DATA MINING
LECTURE 12

Graphs, Node importance, Link
Analysis Ranking, Random walks




RANDOM WALKS AND
PAGERANK




Graphs

A graph is a powerful abstraction for modeling
entities and their pairwise relationships.

Examples:
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- Twitter Followers / '\
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Social network
- Collaboration graphs ’s /‘\




Graphs

A graph is a powerful abstraction for modeling
entities and their pairwise relationships.

Examples:
- Social network
- Collaboration graphs Vs —

- Twitter Followers O /N

@ .
- Web m/’
@

%1

Vg



Mining the graph structure

A graph is a combinatorial object, with a certain
structure.

Mining the structure of the graph reveals information
about the entities in the graph
- E.g., if in the Facebook graph | find that there are 100 people

that are all linked to each other, then these people are likely
to be a community

The community discovery problem

- By measuring the number of friends in the facebook graph |
can find the most important nodes

The node importance problem

We will now focus on the node importance problem



-
Link Analysis

First generation search engines
- view documents as flat text files
- could not cope with size, spamming, user needs

Second generation search engines

- Ranking becomes critical

- shift from relevance to authoritativeness
authoritativeness: the static importance of the page
- use of Web specific data: Link Analysis of the Web
graph
- a success story for the network analysis + a huge
commercial success

- It all started with two graduate students at Stanford



Link Analysis: Intuition

A link from page p to page g denotes
endorsement

- page p considers page ¢ an authority on a subject
- use the graph of recommendations

- assign an authority value to every page

The same idea applies to other graphs as well
- Twitter graph, where user p follows user g



Constructing the graph

- Goal: output an authority weight for each node
- Also known as centrality, or importance



Rank by Popularity

- Rank pages according to the number of incoming
edges (in-degree, degree centrality)

1. Red Page

3. Blue Page
4. Purple Page
5. Green Page



-
Popularity

- It is not important only how many link to you, but
how important are the people that link to you.

- Good authorities are pointed by good authorities
- Recursive definition of importance



-
PageRank

Assume that we have a unity of
authority to distribute to all
nodes.

Each node distributes the
authority value they have to all
their neighbors

The authority value of each w
node is the sum of the fractions
it collects from its neighbors.

O

w+w+w=1
Solving the system of _
equations we get the authority W= w
values for the nodes w=%¥w

w=% w=V,, =Y, :1/2W



A more complex example

=1/3w,+1/2 w,

: /EI\
w,=1/2w, +wy+1/3 w,
wy=1/2w, +1/3 w, \ \
w, =1/2 wq

W5 =W,

Vs

<« PR(q)
PR qu\Out(q)\



Random walks on graphs

The equations above describe a step of a random walk on the graph
- Random walk: start from some node uniformly at random and then from each
node pick a random link to follow.

- Question: what is the probability of being at a specific node?
p;. probability of being at node i at this step
p;': probability of being at node i in the next step

=1/3p,+1/2 p. v, o /H %
0,=1/21 +ps+1/3p, -~ LA |7,
Yy=1/21 +1/3p, \N 7
p's=1/2ps E \
P's =P, Vs E Va

After many steps the probabilities converge to the stationary
distribution of the random walk.



PageRank algorithm [BP98]

Good authorities should be pointed
by good authorities

The value of a page is the value of the
people that link to you

How do we implement that?
Each page has a value.

Proceed in iterations,

In each iteration every page
distributes the value to the neighbors

Continue until there is
convergence.

_ ~ PR(a)
PR(p) = O,Z;,|Out(q)|

1. Red Page
2. Purple Page

4. Blue Page
5. Green Page



Markov chains

- A Markov chain describes a discrete time stochastic
process over a set of states

S=1{s;, Sy - Sy}

according to a transition probability matrix
P={P,}
- Pj; = probability of moving to state | when at state |
- 2P = 1 (stochastic matrix)

- Memorylessness property: The next state of the chain
depends only at the current state and not on the past of
the process (first order MC)

- higher order MCs are also possible



Random walks

- Random walks on graphs correspond to Markov
Chains
- The set of states S is the set of nodes of the graph G

- The transition probability matrix is the probability that
we follow an edge from one node to another



An example

01100 v, H"Z

0 12 12 0 0] B E
0 0 0 0 1

P={0 1 0 0 O Vs v,
1/3 1/3 1/3 0 0
1/2 0 0 0 172




-
State probability vector

- The vector ' = (9',,9%, ... ,q',) that stores the
probability of being at state | at time t

- 0° = the probability of starting from state i

qt — qt-l P



An example

qtzqt'lP
"0 12 12 0 0O V1 "
0 0 0 0 1 E/’H\
P=l0 1 0 0 O £\ ng
0 0
0

1/3 1/3 1/3 |
12 0 0 12 0 \EN /

=1/3 9% +1/2q5%
9", =1/2 ' +qg'5+1/3dY,
q*';=1/2 +1/3 q',
q*t, =1/2 9%

t+1 — Nt
q s=d,




Stationary distribution

A stationary distribution for a MC with transition matrix P,
IS a probability distribution 11, such that = 1P

A MC has a unique stationary distribution if
- itis irreducible
the underlying graph is strongly connected
- It is aperiodic
for random walks, the underlying graph is not bipartite

The probability T, is the fraction of times that we visited
stateiast— o
The stationary distribution is an eigenvector of matrix P

- the principal left eigenvector of P — stochastic matrices have
maximum eigenvalue 1



Computing the stationary distribution

The Power Method

- Initialize to some distribution g°

- Iteratively compute g' = g*'P

- After enough iterations g'= 1

- Power method because it computes gt = g°P!

Why does it converge?

- follows from the fact that any vector can be written as a
linear combination of the eigenvectors
qQ°=v,+Cv, ... LV,
Rate of convergence
- determined by A.!



The PageRank random walk

- Vanilla random walk
- make the adjacency matrix stochastic and run a random

walk
"0 12 12 0 0] — //B\\
0 0 0 0 1 T\ \
P=l0 1 0 0 O
1/3 1/3 1/3 0 0 /
2o oo |=|—7]



The PageRank random walk

- What about sink nodes?

- what happens when the random walk moves to a node
without any outgoing inks?

|0 0 0 0 0 - .

0 12 12 0 0 - /H\

P-l0 1 0 0 O B
1/3 1/3 13 0 0 \\ /
12 0 0 1/2 0 B :




The PageRank random walk

- Replace these row vectors with a vector v
- typically, the uniform vector

115 15 15 15 1/5 AN

P-l0 1 0 0 O R |
/3 13 1/3 0 0 \ /
/2 0 0 12 0 B E

- 1 ifiis sink
10 otherwise

0 Y212 0 0] | éﬂ\ﬂ

P’ =P +dv’



The PageRank random walk

How do we guarantee irreducibility?

How do we guarantee not getting stuck in loops?

- add a random jump to vector v with prob a
typically, to a uniform vector

0 12 12 0 0 1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5
P'=¢/ 0 1 0 0 O |+(1-a)1/5 15 1/5 1/5 1/5
1/3 13 1/3 0 0 1/5 1/5 1/5 1/5 1/5
12 0 0 0 12 1/5 1/5 1/5 1/5 1/5

P” = aP’ + (1-a)uv’, where u is the vector of all 1s
Random walk with restarts



PageRank algorithm [BP98]

- The Random Surfer model
- pick a page at random

- with probability 1- a jump to a random
page \ \
- with probability a follow a random

outgoing link

- Rank according to the stationary

distribution 1. Red Page

PR(q) 1 2. Purple Page
PR =
(P)= a(§|0ut(q)| -a) n

4. Blue Page
. Green Page

a = 0.85 in most cases

Ul



The stationary distribution

What is the meaning of the stationary distribution
n of a random walk?

m(i): the probability of being at node | after very
large (infinite) number of steps

m = poP”, where P is the transition matrix, p, the

original vector

- P(1,]): probability of going from i to | in one step

- P%(i,j): probability of going from i to j in two steps
(probability of all paths of length 2)

- P(i,j) = m(j): probability of going from i to | in infinite
steps — starting point does not matter.



Stationary distribution with random jump

If v is the jump vector
Po ="V
pr=apoP+ (1 —a)v=avP + (1 —a)v
p, = ap;P+ (1 —a)v = a?vP? + (1 — a)vaP + (1 — a)v

p°*=1—-a)v+ ({1 —a)vaP + (1 — a)va?P? + -
=(1-a){ —aP) !
With the random jump the shorter paths are more

Important, since the weight decreases exponentially
- makes sense when thought of as a restart

If v IS not uniform, we can bias the random walk towards
the pages that are close to v

- Personalized and Topic Specific Pagerank.



Effects of random jump

Guarantees irreducibility
Motivated by the concept of random surfer

Offers additional flexibility

- personalization

- anti-spam

Controls the rate of convergence

- the second eigenvalue of matrix P” is



Random walks on undirected graphs

For undirected graphs, the stationary distribution
IS proportional to the degrees of the nodes

- Thus in this case a random walk is the same as degree
popularity

This is not longer true if we do random jumps

- Now the short paths play a greater role, and the
previous distribution does not hold.



-
A PageRank algorithm

Performing vanilla power method is now too
expensive — the matrix is not sparse

q°=v Efficient computation of y = (P”)" x
t=1 .
repeat P y=aP X

=P | Bl -l

o=la 0| | |y-ysp

t=t+1
until d < ¢ P = normalized adjacency matrix

P'=P +dv', where d;is 1ifiis sink and O o.w.

P”=aP’ + (1-a)uv’, where u is the vector of all 1s




-
Pagerank history

Huge advantage for Google in the early days

- It gave a way to get an idea for the value of a page, which
was useful in many different ways

Put an order to the web.

- After a while it became clear that the anchor text was
probably more important for ranking

- Also, link spam became a new (dark) art

Flood of research

- Numerical analysis got rejuvenated
- Huge number of variations

- Efficiency became a great issue.

- Huge number of applications in different fields
Random walk is often referred to as PageRank.



THE HITS ALGORITHM




-
The HITS algorithm

Another algorithm proposed around the same
time as Pagerank for using the hyperlinks to rank
pages

- Kleinberg: then an intern at IBM Almaden

- IBM never made anything out of it



-
Query dependent input

Root set obtained from a text-only search engine

Root Set



-
Query dependent input




-
Query dependent input

Root Set
IN OuT



-
Query dependent input

Base Set

Root Set



Hubs and Authorities [K98]

Authority Is not necessarily
transferred directly
between authorities

Pages have double
identity
hub identity
authority identity

Good hubs point to good
authorities

Good authorities are
pointed by good hubs

- /El\ﬂ
<)

u u

hubs authorities



e
Hubs and Authorities

Two kind of weights:
- Hub weight
- Authority weight

The hub weight is the sum of the authority
weights of the authorities pointed to by the hub

The authority weight is the sum of the hub
weights that point to this authority.



-
HITS Algorithm

Initialize all weights to 1.

Repeat until convergence
- O operation : hubs collect the weight of the authorities

h =) a,
i |

- I operation: authorities collect the weight of the hubs

3, = > h,

j:joi
- Normalize weights under some norm




HITS and eigenvectors

The HITS algorithm is a power-method
eigenvector computation
- in vector terms a' = ATht! and h' = Aa*!
- so a =ATAa! and ht = AATht!
- The authority weight vector a is the eigenvector of ATA
and the hub weight vector h is the eigenvector of AAT

- Why do we need normalization?
The vectors a and h are singular vectors of the
matrix A



Singular Value Decomposition

01 \71

S . o) Y;

A=U = V'=[4, G4, - U] ; 2
[nxr] [r=r] [rn] 5 \7

r . rank of matrix A

0,2 0,2 ... 20, . singular values (square roots of eig-vals AAT, ATA)
u,,u,,---,U: left singular vectors (eig-vectors of AAT)

\71 / \72 7ttty \7rright singular vectors (eig-vectors of ATA)

i i e

r=r-r



-
Singular Value Decomposition

Linear trend v in matrix A:

the tendency of the row
vectors of A to align with
vector v

strength of the linear trend:
Av

SVD discovers the linear
trends in the data

u;, Vv, : the i-th strongest
linear trends

0, : the strength of the i-th
strongest linear trend

= HITS discovers the strongest linear trend in the
authority space



HITS and the TKC effect

- The HITS algorithm favors the most dense
community of hubs and authorities

- Tightly Knit Community (TKC) effect



HITS and the TKC effect

- The HITS algorithm favors the most dense
community of hubs and authorities

- Tightly Knit Community (TKC) effect

—_ =t



HITS and the TKC effect

- The HITS algorithm favors the most dense
community of hubs and authorities

- Tightly Knit Community (TKC) effect



HITS and the TKC effect

- The HITS algorithm favors the most dense
community of hubs and authorities

- Tightly Knit Community (TKC) effect



HITS and the TKC effect

- The HITS algorithm favors the most dense
community of hubs and authorities

- Tightly Knit Community (TKC) effect

33
33
33

322
32-2



HITS and the TKC effect

- The HITS algorithm favors the most dense
community of hubs and authorities

- Tightly Knit Community (TKC) effect

34
g >

34
u 32. 92
u 32. 92



HITS and the TKC effect

- The HITS algorithm favors the most dense
community of hubs and authorities

- Tightly Knit Community (TKC) effect

after n iterations




HITS and the TKC effect

- The HITS algorithm favors the most dense
community of hubs and authorities

- Tightly Knit Community (TKC) effect

after normalization
with the max
elementas n — «©

o O O



OTHER ALGORITHMS




The SALSA algorithm [LMOO]

Perform a random walk alternating L} O
between hubs and authorities ]

[

O0—20
What does this random walk O0—0
converge to? hubs authorities

The graph is essentially
undirected, so it will be

proportional to the degree.



Social network analysis

Evaluate the centrality of individuals in social
networks

- degree centrality
the (weighted) degree of a node

- distance centrality

the average (weighted) distance of a node to the rest in the

graph D, (

V)= L
2, d0v,u)
- betweenness centrality
the average number of (weighted) shortest paths that use node v

B(v)= 3 %2

S#V#L Gst



-
Counting paths — Katz 53

The importance of a node is measured by the
weighted sum of paths that lead to this node

AM[I,j] = number of paths of length m from i to |
Compute

P=bA+b’A*+.-.+b™A" +...=(I-bA) " -1
converges when b < A,(A)

Rank nodes according to the column sums of the
matrix P



Bibliometrics

Impact factor (E. Garfield 72)

- counts the number of citations received for papers of
the journal in the previous two years

Pinsky-Narin 76

- perform a random walk on the set of journals

- P;; = the fraction of citations from journal i that are
directed to journal |



ABSORBING RANDOM
WALKS




Random walk with absorbing nodes

What happens if we do a random walk on this
graph? What is the stationary distribution?

All the probabllity mass on the red sink node:
- The red node is an absorbing node



Random walk with absorbing nodes

What happens if we do a random walk on this graph?
What is the stationary distribution?

@

O3
\ @

There are two absorbing nodes: the red and the blue.
The probability mass will be divided between the two



Absorption probability

If there are more than one absorbing nodes in the

graph a random walk that starts from a non-
absorbing node will be absorbed in one of them

with some probability
- The probability of absorption gives an estimate of how

close the node is to red or blue /‘

%
\ 0

Why care? ‘

- Red and Blue may be different categories




Absorption probability

Computing the probability of being absorbed is
very easy

- Take the (weighted) average of the absorption
probabilities of your neighbors
If one of the neighbors is the absorbing node, it has probability 1

- Repeat until convergence
- Initially only the absorbing have prob 1

2 1
P(Red|Pink) = §P(Red| ) + §P(Red| ) Q

1 1 2
P(Red| ) = ZP(RedI )+ -

2
P(Red| ) ==

3




Absorption probability

The same idea can be applied to the case of
undirected graphs

- The absorbing nodes are still absorbing, so the edges
to them are (implicitely) directed.

2 1
P(Red|Pink) = §P(Red| ) + §P(Red| )
1 1 1
P(Red| ) = £ P(Red| ) + 2 P(Red|Pink) +¢
1 1 1
P(Red| ) = EP(RedI )+§P(Red|Pink) +3

0.52 0.42



Propagating values

Assume that Red corresponds to a positive class
and Blue to a negative class

- We can compute a value for all the other nodes in the
same way
This is the expected value for the node

2 1
1 1 1 2 O
V( ) = EV( )+§V(Plnk)+§—§ 2\

1 1 1 1
V( ) = EV( )+§V(Pmk)+§ -z

0.05 -0.16



Electrical networks and random walks

If Red corresponds to a positive voltage and Blue
to a negative voltage

There are resistances on the edges inversely
proportional to the weights

The computed values are the voltages

2 1 0.16

V(Pink) = ZV( )+ 3V ) O
1 1 1 2

V( )= 2V( )+ V(Pink) +2 — 2\
1 1 1 1
V( ) = EV( )+§V(Pink)+§ -

0.05 -0.16



Transductive learning

If we have a graph of relationships and some
labels on these edges we can propagate them to
the remaining nodes

- E.g., a social network where some people are tagged
as spammers

This Is a form of semi-supervised learning
- We make use of the unlabeled data, and the
relationships

It is also called transductive learning because it
does not produce a model, and labels only what
IS at hand.



