

1
2

1

0.52 0.42

0.57

Propagating values

• Assume that Red has a positive value and Blue a
negative value
• Positive/Negative class, Positive/Negative opinion

• We can compute a value for all the other nodes in the
same way
• This is the expected value for the node

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6

+1

-1
2

2

1

1

1
2

1

0.05 -0.16

0.16

Electrical networks and random walks

• Our graph corresponds to an electrical network

• There is a positive voltage of +1 at the Red node, and a
negative voltage -1 at the Blue node

• There are resistances on the edges inversely proportional to
the weights (or conductance proportional to the weights)

• The computed values are the voltages at the nodes

+1

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6

+1

-1
2

2

1

1

1
2

1

0.05 -0.16

0.16

Transductive learning

• If we have a graph of relationships and some labels on
these edges we can propagate them to the remaining
nodes
• E.g., a social network where some people are tagged as spammers

• E.g., the movie-actor graph where some movies are tagged as
action or comedy.

• This is a form of semi-supervised learning
• We make use of the unlabeled data, and the relationships

• It is also called transductive learning because it does not
produce a model, but just labels the unlabeled data that is
at hand.
• Contrast to inductive learning that learns a model and can label any

new example

Implementation details

• Implementation is in many ways similar to the

PageRank implementation

• For an edge (𝑢, 𝑣)instead of updating the value of v we

update the value of u.

• The value of a node is the average of its neighbors

• We need to check for the case that a node u is

absorbing, in which case the value of the node is not

updated.

• Repeat the updates until the change in values is very

small.

COVERAGE

Example

• Promotion campaign on a social network
• We have a social network as a graph.

• People are more likely to buy a product if they have a friend who
has bought it.

• We want to offer the product for free to some people such that
every person in the graph is covered (they have a friend who has
the product).

• We want the number of free products to be as small as possible

Example

• Promotion campaign on a social network
• We have a social network as a graph.

• People are more likely to buy a product if they have a friend who
has bought it.

• We want to offer the product for free to some people such that
every person in the graph is covered (they have a friend who has
the product).

• We want the number of free products to be as small as possible

One possible selection

Example

• Promotion campaign on a social network
• We have a social network as a graph.

• People are more likely to buy a product if they have a friend who
has bought it.

• We want to offer the product for free to some people such that
every person in the graph is covered (they have a friend who has
the product).

• We want the number of free products to be as small as possible

A better selection

Dominating set

• Our problem is an instance of the dominating set

problem

• Dominating Set: Given a graph 𝐺 = (𝑉, 𝐸), a set

of vertices 𝐷 ⊆ 𝑉 is a dominating set if for each

node u in V, either u is in D, or u has a neighbor

in D.

• The Dominating Set Problem: Given a graph

𝐺 = (𝑉, 𝐸) find a dominating set of minimum size.

Set Cover

• The dominating set problem is a special case of

the Set Cover problem

• The Set Cover problem:

• We have a universe of elements 𝑈 = 𝑥1, … , 𝑥𝑁

• We have a collection of subsets of U, 𝑺 = {𝑆1, … , 𝑆𝑛},
such that 𝑆𝑖𝑖 = 𝑈

• We want to find the smallest subcollection𝑪 ⊆ 𝑺of S,

such that 𝑆𝑖 = 𝑈𝑆𝑖∈𝑪

• The sets in Ccover the elements of U

Applications

• Dominating Set (or Promotion Campaign) as Set
Cover:
• The universe U is the set of nodes V

• Each node 𝑢 defines a set 𝑆𝑢 consisting of the node 𝑢 and all
of its neighbors

• We want the minimum number of sets 𝑆𝑢 (nodes) that cover
all the nodes in the graph.

• Document summarization
• We have a document that consists of a set of terms T (the

universe U of elements), and a set of sentensesS, where
each sentence is a set of terms.

• Find the smallest number of sentences C, that cover all the
terms in the document.

• Many more…

Best selection variant

• Suppose that we have a budget K of how big our

set cover can be

• We only have K products to give out for free.

• We want to cover as many customers as possible.

• Maximum-Coverage Problem: Given a universe

of elements U, a collection of S of subsets of U,

and a budget K, find a sub-collection 𝑪 ⊆ 𝑺, such

that 𝑆𝑖𝑆𝑖∈𝑪
 is maximized.

Complexity

• Both the Set Cover and the Maximum Coverage

problems are NP-complete

• What does this mean?

• Why do we care?

• There is no algorithm that can guarantee to find

the best solution in polynomial time

• Can we find an algorithm that can guarantee to find a

solution that is close to the optimal?

• Approximation Algorithms.

Approximation Algorithms

• Suppose you have an (combinatorial)

optimization problem

• E.g., find the minimum set cover

• E.g., find the set that maximizes coverage

• If X is an instance of the problem, let OPT(X) be

the value of the optimal solution, and ALG(X) the

value of an algorithm ALG.

• ALG is a good approximation algorithm if the ratio

of OPT and ALG is bounded.

Approximation Algorithms

• For a minimization problem, the algorithm ALG is
an 𝛼-approximation algorithm, for 𝛼 > 1, if for all
input instances X,

𝐴𝐿𝐺 𝑋 ≤ 𝛼𝑂𝑃𝑇 𝑋

• For a maximization problem, the algorithm ALG is
an 𝛼-approximation algorithm, for 𝛼 > 1, if for all
input instances X,

𝐴𝐿𝐺 𝑋 ≥ 𝛼𝑂𝑃𝑇 𝑋

• 𝛼 is the approximation ratio of the algorithm

Approximation ratio

• For a minimization problem (resp. maximization),

we want the approximation ratio 𝛼 to be as small

(resp. as big) as possible.

• Best case: 𝛼 = 1 + 𝜖(resp. 𝛼 = 1 − 𝜖) and 𝜖 → 0, as

𝑛 → ∞(e.g., 𝜖 =
1

𝑛
)

• Good case: 𝛼 = 𝑂(1)is a constant

• OK case: 𝛼 = O(log 𝑛) (resp. 𝛼 = 𝑂
1

log 𝑛
)

• Bad case 𝛼 = O(𝑛𝜖) (resp. 𝛼 = 𝑂 𝑛−𝜖)

A simple approximation ratio for set cover

• Any algorithm for set cover has approximation

ratio  = |Smax|, where Smax is the set in S with the

largest cardinality

• Proof:

• OPT(X)≥N/|Smax|  N ≤ |smax|OPT(I)

• ALG(X) ≤ N ≤ |smax|OPT(X)

• This is true for any algorithm.

• Not a good bound since it can be that |Smax|=O(N)

An algorithm for Set Cover

• What is the most natural algorithm for Set Cover?

• Greedy: each time add to the collection C the set

Si from S that covers the most of the remaining

elements.

The GREEDY algorithm

GREEDY(U,S)

X= U

C = {}

while X is not empty do

For all 𝑆𝑖 ∈ 𝑺let gain(𝑆𝑖) = 𝑆𝑖 ∩ 𝑋

Let 𝑆∗be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximal

C = C U {S*}

X = X\ S*

S = S\ S*

Approximation ratio of GREEDY

• Good news: the approximation ratio of GREEDY

is

𝛼 = 𝐻 𝑆max = 1 + ln 𝑆max , 𝐻 𝑛 =
1

𝑘

𝑛

𝑘=1

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≤ 1 + ln 𝑆max 𝑂𝑃𝑇 𝑋 , for all X

• The approximation ratio is tight up to a constant

(we can find a counter example)

OPT(X) = 2

GREEDY(X) = logN

=½logN

Maximum Coverage

• What is a reasonable algorithm?

GREEDY(U,S,K)

X = U

C = {}

while |C| < K

For all 𝑆𝑖 ∈ 𝑺let gain(𝑆𝑖) = 𝑆𝑖 ∩ 𝑋

Let 𝑆∗ be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximal

C = C U {S*}

X = X\ S*

S= S\ S*

Approximation Ratio for Max-K Coverage

• Better news! The GREEDY algorithm has

approximation ratio 𝛼 = 1 −
1

𝑒

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 𝑋 , for all X

Proof of approximation ratio

• For a collection C, let 𝐹 𝐶 = 𝑆𝑖𝑆𝑖∈𝑪
 be the

number of elements that are covered.

• The function F has two properties:

• F is monotone:

𝐹 𝐴 ≤ 𝐹 𝐵 𝑖𝑓 𝐴 ⊆ 𝐵

• F is submodular:

𝐹 𝐴 ∪ 𝑆 − 𝐹 𝐴 ≥ 𝐹 𝐵 ∪ 𝑆 − 𝐹 𝐵 𝑖𝑓 𝐴 ⊆ 𝐵

• Diminishing returns property

Optimizing submodular functions

• Theorem: A greedy algorithm that optimizes a

monotone and submodularfunction F, each time

adding to the solution C, the set S that maximizes

the gain 𝐹 𝐶 ∪ 𝑆 − 𝐹(𝐶)has approximation

ratio 𝛼 = 1 −
1

𝑒

Other variants of Set Cover

• Hitting Set: select a set of elements so that you
hit all the sets (the same as the set cover,
reversing the roles)

• Vertex Cover: Select a subset of vertices such
that you cover all edges (an endpoint of each
edge is in the set)
• There is a 2-approximation algorithm

• Edge Cover: Select a set of edges that cover all
vertices (there is one edge that has endpoint the
vertex)
• There is a polynomial algorithm

Parting thoughts

• In this class you saw a set of tools for analyzing
data
• Association Rules

• Sketching

• Clustering

• Classification

• Signular Value Decomposition

• Random Walks

• Coverage

• All these are useful when trying to make sense of
the data. A lot more variants exist.

