DATA MINING
LECTURE 13

Pagerank, Absorbing Random Walks

Coverage Problems

PAGERANK

PageRank algorithm

The PageRank random walk

Start from a page chosen uniformly at random
With probability a follow a random outgoing link

With probability 1- o jump to a random page
chosen uniformly at random

Repeat until convergence
The PageRank Update Equations

PR(@) 1
PR(p) = aq;p' ut(q)| a)n

a = 0.85 in most cases

=

The PageRank random walk

- What about sink nodes?

- When at a node with no outgoing links jump to a page
chosen uniformly at random

"0 12 12 0 0]

|5 1/5 1/5 1/5 15 /\\

P-{0 1 0 0 O
/3 13 1/3 0 0 \ /
12 0 0 12 0

PR(p) = az PR(q) +a Z PR(Q)+(1—05):L

0I—>p| Ut(C])| g:gissink n n

The PageRank random walk

The PageRank transition probability matrix
- P was sparse, P” is dense.

"0 12 12 0 0 1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5
P'=¢/ 0 1 0 0 O |+(1-a)1/5 15 1/5 1/5 1/5
1/3 13 1/3 0 0 1/5 1/5 1/5 1/5 1/5
12 0 0 0 12 1/5 1/5 1/5 1/5 1/5

P” = aP’ + (1-a)uv’,
where u is the vector of all 1s, u = (1,1,...,1)
and v is the uniform vector, v=(1/n,1/n,...,1/n)

A PageRank implementation

Performing vanilla power method is now too
expensive — the matrix is not sparse

q°=v Efficient computation of gt = (P”)" g*!
t=1
repeat P y=aP'q"

a-eVa | | B=1-W,

6=[q" —q""| g =y+pv

t=t+1
until d < ¢ P = normalized adjacency matrix

P'=P +dv', where d;is 1ifiis sink and O o.w.

P”=aP’ + (1-a)uv’, where u is the vector of all 1s

-
A PageRank implementation

- For every node i:
t—1

y=aP'q"” S N
p=1-|y] O

— Y|,

t p=1- Z)"
q =y+pv i l

. 1
qi =Y+ [35
Why does this work?

o3 3 B)eee 3 0

[[J:jisasink

B=a Z ¢t (1-a)

j:jis asink

'_“ZOu(J . qj_+(1_“)l

Jij—-t j:jisasink

Implementation details

If you use Matlab, you can use the matrix-vector
operations directly.

If you want to implement this at large scale
- Store the graph as an adjacency list

- Or, store the graph as a set of edges,

- You need the out-degree Out(v) of each vertex v

ay_ '
out(u)
- This way we compute vector y, andthen we can

compute @t

- For each edge u — vadd weight to the weight g/

ABSORBING RANDOM
WALKS

Random walk with absorbing nodes

What happens if we do a random walk on this
graph? What is the stationary distribution?

All the probabllity mass on the red sink node:
- The red node is an absorbing node

Random walk with absorbing nodes

What happens if we do a random walk on this graph?
What is the stationary distribution?

@

O3
\ @

There are two absorbing nodes: the red and the blue.
The probability mass will be divided between the two

Absorption probability

If there are more than one absorbing nodes in the
graph a random walk that starts from a non-
absorbing node will be absorbed in one of them

with some probability
- The probability of absorption gives an estimate of how

close the node is to red or blue
N

\
O

-
Absorption probability

Computing the probability of being absorbed is very
easy

- Take the (weighted) average of the absorption probabilities of
your neighbors

if one of the neighbors is the absorbing node, it has probability 1
- Repeat until convergence (very small change in probs)

- The absorbing nodes have probability 1 of being absorbed in
themselves and zero of being absorbed in another node.

2 1
P(Red|Pink) = §P(Red|) + §P(Red|
1
P(Red|) = ZP(RedI)+ -
2
P(Redl) — §

Absorption probability

The same idea can be applied to the case of
undirected graphs

- The absorbing nodes are still absorbing, so the edges
to them are (implicitly) directed.

2 1
P(Red|Pink) = §P(Red|) + §P(Red|)
1 1 1
P(Red|) = £ P(Red|) + 2 P(Red|Pink) +¢
1 1 1
P(Red|) =2 P(Red]|) + 3 P(Red|Pink) + 3

0.52 0.42

Propagating values

Assume that Red has a positive value and Blue a
negative value

- Positive/Negative class, Positive/Negative opinion

We can compute a value for all the other nodes in the
same way

- This is the expected value for the node

V(Pink) =§V()+%V() 0.16
1 1 _ 1 2 O
V()= EV()+§V(Pmk)+§—§ 2\
1 1 1 1
V() = gV()+§V(Pink)+§ -

0.05 -0.16

Electrical networks and random walks

Our graph corresponds to an electrical network

There is a positive voltage of +1 at the Red node, and a
negative voltage -1 at the Blue node

There are resistances on the edges inversely proportional to
the weights (or conductance proportional to the weights)

The computed values are the voltages at the nodes

, 2 1
V(Pink) = §V() + §V()

Uil o

1 1 _ 1
V() = EV()+§V(Pmk)+§ —

1 1 1 1
V() = EV()+§V(Pmk)+§ -z

Transductive learning

If we have a graph of relationships and some labels on
these edges we can propagate them to the remaining
nodes

- E.g., a social network where some people are tagged as spammers

- E.g., the movie-actor graph where some movies are tagged as
action or comedy.

This is a form of semi-supervised learning
- We make use of the unlabeled data, and the relationships

It is also called transductive learning because it does not
produce a model, but just labels the unlabeled data that is
at hand.

- Contrast to inductive learning that learns a model and can label any
new example

Implementation details

Implementation is in many ways similar to the
PageRank implementation

- For an edge (u, v)instead of updating the value of v we
update the value of u.

The value of a node is the average of its neighbors

- We need to check for the case that a node u is
absorbing, in which case the value of the node is not
updated.

- Repeat the updates until the change in values is very
small.

COVERAGE

Example

Promotion campaign on a social network
- We have a social network as a graph.

- People are more likely to buy a product if they have a friend who
has bought it.

- We want to offer the product for free to some people such that
every person in the graph is covered (they have a friend who has
the product).

- We want the number of free products to be as small as possible

Example

Promotion campaign on a social network
- We have a social network as a graph.

- People are more likely to buy a product if they have a friend who
has bought it.

- We want to offer the product for free to some people such that
every person in the graph is covered (they have a friend who has
the product).

- We want the number of free products to be as small as possible

One possible selection

Example

Promotion campaign on a social network
- We have a social network as a graph.

- People are more likely to buy a product if they have a friend who
has bought it.

- We want to offer the product for free to some people such that
every person in the graph is covered (they have a friend who has
the product).

- We want the number of free products to be as small as possible

A better selection

Dominating set

- Qur problem is an instance of the dominating set
problem

- Dominating Set: Given a graph ¢ = (I/, E), a set
of vertices D € I/ Is a dominating set if for each
node u in V, either u is in D, or u has a neighbor
in D.

- The Dominating Set Problem: Given a graph
G = (V,E) find a dominating set of minimum size.

Set Cover

The dominating set problem is a special case of
the Set Cover problem

The Set Cover problem:
- We have a universe of elements U = {x4, ..., xy}

- We have a collection of subsets of U, § = {5, ..., S, },
suchthat U;S; = U

- We want to find the smallest subcollectionC < Sof S,
such that Ug.c¢S; = U

The sets in Ccover the elements of U

Applications

Dominating Set (or Promotion Campaign) as Set

Cover:

- The universe U is the set of nodes V

- Each node u defines a set S,, consisting of the node u and all
of its neighbors

- We want the minimum number of sets S,, (nodes) that cover
all the nodes in the graph.

Document summarization

- We have a document that consists of a set of terms T (the
universe U of elements), and a set of sentensessS, where

each sentence is a set of terms.
- Find the smallest number of sentences C, that cover all the
terms in the document.

Many more...

Best selection variant

Suppose that we have a budget K of how big our
set cover can be

- We only have K products to give out for free.

- We want to cover as many customers as possible.

Maximum-Coverage Problem: Given a universe
of elements U, a collection of S of subsets of U,
and a budget K, find a sub-collection € € §, such
that Ug.c¢ S; 1S maximized.

-
Complexity

Both the Set Cover and the Maximum Coverage
problems are NP-complete

- What does this mean?

- Why do we care?

There is no algorithm that can guarantee to find
the best solution in polynomial time

- Can we find an algorithm that can guarantee to find a
solution that is close to the optimal?

- Approximation Algorithms.

Approximation Algorithms

Suppose you have an (combinatorial)

optimization problem
- E.g., find the minimum set cover
- E.g., find the set that maximizes coverage

If X Is an instance of the problem, let OPT(X) be
the value of the optimal solution, and ALG(X) the

value of an algorithm ALG.
ALG Is a good approximation algorithm if the ratio
of OPT and ALG Is bounded.

Approximation Algorithms

For a minimization problem, the algorithm ALG is
an a-approximation algorithm, for o > 1, if for all
iInput instances X,

ALG(X) < aOPT(X)

For a maximization problem, the algorithm ALG is
an a-approximation algorithm, for o > 1, if for all
iInput instances X,

ALG(X) = aOPT(X)

a 1S the approximation ratio of the algorithm

Approximation ratio

- For a minimization problem (resp.),
we want the approximation ratio « to be as small
(resp. as big) as possible.

- Best case: o = 1 + e(resp.)and € — 0, as
n — oo(e.g., € = %)

- Good case: « = 0(1)is a constant
- OK case: o = O(logn) (resp.)

- Bad case o = O(n) (resp.)

A simple approximation ratio for set cover

- Any algorithm for set cover has approximation

ratio o = |S,,.,/, where S, IS the set in S with the
largest cardinality

- Proof:
» OPT(X)2N/|S,] = N =[S, |OPT(I)
« ALG(X) <N <s,,,.,]OPT(X)

- This is true for any algorithm.
- Not a good bound since it can be that |S, ., |=O(N)

An algorithm for Set Cover

- What is the most natural algorithm for Set Cover?

- Greedy: each time add to the collection C the set
S; from S that covers the most of the remaining
elements.

-
The GREEDY algorithm

GREEDY/(U,S)
X=u
c={

while X is not empty do
For all S; € Slet gain(S;) =S; N X
Let S.be such that gain(S,) is maximal
C=CU({S}
X =X\S.
S=S8\S.

-
Approximation ratio of GREEDY

Good news: the approximation ratio of GREEDY
IS

n
1
@ = H(Smaxl) = 1+ InlSmaxl . H() = Z;

GREEDY (X) < (1 + In|Syax)OPT(X), for aII x

The approximation ratio is tight up to a constant
(we can find a counter example)

@o|(® o (e o o o‘] OPT(X) = 2
] GREEDY(X) = logN

o=Y2logN

ﬂolko o) @ @ @ @

Maximum Coverage

-What is a reasonable algorithm?

GREEDY(U,S,K)
X=U

C={
while |C| < K
For all S; € Slet gain(S;) =S; N X
Let S, be such that gain(S,) is maximal
C=CU{S,}
X =X\S.
S=S\S.

Approximation Ratio for Max-K Coverage

- Better news! The GREEDY algorithm has

1

approximation ratio « = 1 — .

GREEDY (X) > (1 . i) OPT(X), for all X

Proof of approximation ratio

- For a collection C, let F(C) = U ¢ S; be the
number of elements that are covered.

- The function F has two properties:

- F Is monotone;:
F(A)<F(B)ifAcSB

- F 1s submodular:
F(Au{S}) - F(A)=2F((BU{S}) —F(B) ifASB
- Diminishing returns property

Optimizing submodular functions

- Theorem: A greedy algorithm that optimizes a
monotone and submodularfunction F, each time
adding to the solution C, the set S that maximizes
the gain F(C U {S}) — F(C)has approximation
ratio o = (1 — 1)

e

Other variants of Set Cover

Hitting Set: select a set of elements so that you
hit all the sets (the same as the set cover,
reversing the roles)

Vertex Cover: Select a subset of vertices such
that you cover all edges (an endpoint of each
edge is in the set)

- There is a 2-approximation algorithm

Edge Cover: Select a set of edges that cover all
vertices (there is one edge that has endpoint the
vertex)

- There is a polynomial algorithm

-
Parting thoughts

In this class you saw a set of tools for analyzing
data

- Association Rules

- Sketching

- Clustering

- Classification

- Signular Value Decomposition
- Random Walks

- Coverage

All these are useful when trying to make sense of
the data. A lot more variants exist.

