
DATA MINING 

LECTURE 12 
Graphs, Node importance, Link 

Analysis Ranking, Random walks 



RANDOM WALKS AND 

PAGERANK 



Graphs 

• A graph is a powerful abstraction for modeling 

entities and their pairwise relationships. 

• Examples:  

• Social network 

• Collaboration graphs 

• Twitter Followers 

• Web 
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Mining the graph structure 

• A graph is a combinatorial object, with a certain 

structure. 

• Mining the structure of the graph reveals information 

about the entities in the graph 

• E.g., if in the Facebook graph I find that there are 100 people 

that are all linked to each other, then these people are likely 

to be a community 

• The community discovery problem 

• By measuring the number of friends in the facebook graph I 

can find the most important nodes 

• The node importance problem 

• We will now focus on the node importance problem 



Link Analysis 

• First generation search engines 
• view documents as flat text files 

• could not cope with size, spamming, user needs 

• Second generation search engines 
• Ranking becomes critical 

• shift from relevance to authoritativeness 
• authoritativeness: the static importance of the page 

• use of Web specific data: Link Analysis of the Web 
graph 

• a success story for the network analysis + a huge 
commercial success 

• it all started with two graduate students at Stanford 



Link Analysis: Intuition 

• A link from page p to page q denotes 

endorsement 

• page p considers page q an authority on a subject 

• use the graph of recommendations 

• assign an authority value to every page 

 

• The same idea applies to other graphs as well 

• Twitter graph, where user p follows user q 



Constructing the graph 

• Goal: output an authority weight for each node 
• Also known as centrality, or importance 
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Rank by Popularity 

• Rank pages according to the number of incoming 

edges (in-degree, degree centrality) 

1. Red Page 

2. Yellow Page 

3. Blue Page 

4. Purple Page 

5. Green Page 

w=1 w=1 

w=2 

w=3 
w=2 



Popularity 

 

 

 

 

 

 

• It is not important only how many link to you, but 
how important are the people that link to you. 

• Good authorities are pointed by good authorities 
• Recursive definition of importance 



PageRank 

• Assume that we have a unity of 
authority to distribute to all 
nodes. 

• Each node distributes the 
authority value they have to all 
their neighbors 

• The authority value of each 
node is the sum of the fractions 
it collects from its neighbors. 

• Solving the system of 
equations we get the authority 
values for the nodes 
• w = ½ , w = ¼ , w = ¼  
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A more complex example 

v1 
v2 

v3 

v4 v5 

w1 = 1/3 w4 + 1/2 w5 

w2 = 1/2 w1 + w3 + 1/3 w4 

w3 = 1/2 w1 + 1/3 w4 

w4 = 1/2 w5 

w5 = w2  
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Random walks on graphs 

• The equations above describe a step of a random walk on the graph 
• Random walk: start from some node uniformly at random and then from each 

node pick a random link to follow. 

• Question: what is the probability of being at a specific node? 
• 𝑝𝑖: probability of being at node i at this step 

• 𝑝𝑖′: probability of being at node i in the next step 

 

 

 

 

 

 

 

 

 

 

• After many steps the probabilities converge to the stationary 
distribution of the random walk. 

v1 

v3 

v4 v5 

p’1 = 1/3 p4 + 1/2 p5 

p’2 = 1/2 p1 + p3 + 1/3 p4 

p’3 = 1/2 p1 + 1/3 p4 

p’4 = 1/2 p5 

p’5 = p2  

v2 



PageRank algorithm [BP98] 

• Good authorities should be pointed 
by good authorities 

• The value of a page is the value of the 
people that link to you 

 

• How do we implement that? 
• Each page has a value. 

• Proceed in iterations,  

• in each iteration every page 
distributes the value to the neighbors 

• Continue until there is 
convergence. 

1. Red Page 

2. Purple Page  

3. Yellow Page 

4. Blue Page 

5. Green Page 
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Markov chains 

• A Markov chain describes a discrete time stochastic 
process over a set of states 

 

 according to a transition probability matrix 

 
• Pij = probability of moving to state j when at state i 

• ∑jPij = 1 (stochastic matrix) 

 

• Memorylessness property: The next state of the chain 
depends only at the current state and not on the past of 
the process (first order MC) 
• higher order MCs are also possible 

S = {s1, s2, … sn} 

P = {Pij} 



Random walks 

• Random walks on graphs correspond to Markov 

Chains 

• The set of states S is the set of nodes of the graph G 

• The transition probability matrix is the probability that 

we follow an edge from one node to another 



An example 
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State probability vector 

• The vector qt = (qt
1,q

t
2, … ,qt

n) that stores the 

probability of being at state i at time t 

• q0
i
 = the probability of starting from state i 

qt = qt-1 P 



An example 
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Same equations as before! 

qt = qt-1 P 



Stationary distribution 

• A stationary distribution for a MC with transition matrix P, 
is a probability distribution π, such that π = πP 

 

• A MC has a unique stationary distribution if  
• it is irreducible 

• the underlying graph is strongly connected 

• it is aperiodic 
• for random walks, the underlying graph is not bipartite 

• The probability πi is the fraction of times that we visited  
state i as t → ∞ 

• The stationary distribution is an eigenvector of matrix P 
• the principal left eigenvector of P – stochastic matrices have 

maximum eigenvalue 1 



Computing the stationary distribution 

• The Power Method 
• Initialize to some distribution q0 

• Iteratively compute qt = qt-1P 

• After enough iterations qt ≈ π 

• Power method because it computes qt = q0Pt 

• Why does it converge? 
• follows from the fact that any vector can be written as a 

linear combination of the eigenvectors 
• q0 = v1 + c2v2 + … cnvn 

• Rate of convergence 
• determined by λ2

t 
 



The PageRank random walk 

• Vanilla random walk 

• make the adjacency matrix stochastic and run a random 

walk 
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The PageRank random walk 

• What about sink nodes? 

• what happens when the random walk moves to a node 

without any outgoing inks? 
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The PageRank random walk 

• Replace these row vectors with a vector v 

• typically, the uniform vector 

P’ = P + dvT 
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The PageRank random walk 

• How do we guarantee irreducibility? 

• How do we guarantee not getting stuck in loops? 

• add a random jump to vector v with prob α 

• typically, to a uniform vector 

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s 
Random walk with restarts 



PageRank algorithm [BP98] 

• The Random Surfer model 

• pick a page at random 

• with probability 1- α jump to a random 

page 

• with probability α follow a random 

outgoing link 

• Rank according to the stationary 

distribution 

•   

 

1. Red Page 

2. Purple Page  

3. Yellow Page 

4. Blue Page 

5. Green Page 
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The stationary distribution 

• What is the meaning of the stationary distribution 

𝜋 of a random walk? 

• 𝜋(𝑖): the probability of being at node i after very 

large (infinite) number of steps 

• 𝜋 = 𝑝0𝑃∞, where 𝑃 is the transition matrix, 𝑝0 the 

original vector  

• 𝑃 𝑖, 𝑗 : probability of going from i to j in one step 

• 𝑃2(𝑖, 𝑗): probability of going from i to j in two steps 

(probability of all paths of length 2) 

• 𝑃∞ 𝑖, 𝑗 = 𝜋(𝑗): probability of going from i to j in infinite 

steps – starting point does not matter. 



Stationary distribution with random jump 

• If v is the jump vector 

𝑝0 = 𝑣 

𝑝1 = 𝛼𝑝0𝑃 + 1 − 𝛼 𝑣 = 𝛼𝑣𝑃 + 1 − 𝛼 𝑣 

𝑝2 = 𝛼𝑝1𝑃 + 1 − 𝛼 𝑣 = 𝛼2𝑣𝑃2 + 1 − 𝛼 𝑣𝛼𝑃 + 1 − 𝛼 𝑣 

⋮ 
𝑝∞ = 1 − 𝛼 𝑣 + 1 − 𝛼 𝑣𝛼𝑃 + 1 − 𝛼 𝑣𝛼2𝑃2 + ⋯

= 1 − 𝛼 𝐼 − 𝛼𝑃 −1 

• With the random jump the shorter paths are more 
important, since the weight decreases exponentially 
• makes sense when thought of as a restart 

• If v is not uniform, we can bias the random walk towards 
the pages that are close to v 
• Personalized and Topic Specific Pagerank. 

 

 



Effects of random jump 

• Guarantees irreducibility 

• Motivated by the concept of random surfer 

• Offers additional flexibility  

• personalization 

• anti-spam 

• Controls the rate of convergence 

• the second eigenvalue of matrix P’’ is α 



Random walks on undirected graphs 

• For undirected graphs, the stationary distribution 

is proportional to the degrees of the nodes 

• Thus in this case a random walk is the same as degree 

popularity 

 

• This is not longer true if we do random jumps 

• Now the short paths play a greater role, and the 

previous distribution does not hold. 



A PageRank algorithm 

• Performing vanilla power method is now too 

expensive – the matrix is not sparse 

q0 = v 

t = 1 

repeat 

  

  

     t = t +1  

until δ < ε 
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P = normalized adjacency matrix 

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s 

P’ = P + dvT, where di is 1 if i is sink and 0 o.w. 



Pagerank history 

• Huge advantage for Google in the early days 
• It gave a way to get an idea for the value of a page, which 

was useful in many different ways 

• Put an order to the web. 

• After a while it became clear that the anchor text was 
probably more important for ranking 

• Also, link spam became a new (dark) art 

• Flood of research 
• Numerical analysis got rejuvenated 

• Huge number of variations 

• Efficiency became a great issue. 

• Huge number of applications in different fields  

• Random walk is often referred to as PageRank. 



THE HITS ALGORITHM 



The HITS algorithm  

• Another algorithm proposed around the same 

time as Pagerank for using the hyperlinks to rank 

pages 

• Kleinberg: then an intern at IBM Almaden  

• IBM never made anything out of it 



Query dependent input 

Root Set 

Root set obtained from a text-only search engine 



Query dependent input 

Root Set 

IN OUT 



Query dependent input 

Root Set 

IN OUT 



Query dependent input 

Root Set 

IN OUT 

Base Set 



Hubs and Authorities [K98] 

• Authority is not necessarily 
transferred directly 
between authorities 

• Pages have double 
identity 
• hub identity 

• authority identity 

• Good hubs point to good 
authorities 

• Good authorities are 
pointed by good hubs 

 

hubs authorities 



Hubs and Authorities 

• Two kind of weights: 

• Hub weight 

• Authority weight 

 

• The hub weight is the sum of the authority 

weights of the authorities pointed to by the hub 

 

• The authority weight is the sum of the hub 

weights that point to this authority. 



HITS Algorithm 

• Initialize all weights to 1. 

• Repeat until convergence 
• O operation : hubs collect the weight of the authorities 

 

 

• I operation: authorities collect the weight of the hubs 

 

 

• Normalize weights under some norm 
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HITS and eigenvectors 

• The HITS algorithm is a power-method 

eigenvector computation 

• in vector terms at = ATht-1 and ht = Aat-1 

• so a = ATAat-1 and ht = AATht-1 

• The authority weight vector a is the eigenvector of ATA 

and the hub weight vector h is the eigenvector of AAT 

• Why do we need normalization? 

• The vectors a and h are singular vectors of the 

matrix A 



Singular Value Decomposition 

 

 

 

 
 
 

• r : rank of matrix A 
 

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA) 
                      
•                    : left singular vectors (eig-vectors of AAT) 
                     
•                     : right singular vectors (eig-vectors of ATA) 
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Singular Value Decomposition 

• Linear trend v in matrix A: 
• the tendency of the row 

vectors of A to align with 
vector v 

• strength of the linear trend: 
Av 

• SVD discovers the linear 
trends in the data 

• ui , vi : the i-th strongest 
linear trends  

• σi : the strength of the i-th 
strongest linear trend 

σ1 

σ2 
v1 

v2 

  HITS discovers the strongest linear trend in the 
authority space 



HITS and the TKC effect 

• The HITS algorithm favors the most dense 

community of hubs and authorities 

• Tightly Knit Community (TKC) effect 
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HITS and the TKC effect 
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HITS and the TKC effect 

• The HITS algorithm favors the most dense 
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HITS and the TKC effect 

• The HITS algorithm favors the most dense 

community of hubs and authorities 

• Tightly Knit Community (TKC) effect 
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HITS and the TKC effect 

• The HITS algorithm favors the most dense 

community of hubs and authorities 

• Tightly Knit Community (TKC) effect 
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HITS and the TKC effect 

• The HITS algorithm favors the most dense 

community of hubs and authorities 

• Tightly Knit Community (TKC) effect 

32n 

32n 

32n 

3n ∙ 2n 

3n ∙ 2n 

3n ∙ 2n 

after n iterations weight of node p is  
proportional to the number  
of (BF)n paths that leave  
node p 



HITS and the TKC effect 

• The HITS algorithm favors the most dense 

community of hubs and authorities 

• Tightly Knit Community (TKC) effect 

1 

1 
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0 

0 

0 

after normalization 
with the max  
element as n → ∞ 



OTHER ALGORITHMS 



The SALSA algorithm [LM00] 

• Perform a random walk alternating 
between hubs and authorities 

 

 

• What does this random walk 
converge to? 

 

• The graph is essentially 
undirected, so it will be 
proportional to the degree. 

 

hubs authorities 



Social network analysis 

• Evaluate the centrality of individuals in social 

networks 

• degree centrality 

• the (weighted) degree of a node 

• distance centrality 

• the average (weighted) distance of a node to the rest in the 

graph 

 

• betweenness centrality 

• the average number of (weighted) shortest paths that use node v 

 

 
 



vu

c
u)d(v,

1
vD

  



tvs st

st
c

σ

(v)σ
vB



Counting paths – Katz 53 

• The importance of a node is measured by the 

weighted sum of paths that lead to this node 

• Am[i,j] = number of paths of length m from i to j 

• Compute  

 

• converges when b < λ1(A) 

• Rank nodes according to the column sums of the 

matrix P 
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Bibliometrics 

• Impact factor (E. Garfield 72) 

• counts the number of citations received for papers of 

the journal in the previous two years 

• Pinsky-Narin 76 

• perform a random walk on the set of journals 

• Pij = the fraction of citations from journal i that are 

directed to journal j 



ABSORBING RANDOM 

WALKS 



Random walk with absorbing nodes 

• What happens if we do a random walk on this 
graph? What is the stationary distribution? 

 

 

 

 

 

 

• All the probability mass on the red sink node: 
• The red node is an absorbing node 



Random walk with absorbing nodes 

• What happens if we do a random walk on this graph? 

What is the stationary distribution? 

 

 

 

 

 

 

• There are two absorbing nodes: the red and the blue. 

• The probability mass will be divided between the two 



Absorption probability 

• If there are more than one absorbing nodes in the 
graph a random walk that starts from a non-
absorbing node will be absorbed in one of them 
with some probability 
• The probability of absorption gives an estimate of how 

close the node is to red or blue 

 

 

 

• Why care? 
• Red and Blue may be different categories 



Absorption probability 

• Computing the probability of being absorbed is 

very easy 

• Take the (weighted) average of the absorption 

probabilities of your neighbors  

• if one of the neighbors is the absorbing node, it has probability 1 

• Repeat until convergence 

• Initially only the absorbing have prob 1 
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Absorption probability 

• The same idea can be applied to the case of 

undirected graphs 

• The absorbing nodes are still absorbing, so the edges 

to them are (implicitely) directed. 
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Propagating values 

• Assume that Red corresponds to a positive class 

and Blue to a negative class 

• We can compute a value for all the other nodes in the 

same way 

• This is the expected value for the node 
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Electrical networks and random walks 

• If Red corresponds to a positive voltage and Blue 

to a negative voltage 

• There are resistances on the edges inversely 

proportional to the weights 

• The computed values are the voltages 
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Transductive learning 

• If we have a graph of relationships and some 
labels on these edges we can propagate them to 
the remaining nodes  
• E.g., a social network where some people are tagged 

as spammers 

 

• This is a form of semi-supervised learning  
• We make use of the unlabeled data, and the 

relationships 

• It is also called transductive learning because it 
does not produce a model, and labels only what 
is at hand. 


