DATA MINING LECTURE 13

Pagerank, Absorbing Random Walks

Coverage Problems

PAGERANK

PageRank algorithm

- The PageRank random walk
- Start from a page chosen uniformly at random
- With probability a follow a random outgoing link
- With probability 1- α jump to a random page chosen uniformly at random
- Repeat until convergence
- The PageRank Update Equations

$$
\begin{aligned}
& P R(p)=\alpha \sum_{q \rightarrow p} \frac{P R(q)}{|O u t(q)|}+(1-\alpha) \frac{1}{n} \\
& \alpha=0.85 \text { in most cases }
\end{aligned}
$$

The PageRank random walk

-What about sink nodes?

- When at a node with no outgoing links jump to a page chosen uniformly at random

$$
\mathrm{P}^{\prime}=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
\hline 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

$$
P R(p)=\alpha \sum_{q \rightarrow p} \frac{P R(q)}{|O u t(q)|}+\alpha \sum_{q q: i \text { is sink }} \frac{P R(q)}{n}+(1-\alpha) \frac{1}{n}
$$

The PageRank random walk

- The PageRank transition probability matrix - P was sparse, $\mathrm{P}^{\prime \prime}$ is dense.
$\mathrm{P}^{\prime \prime}=\alpha\left[\begin{array}{ccccc}0 & 1 / 2 & 1 / 2 & 0 & 0 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 0 & 1 & 0 & 0 & 0 \\ 1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\ 1 / 2 & 0 & 0 & 0 & 1 / 2\end{array}\right]+(1-\alpha)\left[\begin{array}{ccccc}1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\ 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5\end{array}\right]$
$P^{\prime \prime}=\alpha P^{\prime}+(1-\alpha) u v^{\top}$,
where u is the vector of all $1 s, u=(1,1, \ldots, 1)$
and v is the uniform vector, $v=(1 / n, 1 / n, \ldots, 1 / n)$

A PageRank implementation

- Performing vanilla power method is now too expensive - the matrix is not sparse

$$
\begin{aligned}
& \mathrm{q}^{0}=\mathrm{v} \\
& \mathrm{t}=1 \\
& \text { repeat } \\
& \mathrm{q}^{\mathrm{t}}=\left(\mathrm{P}^{\prime \prime}\right)^{\top} \mathrm{q}^{\mathrm{t}-1} \\
& \delta=\left\|\mathrm{q}^{\mathrm{t}}-\mathrm{q}^{\mathrm{t}-1}\right\| \\
& \mathrm{t}=\mathrm{t}+1
\end{aligned}
$$

$$
\text { until } \delta<\varepsilon
$$

Efficient computation of $q^{t}=\left(\mathrm{P}^{\prime \prime}\right)^{\top} \mathrm{q}^{\mathrm{t}-1}$

$$
\begin{aligned}
& \mathrm{y}=\alpha \mathrm{P}^{\mathrm{T}} \mathrm{q}^{t-1} \\
& \beta=1-\|\mathrm{y}\|_{1} \\
& \mathrm{q}^{t}=\mathrm{y}+\beta \mathrm{v} \\
& \mathrm{P}=\text { normalized adjacency matrix } \\
& \mathrm{P}^{\prime}=\mathrm{P}+\mathrm{dv} \mathrm{v}^{\top}, \text { where } \mathrm{d}_{\mathrm{i}} \text { is } 1 \text { if } \mathrm{i} \text { is sink and } 0 \text { o.w. } \\
& \mathrm{P}^{\prime \prime}=\alpha \mathrm{P}^{\prime}+(1-\alpha) \mathrm{uv}^{\top}, \text { where } \mathrm{u} \text { is the vector of all } 1 \mathrm{~s}
\end{aligned}
$$

A PageRank implementation

$$
\begin{aligned}
& \mathrm{y}=\alpha \mathrm{P}^{\mathrm{T}} \mathrm{q}^{t-1} \\
& \beta=1-\|\mathrm{y}\|_{1} \\
& \mathrm{q}^{t}=\mathrm{y}+\beta \mathrm{v}
\end{aligned}
$$

- For every node i :

$$
\begin{gathered}
y_{i}=\alpha \sum_{j: j \rightarrow i} \frac{q_{j}^{t-1}}{\operatorname{Out}(j)} \\
\beta=1-\sum_{i} y_{i} \\
q_{i}^{t}=y_{i}+\beta \frac{1}{n}
\end{gathered}
$$

Why does this work?

$$
\begin{aligned}
& \sum_{i} y_{i}=\alpha\left(1-\sum_{i} \sum_{j: j \text { is a sink }} \frac{q_{j}^{t-1}}{n}\right)=\alpha-\alpha \sum_{j: j \text { is a sink }} q_{j}^{t-1} \\
& \beta=\alpha \sum_{j: j \text { is a sink }} q_{j}^{t-1}+(1-\alpha) \\
& q_{i}^{t}=\alpha \sum_{j: j \rightarrow i} \frac{q_{j}^{t-1}}{\text { Out }(j)}+\alpha \sum_{j: j \text { is a sink }} \frac{q_{j}^{t-1}}{n}+(1-\alpha) \frac{1}{n}
\end{aligned}
$$

Implementation details

- If you use Matlab, you can use the matrix-vector operations directly.
- If you want to implement this at large scale
- Store the graph as an adjacency list
- Or, store the graph as a set of edges,
- You need the out-degree Out(v) of each vertex v
- For each edge $u \rightarrow v$ add weight $\frac{q_{u}^{t-1}}{\text { out(u) }}$ to the weight q_{v}^{t}
- This way we compute vector y, andthen we can compute $\mathrm{q}^{\text {t }}$

ABSORBING RANDOM WALKS

Random walk with absorbing nodes

- What happens if we do a random walk on this graph? What is the stationary distribution?

- All the probability mass on the red sink node:
- The red node is an absorbing node

Random walk with absorbing nodes

- What happens if we do a random walk on this graph? What is the stationary distribution?

- There are two absorbing nodes: the red and the blue.
- The probability mass will be divided between the two

Absorption probability

- If there are more than one absorbing nodes in the graph a random walk that starts from a nonabsorbing node will be absorbed in one of them with some probability
- The probability of absorption gives an estimate of how close the node is to red or blue

Absorption probability

- Computing the probability of being absorbed is very easy
- Take the (weighted) average of the absorption probabilities of your neighbors
- if one of the neighbors is the absorbing node, it has probability 1
- Repeat until convergence (very small change in probs)
- The absorbing nodes have probability 1 of being absorbed in themselves and zero of being absorbed in another node.

$$
\begin{aligned}
& P(\text { Red } \mid \text { Pink })=\frac{2}{3} P(\text { Red } \mid \text { Yellow })+\frac{1}{3} P(\text { Red } \mid \text { Green }) \\
& P(\text { Red } \mid \text { Green })=\frac{1}{4} P(\text { Red } \mid \text { Yellow })+\frac{1}{4} \\
& P(\text { Red } \mid \text { Yellow })=\frac{2}{3}
\end{aligned}
$$

Absorption probability

- The same idea can be applied to the case of undirected graphs
- The absorbing nodes are still absorbing, so the edges to them are (implicitly) directed.

$$
\begin{aligned}
& P(\text { Red } \mid \text { Pink })=\frac{2}{3} P(\text { Red } \mid \text { Yellow })+\frac{1}{3} P(\text { Red } \mid \text { Green }) \\
& P(\text { Red } \mid \text { Green })=\frac{1}{5} P(\text { Red } \mid \text { Yellow })+\frac{1}{5} P(\text { Red } \mid \text { Pink })+\frac{1}{5} \\
& P(\text { Red } \mid \text { Yellow })=\frac{1}{6} P(\text { Red } \mid \text { Green })+\frac{1}{3} P(\text { Red } \mid \text { Pink })+\frac{1}{3}
\end{aligned}
$$

Propagating values

- Assume that Red has a positive value and Blue a negative value
- Positive/Negative class, Positive/Negative opinion
- We can compute a value for all the other nodes in the same way
- This is the expected value for the node

$$
\begin{aligned}
& V(\text { Pink })=\frac{2}{3} V(\text { Yellow })+\frac{1}{3} V(\text { Green }) \\
& V(\text { Green })=\frac{1}{5} V(\text { Yellow })+\frac{1}{5} V(\text { Pink })+\frac{1}{5}-\frac{2}{5} \\
& V(\text { Yellow })=\frac{1}{6} V(\text { Green })+\frac{1}{3} V(\text { Pink })+\frac{1}{3}-\frac{1}{6}
\end{aligned}
$$

Electrical networks and random walks

- Our graph corresponds to an electrical network
- There is a positive voltage of +1 at the Red node, and a negative voltage -1 at the Blue node
- There are resistances on the edges inversely proportional to the weights (or conductance proportional to the weights)
- The computed values are the voltages at the nodes

$$
\begin{aligned}
& V(\text { Pink })=\frac{2}{3} V(\text { Yellow })+\frac{1}{3} V(\text { Green }) \\
& V(\text { Green })=\frac{1}{5} V(\text { Yellow })+\frac{1}{5} V(\text { Pink })+\frac{1}{5}-\frac{2}{5} \\
& V(\text { Yellow })=\frac{1}{6} V(\text { Green })+\frac{1}{3} V(\text { Pink })+\frac{1}{3}-\frac{1}{6}
\end{aligned}
$$

Transductive learning

- If we have a graph of relationships and some labels on these edges we can propagate them to the remaining nodes
- E.g., a social network where some people are tagged as spammers
- E.g., the movie-actor graph where some movies are tagged as action or comedy.
- This is a form of semi-supervised learning
- We make use of the unlabeled data, and the relationships
- It is also called transductive learning because it does not produce a model, but just labels the unlabeled data that is at hand.
- Contrast to inductive learning that learns a model and can label any new example

Implementation details

- Implementation is in many ways similar to the PageRank implementation
- For an edge (u, v) instead of updating the value of v we update the value of u.
- The value of a node is the average of its neighbors
- We need to check for the case that a node u is absorbing, in which case the value of the node is not updated.
- Repeat the updates until the change in values is very small.

COVERAGE

Example

- Promotion campaign on a social network
- We have a social network as a graph.
- People are more likely to buy a product if they have a friend who has bought it.
- We want to offer the product for free to some people such that every person in the graph is covered (they have a friend who has the product).
- We want the number of free products to be as small as possible

Example

- Promotion campaign on a social network
- We have a social network as a graph.
- People are more likely to buy a product if they have a friend who has bought it.
- We want to offer the product for free to some people such that every person in the graph is covered (they have a friend who has the product).
- We want the number of free products to be as small as possible

Example

- Promotion campaign on a social network
- We have a social network as a graph.
- People are more likely to buy a product if they have a friend who has bought it.
- We want to offer the product for free to some people such that every person in the graph is covered (they have a friend who has the product).
- We want the number of free products to be as small as possible

Dominating set

Our problem is an instance of the dominating set problem

- Dominating Set: Given a graph $G=(V, E)$, a set of vertices $D \subseteq V$ is a dominating set if for each node u in V, either u is in D, or u has a neighbor in D.
- The Dominating Set Problem: Given a graph $G=(V, E)$ find a dominating set of minimum size.

Set Cover

- The dominating set problem is a special case of the Set Cover problem
- The Set Cover problem:
- We have a universe of elements $U=\left\{x_{1}, \ldots, x_{N}\right\}$
- We have a collection of subsets of $U, S=\left\{S_{1}, \ldots, S_{n}\right\}$, such that $\cup_{i} S_{i}=U$
- We want to find the smallest subcollection $C \subseteq S$ of S, such that $\cup_{S_{i} \in C} S_{i}=U$
- The sets in Ccover the elements of U

Applications

- Dominating Set (or Promotion Campaign) as Set Cover:
- The universe U is the set of nodes V
- Each node u defines a set S_{u} consisting of the node u and all of its neighbors
- We want the minimum number of sets S_{u} (nodes) that cover all the nodes in the graph.
- Document summarization
- We have a document that consists of a set of terms T (the universe U of elements), and a set of sentenses S, where each sentence is a set of terms.
- Find the smallest number of sentences C, that cover all the terms in the document.
- Many more...

Best selection variant

- Suppose that we have a budget K of how big our set cover can be
- We only have K products to give out for free.
- We want to cover as many customers as possible.
- Maximum-Coverage Problem: Given a universe of elements U, a collection of S of subsets of U, and a budget K , find a sub-collection $C \subseteq S$, such that $\cup_{S_{i} \in C} S_{i}$ is maximized.

Complexity

- Both the Set Cover and the Maximum Coverage problems are NP-complete
- What does this mean?
-Why do we care?
- There is no algorithm that can guarantee to find the best solution in polynomial time
- Can we find an algorithm that can guarantee to find a solution that is close to the optimal?
- Approximation Algorithms.

Approximation Algorithms

- Suppose you have an (combinatorial) optimization problem
- E.g., find the minimum set cover
- E.g., find the set that maximizes coverage
- If X is an instance of the problem, let OPT (X) be the value of the optimal solution, and $A L G(X)$ the value of an algorithm ALG.
- ALG is a good approximation algorithm if the ratio of OPT and ALG is bounded.

Approximation Algorithms

- For a minimization problem, the algorithm ALG is an α-approximation algorithm, for $\alpha>1$, if for all input instances X ,

$$
A L G(X) \leq \alpha O P T(X)
$$

- For a maximization problem, the algorithm ALG is an α-approximation algorithm, for $\alpha>1$, if for all input instances X,

$$
A L G(X) \geq \alpha O P T(X)
$$

- α is the approximation ratio of the algorithm

Approximation ratio

- For a minimization problem (resp. maximization), we want the approximation ratio α to be as small (resp. as big) as possible.
- Best case: $\alpha=1+\epsilon($ resp. $\alpha=1-\epsilon)$ and $\epsilon \rightarrow 0$, as

$$
\left.n \rightarrow \infty \text { (e.g., } \epsilon=\frac{1}{n}\right)
$$

- Good case: $\alpha=O(1)$ is a constant
- OK case: $\alpha=O(\log n)\left(\right.$ resp. $\alpha=O\left(\frac{1}{\log n}\right)$)
- Bad case $\alpha=O\left(n^{\epsilon}\right)\left(\right.$ resp. $\left.\alpha=O\left(n^{-\epsilon}\right)\right)$

A simple approximation ratio for set cover

- Any algorithm for set cover has approximation ratio $\alpha=\left|S_{\text {max }}\right|$, where $S_{\text {max }}$ is the set in S with the largest cardinality
- Proof:
- OPT $(X) \geq N /\left|S_{\text {max }}\right| \Rightarrow N \leq\left|S_{\text {max }}\right| O P T(I)$
- $\operatorname{ALG}(X) \leq N \leq\left|s_{\text {max }}\right| O P T(X)$
- This is true for any algorithm.
- Not a good bound since it can be that $\left|\mathrm{S}_{\max }\right|=\mathrm{O}(\mathrm{N})$

An algorithm for Set Cover

-What is the most natural algorithm for Set Cover?

- Greedy: each time add to the collection C the set S_{i} from S that covers the most of the remaining elements.

The GREEDY algorithm

GREEDY(U,S)

$X=U$
$C=\{ \}$
while X is not empty do
For all $S_{i} \in \operatorname{Slet}$ gain $\left(S_{i}\right)=S_{i} \cap X$
Let S_{*} be such that $\operatorname{gain}\left(S_{*}\right)$ is maximal
$C=C \cup\left\{S_{*}\right\}$
$X=X \backslash$.
$S=S \backslash$ *

Approximation ratio of GREEDY

- Good news: the approximation ratio of GREEDY is

$$
\begin{aligned}
& \alpha=H\left(\left|S_{\max }\right|\right)=1+\ln \left|S_{\max }\right|, \quad H(n)=\sum_{k=1}^{n} \frac{1}{k} \\
& \operatorname{GREEDY}(X) \leq\left(1+\ln \left|S_{\max }\right|\right) \text { OPT }(X), \text { for all X }
\end{aligned}
$$

- The approximation ratio is tight up to a constant (we can find a counter example)

$\operatorname{OPT}(X)=2$
$\operatorname{GREEDY}(\mathrm{X})=\log N$
$\alpha=1 / 2 \log N$

Maximum Coverage

-What is a reasonable algorithm?

$$
\begin{aligned}
& \text { GREEDY(U,S,K) } \\
& X=U \\
& C=\{ \} \\
& \text { while }|C|<K
\end{aligned}
$$

For all $S_{i} \in \operatorname{Slet} \operatorname{gain}\left(S_{i}\right)=S_{i} \cap X$
Let S_{*} be such that $\operatorname{gain}\left(S_{*}\right)$ is maximal
$\mathrm{C}=\mathrm{C} \cup\{\mathrm{S}$.\}
$X=X \backslash$.
$S=S$ S.

Approximation Ratio for Max-K Coverage

- Better news! The GREEDY algorithm has approximation ratio $\alpha=1-\frac{1}{e}$

$$
\operatorname{GREEDY}(X) \geq\left(1-\frac{1}{e}\right) \operatorname{OPT}(X) \text {, for all } \mathrm{X}
$$

Proof of approximation ratio

- For a collection C, let $F(C)=\cup_{S_{i} \in C} S_{i}$ be the number of elements that are covered.
- The function F has two properties:
- F is monotone:

$$
F(A) \leq F(B) \text { if } A \subseteq B
$$

- F is submodular:

$$
F(A \cup\{S\})-F(A) \geq F(B \cup\{S\})-F(B) \text { if } A \subseteq B
$$

- Diminishing returns property

Optimizing submodular functions

- Theorem: A greedy algorithm that optimizes a monotone and submodularfunction F, each time adding to the solution C , the set S that maximizes the gain $F(C \cup\{S\})-F(C)$ has approximation ratio $\alpha=\left(1-\frac{1}{e}\right)$

Other variants of Set Cover

- Hitting Set: select a set of elements so that you hit all the sets (the same as the set cover, reversing the roles)
- Vertex Cover: Select a subset of vertices such that you cover all edges (an endpoint of each edge is in the set)
- There is a 2-approximation algorithm
- Edge Cover: Select a set of edges that cover all vertices (there is one edge that has endpoint the vertex)
- There is a polynomial algorithm

Parting thoughts

- In this class you saw a set of tools for analyzing data
- Association Rules
- Sketching
- Clustering
- Classification
- Signular Value Decomposition
- Random Walks
- Coverage
- All these are useful when trying to make sense of the data. A lot more variants exist.

