DATA MINING LECTURE 12

Graphs, Node importance, Link Analysis Ranking, Random walks

RANDOM WALKS AND PAGERANK

Graphs

- A graph is a powerful abstraction for modeling entities and their pairwise relationships.
- Examples:
- Social network
- Collaboration graphs
- Twitter Followers
- Web

Graphs

- A graph is a powerful abstraction for modeling entities and their pairwise relationships.
- Examples:
- Social network
- Collaboration graphs
- Twitter Followers
- Web

Mining the graph structure

- A graph is a combinatorial object, with a certain structure.
- Mining the structure of the graph reveals information about the entities in the graph
- E.g., if in the Facebook graph I find that there are 100 people that are all linked to each other, then these people are likely to be a community
- The community discovery problem
- By measuring the number of friends in the facebook graph I can find the most important nodes
- The node importance problem
- We will now focus on the node importance problem

Link Analysis

- First generation search engines
- view documents as flat text files
- could not cope with size, spamming, user needs
- Second generation search engines
- Ranking becomes critical
- shift from relevance to authoritativeness
- authoritativeness: the static importance of the page
- use of Web specific data: Link Analysis of the Web graph
- a success story for the network analysis + a huge commercial success
- it all started with two graduate students at Stanford

Link Analysis: Intuition

- A link from page p to page q denotes endorsement
- page p considers page q an authority on a subject
- use the graph of recommendations
- assign an authority value to every page
- The same idea applies to other graphs as well - Twitter graph, where user p follows user q

Constructing the graph

- Goal: output an authority weight for each node
- Also known as centrality, or importance

Rank by Popularity

- Rank pages according to the number of incoming edges (in-degree, degree centrality)

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page

Popularity

- It is not important only how many link to you, but how important are the people that link to you.
- Good authorities are pointed by good authorities
- Recursive definition of importance

PageRank

- Assume that we have a unity of authority to distribute to all nodes.
- Each node distributes the authority value they have to all their neighbors
- The authority value of each
 node is the sum of the fractions it collects from its neighbors.
- Solving the system of equations we get the authority values for the nodes

$$
w=1 / 2, w=1 / 4, w=1 / 4
$$

$$
\begin{aligned}
& w+w+w=1 \\
& w=w+w \\
& w=1 / 2 w \\
& w=1 / 2 w
\end{aligned}
$$

A more complex example

$$
\begin{aligned}
& \mathrm{w}_{1}=1 / 3 \mathrm{w}_{4}+1 / 2 \mathrm{w}_{5} \\
& \mathrm{w}_{2}=1 / 2 \mathrm{w}_{1}+\mathrm{w}_{3}+1 / 3 \mathrm{w}_{4} \\
& \mathrm{w}_{3}=1 / 2 \mathrm{w}_{1}+1 / 3 \mathrm{w}_{4} \\
& \mathrm{w}_{4}=1 / 2 \mathrm{w}_{5} \\
& \mathrm{w}_{5}=\mathrm{w}_{2}
\end{aligned}
$$

$$
P R(p)=\sum_{q \rightarrow p} \frac{P R(q)}{|O u t(q)|}
$$

Random walks on graphs

- The equations above describe a step of a random walk on the graph
- Random walk: start from some node uniformly at random and then from each node pick a random link to follow.
- Question: what is the probability of being at a specific node?
- p_{i} : probability of being at node i at this step
- p_{i}^{\prime} : probability of being at node i in the next step

$$
\begin{aligned}
& p_{1}^{\prime}=1 / 3 p_{4}+1 / 2 p_{5} \\
& p_{2}^{\prime}=1 / 2 p_{1}+p_{3}+1 / 3 p_{4} \\
& p_{3}^{\prime}=1 / 2 p_{1}+1 / 3 p_{4} \\
& p_{4}^{\prime}=1 / 2 p_{5} \\
& p_{5}^{\prime}=p_{2}
\end{aligned}
$$

- After many steps the probabilities converge to the stationary distribution of the random walk.

PageRank algorithm [BP98]

- Good authorities should be pointed by good authorities
- The value of a page is the value of the people that link to you
- How do we implement that?
- Each page has a value.
- Proceed in iterations,
- in each iteration every page distributes the value to the neighbors
- Continue until there is convergence.

$$
P R(p)=\sum_{q \rightarrow p} \frac{P R(q)}{|O u t(q)|}
$$

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page

Markov chains

- A Markov chain describes a discrete time stochastic process over a set of states

$$
S=\left\{s_{1}, s_{2}, \ldots s_{n}\right\}
$$

according to a transition probability matrix

$$
P=\left\{P_{i j}\right\}
$$

- $P_{i j}=$ probability of moving to state j when at state i
- $\sum_{\mathrm{j}} \mathrm{P}_{\mathrm{ij}}=1$ (stochastic matrix)
- Memorylessness property: The next state of the chain depends only at the current state and not on the past of the process (first order MC)
- higher order MCs are also possible

Random walks

- Random walks on graphs correspond to Markov Chains
- The set of states S is the set of nodes of the graph G
- The transition probability matrix is the probability that we follow an edge from one node to another

An example

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 1 / 2
\end{array}\right]
$$

State probability vector

- The vector $q^{t}=\left(q_{1}^{t}, q_{2}^{t}, \ldots, q_{n}^{t}\right)$ that stores the probability of being at state i at time t
$-q_{i}^{0}=$ the probability of starting from state i

$$
q^{t}=q^{t-1} p
$$

An example

$$
q^{t}=q^{t-1} p
$$

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& q^{t+1}=1 / 3 q_{4}^{t}+1 / 2 q_{5}^{t} \\
& q^{t+1}=1 / 2 q_{1}^{t}+q_{3}^{t}+1 / 3 q_{4}^{t} \\
& q^{t+1}{ }_{3}=1 / 2 q_{1}^{t}+1 / 3 q_{4}^{t} \\
& q^{t+1}=1 / 2 q_{5}^{t} \\
& q^{t+1}=q_{5}^{t}
\end{aligned}
$$

Same equations as before!

Stationary distribution

- A stationary distribution for a MC with transition matrix P, is a probability distribution π, such that $\pi=\pi P$
- A MC has a unique stationary distribution if
- it is irreducible
- the underlying graph is strongly connected
- it is aperiodic
- for random walks, the underlying graph is not bipartite
- The probability π_{i} is the fraction of times that we visited state i as $t \rightarrow \infty$
- The stationary distribution is an eigenvector of matrix P
- the principal left eigenvector of P - stochastic matrices have maximum eigenvalue 1

Computing the stationary distribution

- The Power Method
- Initialize to some distribution q^{0}
- Iteratively compute $q^{t}=q^{t-1} P$
- After enough iterations $q^{\dagger} \approx \pi$
- Power method because it computes $q^{t}=q^{0} P^{t}$
-Why does it converge?
- follows from the fact that any vector can be written as a linear combination of the eigenvectors

$$
\cdot q^{0}=v_{1}+c_{2} v_{2}+\ldots c_{n} v_{n}
$$

-Rate of convergence

- determined by $\lambda_{2}{ }^{t}$

The PageRank random walk

- Vanilla random walk
- make the adjacency matrix stochastic and run a random walk

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

The PageRank random walk

-What about sink nodes?

- what happens when the random walk moves to a node without any outgoing inks?
$P=\left[\begin{array}{ccccc}0 & 1 / 2 & 1 / 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\ 1 / 2 & 0 & 0 & 1 / 2 & 0\end{array}\right]$

The PageRank random walk

- Replace these row vectors with a vector v
- typically, the uniform vector

The PageRank random walk

- How do we guarantee irreducibility?
- How do we guarantee not getting stuck in loops?
- add a random jump to vector v with prob a
- typically, to a uniform vector

$$
\mathrm{P}^{\prime \prime}=\alpha\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 1 / 2
\end{array}\right]+(1-\alpha)\left[\begin{array}{ccccc}
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5
\end{array}\right]
$$

$P^{\prime \prime}=\alpha P^{\prime}+(1-\alpha) u v^{\top}$, where u is the vector of all $1 s$

PageRank algorithm [BP98]

- The Random Surfer model
- pick a page at random
- with probability 1- α jump to a random page
- with probability a follow a random outgoing link
- Rank according to the stationary distribution

$$
\begin{aligned}
& \operatorname{PR}(p)=\alpha \sum_{q \rightarrow p} \frac{P R(q)}{|\operatorname{Out}(q)|}+(1-\alpha) \frac{1}{n} \\
& \alpha=0.85 \text { in most cases }
\end{aligned}
$$

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page

The stationary distribution

- What is the meaning of the stationary distribution π of a random walk?
- $\pi(i)$: the probability of being at node i after very large (infinite) number of steps
- $\pi=p_{0} P^{\infty}$, where P is the transition matrix, p_{0} the original vector
- $P(i, j)$: probability of going from i to j in one step
- $P^{2}(i, j)$: probability of going from ito j in two steps (probability of all paths of length 2)
- $P^{\infty}(i, j)=\pi(j)$: probability of going from ito j in infinite steps - starting point does not matter.

Stationary distribution with random jump

- If v is the jump vector

$$
\begin{gathered}
p_{0}=v \\
p_{1}=\alpha p_{0} P+(1-\alpha) v=\alpha v P+(1-\alpha) v \\
p_{2}=\alpha p_{1} P+(1-\alpha) v=\alpha^{2} v P^{2}+(1-\alpha) v \alpha P+(1-\alpha) v
\end{gathered}
$$

$$
p^{\infty}=(1-\alpha) v+(1-\alpha) v \alpha P+(1-\alpha) v \alpha^{2} P^{2}+\cdots
$$

$$
=(1-\alpha)(I-\alpha P)^{-1}
$$

- With the random jump the shorter paths are more important, since the weight decreases exponentially
- makes sense when thought of as a restart
- If v is not uniform, we can bias the random walk towards the pages that are close to v
- Personalized and Topic Specific Pagerank.

Effects of random jump

- Guarantees irreducibility
- Motivated by the concept of random surfer
- Offers additional flexibility
- personalization
- anti-spam
- Controls the rate of convergence
- the second eigenvalue of matrix P " is a

Random walks on undirected graphs

- For undirected graphs, the stationary distribution is proportional to the degrees of the nodes
- Thus in this case a random walk is the same as degree popularity
- This is not longer true if we do random jumps
- Now the short paths play a greater role, and the previous distribution does not hold.

A PageRank algorithm

- Performing vanilla power method is now too expensive - the matrix is not sparse

$$
\begin{aligned}
& q^{0}=v \\
& \mathrm{t}=1 \\
& \text { repeat } \\
& \mathrm{q}^{\mathrm{t}}=\left(\mathrm{P}^{\prime \prime}\right)^{\top} \mathrm{q}^{\mathrm{t}-1} \\
& \delta=\left\|\mathrm{q}^{\mathrm{t}}-\mathrm{q}^{\mathrm{t}-1}\right\| \\
& \mathrm{t}=\mathrm{t}+1
\end{aligned}
$$

until $\delta<\varepsilon$

Pagerank history

- Huge advantage for Google in the early days
- It gave a way to get an idea for the value of a page, which was useful in many different ways
- Put an order to the web.
- After a while it became clear that the anchor text was probably more important for ranking
- Also, link spam became a new (dark) art
- Flood of research
- Numerical analysis got rejuvenated
- Huge number of variations
- Efficiency became a great issue.
- Huge number of applications in different fields
- Random walk is often referred to as PageRank.

THE HITS ALGORITHM

The HITS algorithm

- Another algorithm proposed around the same time as Pagerank for using the hyperlinks to rank pages
- Kleinberg: then an intern at IBM Almaden
- IBM never made anything out of it

Query dependent input

Root set obtained from a text-only search engine

Root Set

Query dependent input

Query dependent input

Query dependent input

Hubs and Authorities [K98]

- Authority is not necessarily transferred directly between authorities
- Pages have double identity
- hub identity
- authority identity
- Good hubs point to good authorities
- Good authorities are pointed by good hubs

Hubs and Authorities

- Two kind of weights:
- Hub weight
- Authority weight
- The hub weight is the sum of the authority weights of the authorities pointed to by the hub
- The authority weight is the sum of the hub weights that point to this authority.

HITS Algorithm

- Initialize all weights to 1.

Repeat until convergence

- O operation : hubs collect the weight of the authorities

$$
h_{i}=\sum_{j: i \rightarrow j} a_{j}
$$

- I operation: authorities collect the weight of the hubs

$$
a_{i}=\sum_{j: j \rightarrow i} h_{j}
$$

- Normalize weights under some norm

HITS and eigenvectors

- The HITS algorithm is a power-method eigenvector computation
- in vector terms $a^{t}=A^{\top} h^{t-1}$ and $h^{t}=A a^{t-1}$
- so $a=A^{\top} A a^{t-1}$ and $h^{t}=A A^{\top} h^{t-1}$
- The authority weight vector a is the eigenvector of $A^{\top} A$ and the hub weight vector h is the eigenvector of $A A^{\top}$
-Why do we need normalization?
- The vectors a and h are singular vectors of the matrix A

Singular Value Decomposition

$$
\underset{[n \times r][r \times r][r \times n]}{\mathrm{A}=\mathrm{U}} \quad \sum \quad \mathrm{~V}^{\top}=\left[\begin{array}{llll}
\overrightarrow{\mathrm{u}}_{1} & \overrightarrow{\mathrm{u}}_{2} & \cdots & \overrightarrow{\mathrm{u}}_{\mathrm{r}}
\end{array}\right]\left[\begin{array}{lllll}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \ddots & \\
& & & \sigma_{\mathrm{r}}
\end{array}\right]\left[\begin{array}{c}
\overrightarrow{\mathrm{v}}_{1} \\
\overrightarrow{\mathrm{v}}_{2} \\
\vdots \\
\overrightarrow{\mathrm{v}}_{\mathrm{r}}
\end{array}\right]
$$

- r : rank of matrix A
- $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}$: singular values (square roots of eig-vals $A A^{\top}, A^{\top} A$)
- $\vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{;}$left singular vectors (eig-vectors of $A A^{\top}$)
- $\overrightarrow{\mathrm{v}}_{1}, \vec{v}_{2}, \cdots, \overrightarrow{\mathrm{v}}$ right singular vectors (eig-vectors of $\mathrm{A}^{\top} \mathrm{A}$)

$$
A=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{\top}+\sigma_{2} \vec{u}_{2} \vec{v}_{2}^{\top}+\cdots+\sigma_{r} \vec{u}_{r} \vec{v}_{r}^{\top}
$$

Singular Value Decomposition

- Linear trend v in matrix A :
- the tendency of the row vectors of A to align with vector v
- strength of the linear trend: Av
- SVD discovers the linear trends in the data
- \mathbf{u}_{i}, v_{i} : the i-th strongest linear trends

- σ_{i} : the strength of the i-th strongest linear trend
- HITS discovers the strongest linear trend in the authority space

HITS and the TKC effect

- The HITS algorithm favors the most dense community of hubs and authorities
- Tightly Knit Community (TKC) effect

HITS and the TKC effect

- The HITS algorithm favors the most dense community of hubs and authorities
- Tightly Knit Community (TKC) effect

HITS and the TKC effect

- The HITS algorithm favors the most dense community of hubs and authorities
- Tightly Knit Community (TKC) effect

HITS and the TKC effect

- The HITS algorithm favors the most dense community of hubs and authorities
- Tightly Knit Community (TKC) effect

HITS and the TKC effect

- The HITS algorithm favors the most dense community of hubs and authorities
- Tightly Knit Community (TKC) effect

HITS and the TKC effect

- The HITS algorithm favors the most dense community of hubs and authorities
- Tightly Knit Community (TKC) effect

HITS and the TKC effect

- The HITS algorithm favors the most dense community of hubs and authorities
- Tightly Knit Community (TKC) effect

after n iterations

HITS and the TKC effect

- The HITS algorithm favors the most dense community of hubs and authorities
- Tightly Knit Community (TKC) effect

after normalization with the max
element as $\mathrm{n} \rightarrow \infty$

OTHER ALGORITHMS

The SALSA algorithm [LMO0]

- Perform a random walk alternating between hubs and authorities
- What does this random walk converge to?

- The graph is essentially undirected, so it will be proportional to the degree.

Social network analysis

- Evaluate the centrality of individuals in social networks
- degree centrality
- the (weighted) degree of a node
- distance centrality
- the average (weighted) distance of a node to the rest in the graph

$$
D_{c}(v)=\frac{1}{\sum_{u \neq v} d(v, u)}
$$

- betweenness centrality
- the average number of (weighted) shortest paths that use node v

$$
\mathrm{B}_{\mathrm{c}}(\mathrm{v})=\sum_{\mathrm{s} \neq \mathrm{v} \neq t} \frac{\sigma_{\mathrm{st}}(\mathrm{v})}{\sigma_{\mathrm{st}}}
$$

Counting paths - Katz 53

- The importance of a node is measured by the weighted sum of paths that lead to this node
- $A^{m}[i, j]=$ number of paths of length m from i to j
- Compute

$$
P=b A+b^{2} A^{2}+\cdots+b^{m} A^{m}+\cdots=(I-b A)^{-1}-I
$$

- converges when $b<\lambda_{1}(A)$
- Rank nodes according to the column sums of the matrix P

Bibliometrics

- Impact factor (E. Garfield 72)
- counts the number of citations received for papers of the journal in the previous two years
- Pinsky-Narin 76
- perform a random walk on the set of journals
- $\mathrm{P}_{\mathrm{ij}}=$ the fraction of citations from journal i that are directed to journal j

ABSORBING RANDOM WALKS

Random walk with absorbing nodes

- What happens if we do a random walk on this graph? What is the stationary distribution?

- All the probability mass on the red sink node:
- The red node is an absorbing node

Random walk with absorbing nodes

- What happens if we do a random walk on this graph? What is the stationary distribution?

- There are two absorbing nodes: the red and the blue.
- The probability mass will be divided between the two

Absorption probability

- If there are more than one absorbing nodes in the graph a random walk that starts from a nonabsorbing node will be absorbed in one of them with some probability
- The probability of absorption gives an estimate of how close the node is to red or blue
- Why care?

- Red and Blue may be different categories

Absorption probability

- Computing the probability of being absorbed is very easy
- Take the (weighted) average of the absorption probabilities of your neighbors
- if one of the neighbors is the absorbing node, it has probability 1
- Repeat until convergence
- Initially only the absorbing have prob 1
$P($ Red \mid Pink $)=\frac{2}{3} P($ Red \mid Yellow $)+\frac{1}{3} P($ Red \mid Green $)$
$P($ Red \mid Green $)=\frac{1}{4} P($ Red \mid Yellow $)+\frac{1}{4}$
$P($ Red \mid Yellow $)=\frac{2}{3}$

Absorption probability

- The same idea can be applied to the case of undirected graphs
- The absorbing nodes are still absorbing, so the edges to them are (implicitely) directed.

$$
\begin{aligned}
& P(\text { Red } \mid \text { Pink })=\frac{2}{3} P(\text { Red } \mid \text { Yellow })+\frac{1}{3} P(\text { Red } \mid \text { Green }) \\
& P(\text { Red } \mid \text { Green })=\frac{1}{5} P(\text { Red } \mid \text { Yellow })+\frac{1}{5} P(\text { Red } \mid \text { Pink })+\frac{1}{5} \\
& P(\text { Red } \mid \text { Yellow })=\frac{1}{6} P(\text { Red } \mid \text { Green })+\frac{1}{3} P(\text { Red } \mid \text { Pink })+\frac{1}{3}
\end{aligned}
$$

Propagating values

- Assume that Red corresponds to a positive class and Blue to a negative class
- We can compute a value for all the other nodes in the same way
- This is the expected value for the node

$$
\begin{aligned}
& V(\text { Pink })=\frac{2}{3} V(\text { Yellow })+\frac{1}{3} V(\text { Green }) \\
& V(\text { Green })=\frac{1}{5} V(\text { Yellow })+\frac{1}{5} V(\text { Pink })+\frac{1}{5}-\frac{2}{5} \\
& V(\text { Yellow })=\frac{1}{6} V(\text { Green })+\frac{1}{3} V(\text { Pink })+\frac{1}{3}-\frac{1}{6}
\end{aligned}
$$

Electrical networks and random walks

- If Red corresponds to a positive voltage and Blue to a negative voltage
- There are resistances on the edges inversely proportional to the weights
- The computed values are the voltages

Transductive learning

- If we have a graph of relationships and some labels on these edges we can propagate them to the remaining nodes
- E.g., a social network where some people are tagged as spammers
- This is a form of semi-supervised learning
- We make use of the unlabeled data, and the relationships
- It is also called transductive learning because it does not produce a model, and labels only what is at hand.

