
DATA MINING

LECTURE 12
Graphs, Node importance, Link

Analysis Ranking, Random walks

RANDOM WALKS AND

PAGERANK

Graphs

• A graph is a powerful abstraction for modeling

entities and their pairwise relationships.

• Examples:

• Social network

• Collaboration graphs

• Twitter Followers

• Web

𝑣1

𝑣2

𝑣3 𝑣4

𝑣5

Graphs

• A graph is a powerful abstraction for modeling

entities and their pairwise relationships.

• Examples:

• Social network

• Collaboration graphs

• Twitter Followers

• Web

𝑣1

𝑣2

𝑣3 𝑣4

𝑣5

Mining the graph structure

• A graph is a combinatorial object, with a certain

structure.

• Mining the structure of the graph reveals information

about the entities in the graph

• E.g., if in the Facebook graph I find that there are 100 people

that are all linked to each other, then these people are likely

to be a community

• The community discovery problem

• By measuring the number of friends in the facebook graph I

can find the most important nodes

• The node importance problem

• We will now focus on the node importance problem

Link Analysis

• First generation search engines
• view documents as flat text files

• could not cope with size, spamming, user needs

• Second generation search engines
• Ranking becomes critical

• shift from relevance to authoritativeness
• authoritativeness: the static importance of the page

• use of Web specific data: Link Analysis of the Web
graph

• a success story for the network analysis + a huge
commercial success

• it all started with two graduate students at Stanford

Link Analysis: Intuition

• A link from page p to page q denotes

endorsement

• page p considers page q an authority on a subject

• use the graph of recommendations

• assign an authority value to every page

• The same idea applies to other graphs as well

• Twitter graph, where user p follows user q

Constructing the graph

• Goal: output an authority weight for each node
• Also known as centrality, or importance

w
w

w

w

w

Rank by Popularity

• Rank pages according to the number of incoming

edges (in-degree, degree centrality)

1. Red Page

2. Yellow Page

3. Blue Page

4. Purple Page

5. Green Page

w=1 w=1

w=2

w=3
w=2

Popularity

• It is not important only how many link to you, but
how important are the people that link to you.

• Good authorities are pointed by good authorities
• Recursive definition of importance

PageRank

• Assume that we have a unity of
authority to distribute to all
nodes.

• Each node distributes the
authority value they have to all
their neighbors

• The authority value of each
node is the sum of the fractions
it collects from its neighbors.

• Solving the system of
equations we get the authority
values for the nodes
• w = ½ , w = ¼ , w = ¼

w w

w

w + w + w = 1

w = w + w

w = ½ w

w = ½ w

A more complex example

v1
v2

v3

v4 v5

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2





pq qOut

qPR
pPR

)(

)(
)(

Random walks on graphs

• The equations above describe a step of a random walk on the graph
• Random walk: start from some node uniformly at random and then from each

node pick a random link to follow.

• Question: what is the probability of being at a specific node?
• 𝑝𝑖: probability of being at node i at this step

• 𝑝𝑖′: probability of being at node i in the next step

• After many steps the probabilities converge to the stationary
distribution of the random walk.

v1

v3

v4 v5

p’1 = 1/3 p4 + 1/2 p5

p’2 = 1/2 p1 + p3 + 1/3 p4

p’3 = 1/2 p1 + 1/3 p4

p’4 = 1/2 p5

p’5 = p2

v2

PageRank algorithm [BP98]

• Good authorities should be pointed
by good authorities

• The value of a page is the value of the
people that link to you

• How do we implement that?
• Each page has a value.

• Proceed in iterations,

• in each iteration every page
distributes the value to the neighbors

• Continue until there is
convergence.

1. Red Page

2. Purple Page

3. Yellow Page

4. Blue Page

5. Green Page




pq qOut

qPR
pPR

)(

)(
)(

Markov chains

• A Markov chain describes a discrete time stochastic
process over a set of states

 according to a transition probability matrix

• Pij = probability of moving to state j when at state i

• ∑jPij = 1 (stochastic matrix)

• Memorylessness property: The next state of the chain
depends only at the current state and not on the past of
the process (first order MC)
• higher order MCs are also possible

S = {s1, s2, … sn}

P = {Pij}

Random walks

• Random walks on graphs correspond to Markov

Chains

• The set of states S is the set of nodes of the graph G

• The transition probability matrix is the probability that

we follow an edge from one node to another

An example

v1
v2

v3

v4 v5

























2100021

00313131

00010

10000

0021210

P

























10001

00111

00010

10000

00110

A

State probability vector

• The vector qt = (qt
1,q

t
2, … ,qt

n) that stores the

probability of being at state i at time t

• q0
i
 = the probability of starting from state i

qt = qt-1 P

An example

























0210021

00313131

00010

10000

0021210

P

v1
v2

v3

v4 v5

qt+1
1 = 1/3 qt

4 + 1/2 qt
5

qt+1
2 = 1/2 qt

1 + qt
3 + 1/3 qt

4

qt+1
3 = 1/2 qt

1 + 1/3 qt
4

qt+1
4 = 1/2 qt

5

qt+1
5 = qt

2

Same equations as before!

qt = qt-1 P

Stationary distribution

• A stationary distribution for a MC with transition matrix P,
is a probability distribution π, such that π = πP

• A MC has a unique stationary distribution if
• it is irreducible

• the underlying graph is strongly connected

• it is aperiodic
• for random walks, the underlying graph is not bipartite

• The probability πi is the fraction of times that we visited
state i as t → ∞

• The stationary distribution is an eigenvector of matrix P
• the principal left eigenvector of P – stochastic matrices have

maximum eigenvalue 1

Computing the stationary distribution

• The Power Method
• Initialize to some distribution q0

• Iteratively compute qt = qt-1P

• After enough iterations qt ≈ π

• Power method because it computes qt = q0Pt

• Why does it converge?
• follows from the fact that any vector can be written as a

linear combination of the eigenvectors
• q0 = v1 + c2v2 + … cnvn

• Rate of convergence
• determined by λ2

t

The PageRank random walk

• Vanilla random walk

• make the adjacency matrix stochastic and run a random

walk

























0210021

00313131

00010

10000

0021210

P

The PageRank random walk

• What about sink nodes?

• what happens when the random walk moves to a node

without any outgoing inks?

























0210021

00313131

00010

00000

0021210

P

























0210021

00313131

00010

5151515151

0021210

P'

The PageRank random walk

• Replace these row vectors with a vector v

• typically, the uniform vector

P’ = P + dvT





otherwise0

sink is i if1
d

















































5151515151

5151515151

5151515151

5151515151

5151515151

2100021

00313131

00010

5151515151

0021210

'P')1(

The PageRank random walk

• How do we guarantee irreducibility?

• How do we guarantee not getting stuck in loops?

• add a random jump to vector v with prob α

• typically, to a uniform vector

P’’ = αP’ + (1-α)uvT, where u is the vector of all 1s
Random walk with restarts

PageRank algorithm [BP98]

• The Random Surfer model

• pick a page at random

• with probability 1- α jump to a random

page

• with probability α follow a random

outgoing link

• Rank according to the stationary

distribution

•

1. Red Page

2. Purple Page

3. Yellow Page

4. Blue Page

5. Green Page

 
nqOut

qPR
pPR

pq

1
1

)(

)(
)(  



𝛼 = 0.85 in most cases

The stationary distribution

• What is the meaning of the stationary distribution

𝜋 of a random walk?

• 𝜋(𝑖): the probability of being at node i after very

large (infinite) number of steps

• 𝜋 = 𝑝0𝑃∞, where 𝑃 is the transition matrix, 𝑝0 the

original vector

• 𝑃 𝑖, 𝑗 : probability of going from i to j in one step

• 𝑃2(𝑖, 𝑗): probability of going from i to j in two steps

(probability of all paths of length 2)

• 𝑃∞ 𝑖, 𝑗 = 𝜋(𝑗): probability of going from i to j in infinite

steps – starting point does not matter.

Stationary distribution with random jump

• If v is the jump vector

𝑝0 = 𝑣

𝑝1 = 𝛼𝑝0𝑃 + 1 − 𝛼 𝑣 = 𝛼𝑣𝑃 + 1 − 𝛼 𝑣

𝑝2 = 𝛼𝑝1𝑃 + 1 − 𝛼 𝑣 = 𝛼2𝑣𝑃2 + 1 − 𝛼 𝑣𝛼𝑃 + 1 − 𝛼 𝑣

⋮
𝑝∞ = 1 − 𝛼 𝑣 + 1 − 𝛼 𝑣𝛼𝑃 + 1 − 𝛼 𝑣𝛼2𝑃2 + ⋯

= 1 − 𝛼 𝐼 − 𝛼𝑃 −1

• With the random jump the shorter paths are more
important, since the weight decreases exponentially
• makes sense when thought of as a restart

• If v is not uniform, we can bias the random walk towards
the pages that are close to v
• Personalized and Topic Specific Pagerank.

Effects of random jump

• Guarantees irreducibility

• Motivated by the concept of random surfer

• Offers additional flexibility

• personalization

• anti-spam

• Controls the rate of convergence

• the second eigenvalue of matrix P’’ is α

Random walks on undirected graphs

• For undirected graphs, the stationary distribution

is proportional to the degrees of the nodes

• Thus in this case a random walk is the same as degree

popularity

• This is not longer true if we do random jumps

• Now the short paths play a greater role, and the

previous distribution does not hold.

A PageRank algorithm

• Performing vanilla power method is now too

expensive – the matrix is not sparse

q0 = v

t = 1

repeat

 t = t +1

until δ < ε

  1tTt q'P'q 
1tt qqδ 

Efficient computation of y = (P’’)T x

βvyy

yx β

xαPy

11

T







P = normalized adjacency matrix

P’’ = αP’ + (1-α)uvT, where u is the vector of all 1s

P’ = P + dvT, where di is 1 if i is sink and 0 o.w.

Pagerank history

• Huge advantage for Google in the early days
• It gave a way to get an idea for the value of a page, which

was useful in many different ways

• Put an order to the web.

• After a while it became clear that the anchor text was
probably more important for ranking

• Also, link spam became a new (dark) art

• Flood of research
• Numerical analysis got rejuvenated

• Huge number of variations

• Efficiency became a great issue.

• Huge number of applications in different fields

• Random walk is often referred to as PageRank.

THE HITS ALGORITHM

The HITS algorithm

• Another algorithm proposed around the same

time as Pagerank for using the hyperlinks to rank

pages

• Kleinberg: then an intern at IBM Almaden

• IBM never made anything out of it

Query dependent input

Root Set

Root set obtained from a text-only search engine

Query dependent input

Root Set

IN OUT

Query dependent input

Root Set

IN OUT

Query dependent input

Root Set

IN OUT

Base Set

Hubs and Authorities [K98]

• Authority is not necessarily
transferred directly
between authorities

• Pages have double
identity
• hub identity

• authority identity

• Good hubs point to good
authorities

• Good authorities are
pointed by good hubs

hubs authorities

Hubs and Authorities

• Two kind of weights:

• Hub weight

• Authority weight

• The hub weight is the sum of the authority

weights of the authorities pointed to by the hub

• The authority weight is the sum of the hub

weights that point to this authority.

HITS Algorithm

• Initialize all weights to 1.

• Repeat until convergence
• O operation : hubs collect the weight of the authorities

• I operation: authorities collect the weight of the hubs

• Normalize weights under some norm





jij

ji ah
:





ijj

ji ha
:

HITS and eigenvectors

• The HITS algorithm is a power-method

eigenvector computation

• in vector terms at = ATht-1 and ht = Aat-1

• so a = ATAat-1 and ht = AATht-1

• The authority weight vector a is the eigenvector of ATA

and the hub weight vector h is the eigenvector of AAT

• Why do we need normalization?

• The vectors a and h are singular vectors of the

matrix A

Singular Value Decomposition

• r : rank of matrix A

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA)

• : left singular vectors (eig-vectors of AAT)

• : right singular vectors (eig-vectors of ATA)

•

 






































r

2

1

r

2

1

r21
T

v

v

v

σ

σ

σ

uuuVΣUA















[n×r] [r×r] [r×n]

r21 u,,u,u





r21 v,,v,v





T
rrr

T
222

T
111 vuσvuσvuσA







44

Singular Value Decomposition

• Linear trend v in matrix A:
• the tendency of the row

vectors of A to align with
vector v

• strength of the linear trend:
Av

• SVD discovers the linear
trends in the data

• ui , vi : the i-th strongest
linear trends

• σi : the strength of the i-th
strongest linear trend

σ1

σ2
v1

v2

 HITS discovers the strongest linear trend in the
authority space

HITS and the TKC effect

• The HITS algorithm favors the most dense

community of hubs and authorities

• Tightly Knit Community (TKC) effect

HITS and the TKC effect

• The HITS algorithm favors the most dense

community of hubs and authorities

• Tightly Knit Community (TKC) effect

1

1

1

1

1

1

HITS and the TKC effect

• The HITS algorithm favors the most dense

community of hubs and authorities

• Tightly Knit Community (TKC) effect

3

3

3

3

3

HITS and the TKC effect

• The HITS algorithm favors the most dense

community of hubs and authorities

• Tightly Knit Community (TKC) effect

32

32

32

3∙2

3∙2

3∙2

HITS and the TKC effect

• The HITS algorithm favors the most dense

community of hubs and authorities

• Tightly Knit Community (TKC) effect

33

33

33

32 ∙ 2

32 ∙ 2

HITS and the TKC effect

• The HITS algorithm favors the most dense

community of hubs and authorities

• Tightly Knit Community (TKC) effect

34

34

34

32 ∙ 22

32 ∙ 22

32 ∙ 22

HITS and the TKC effect

• The HITS algorithm favors the most dense

community of hubs and authorities

• Tightly Knit Community (TKC) effect

32n

32n

32n

3n ∙ 2n

3n ∙ 2n

3n ∙ 2n

after n iterations weight of node p is
proportional to the number
of (BF)n paths that leave
node p

HITS and the TKC effect

• The HITS algorithm favors the most dense

community of hubs and authorities

• Tightly Knit Community (TKC) effect

1

1

1

0

0

0

after normalization
with the max
element as n → ∞

OTHER ALGORITHMS

The SALSA algorithm [LM00]

• Perform a random walk alternating
between hubs and authorities

• What does this random walk
converge to?

• The graph is essentially
undirected, so it will be
proportional to the degree.

hubs authorities

Social network analysis

• Evaluate the centrality of individuals in social

networks

• degree centrality

• the (weighted) degree of a node

• distance centrality

• the average (weighted) distance of a node to the rest in the

graph

• betweenness centrality

• the average number of (weighted) shortest paths that use node v

 
 



vu

c
u)d(v,

1
vD

  



tvs st

st
c

σ

(v)σ
vB

Counting paths – Katz 53

• The importance of a node is measured by the

weighted sum of paths that lead to this node

• Am[i,j] = number of paths of length m from i to j

• Compute

• converges when b < λ1(A)

• Rank nodes according to the column sums of the

matrix P

  IbAIAbAbbAP
1mm22 




Bibliometrics

• Impact factor (E. Garfield 72)

• counts the number of citations received for papers of

the journal in the previous two years

• Pinsky-Narin 76

• perform a random walk on the set of journals

• Pij = the fraction of citations from journal i that are

directed to journal j

ABSORBING RANDOM

WALKS

Random walk with absorbing nodes

• What happens if we do a random walk on this
graph? What is the stationary distribution?

• All the probability mass on the red sink node:
• The red node is an absorbing node

Random walk with absorbing nodes

• What happens if we do a random walk on this graph?

What is the stationary distribution?

• There are two absorbing nodes: the red and the blue.

• The probability mass will be divided between the two

Absorption probability

• If there are more than one absorbing nodes in the
graph a random walk that starts from a non-
absorbing node will be absorbed in one of them
with some probability
• The probability of absorption gives an estimate of how

close the node is to red or blue

• Why care?
• Red and Blue may be different categories

Absorption probability

• Computing the probability of being absorbed is

very easy

• Take the (weighted) average of the absorption

probabilities of your neighbors

• if one of the neighbors is the absorbing node, it has probability 1

• Repeat until convergence

• Initially only the absorbing have prob 1

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
2

3

2

2

1

1

1
2

1

Absorption probability

• The same idea can be applied to the case of

undirected graphs

• The absorbing nodes are still absorbing, so the edges

to them are (implicitely) directed.

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

3

2

2

1

1

1
2

1

0.52 0.42

0.57

Propagating values

• Assume that Red corresponds to a positive class

and Blue to a negative class

• We can compute a value for all the other nodes in the

same way

• This is the expected value for the node

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −

2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −

1

6

+1

-1
2

2

1

1

1
2

1

0.05 -0.16

0.16

Electrical networks and random walks

• If Red corresponds to a positive voltage and Blue

to a negative voltage

• There are resistances on the edges inversely

proportional to the weights

• The computed values are the voltages
+1

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −

2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −

1

6

+1

-1
2

2

1

1

1
2

1

0.05 -0.16

0.16

Transductive learning

• If we have a graph of relationships and some
labels on these edges we can propagate them to
the remaining nodes
• E.g., a social network where some people are tagged

as spammers

• This is a form of semi-supervised learning
• We make use of the unlabeled data, and the

relationships

• It is also called transductive learning because it
does not produce a model, and labels only what
is at hand.

