DATA MINING LECTURE 11

Classification

Naïve Bayes
Graphs And Centrality

Bayes Classifier

- A probabilistic framework for solving classification problems
- A, C random variables
- Joint probability: $\operatorname{Pr}(\mathrm{A}=\mathrm{a}, \mathrm{C}=\mathrm{c})$
- Conditional probability: $\operatorname{Pr}(\mathrm{C}=\mathrm{c} \mid \mathrm{A}=\mathrm{a})$
- Relationship between joint and conditional probability distributions

$$
\operatorname{Pr}(C, A)=\operatorname{Pr}(C \mid A) \times \operatorname{Pr}(A)=\operatorname{Pr}(A \mid C) \times \operatorname{Pr}(C)
$$

- Bayes Theorem:

$$
P(C \mid A)=\frac{P(A \mid C) P(C)}{P(A)}
$$

Bayesian Classifiers

- Consider each attribute and class label as random variables

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Evade C
Event space: $\{Y \mathrm{Yes}, \mathrm{No}$ \}
$\mathrm{P}(\mathrm{C})=(0.3,0.7\}$
Refund A_{1}
Event space: $\{Y \mathrm{Yes}, \mathrm{No}$ \}
$P\left(A_{1}\right)=(0.3,0.7)$
Martial Status A_{2}
Event space: \{Single, Married, Divorced\}
$\mathrm{P}\left(\mathrm{A}_{2}\right)=(0.4,0.4,0.2)$

Taxable Income A_{3}
Event space: R
$\mathrm{P}\left(\mathrm{A}_{3}\right) \sim \operatorname{Normal}(\mu, \sigma)$

Bayesian Classifiers

- Given a record X over attributes $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$
- E.g., X = ('Yes', 'Single', 125K)
- The goal is to predict class C
- Specifically, we want to find the value c of C that maximizes P(C=c|X)
- Can we estimate $\mathrm{P}(\mathrm{C} \mid \mathrm{X})$ directly from data?
- This means that we estimate the probability for all possible values of the class variable.

Bayesian Classifiers

- Approach:
- compute the posterior probability $\mathrm{P}\left(\mathrm{C} \mid \mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ for all values of C using the Bayes theorem

$$
P\left(C \mid A_{1} A_{2} \ldots A_{n}\right)=\frac{P\left(A_{1} A_{2} \ldots A_{n} \mid C\right) P(C)}{P\left(A_{1} A_{2} \ldots A_{n}\right)}
$$

- Choose value of C that maximizes

$$
P\left(C \mid A_{1}, A_{2}, \ldots, A_{n}\right)
$$

- Equivalent to choosing value of C that maximizes

$$
P\left(A_{1}, A_{2}, \ldots, A_{n} \mid C\right) P(C)
$$

- How to estimate $\mathrm{P}\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \mid \mathrm{C}\right)$?

Naïve Bayes Classifier

- Assume independence among attributes A_{i} when class is given:
- $P\left(A_{1}, A_{2}, \ldots, A_{n} \mid C\right)=P\left(A_{1} \mid C\right) P\left(A_{2} \mid C\right) \cdots P\left(A_{n} \mid C\right)$
- We can estimate $P\left(A_{i} \mid C\right)$ for all values of A_{i} and C.
- New point X is classified to class c if

$$
P(C=c \mid X)=P(C=c) \prod_{i} P\left(A_{i} \mid c\right)
$$

is maximal over all possible values of C .

How to Estimate Probabilities from Data?

- Class Prior Probability:

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

$$
P(C=c)=\frac{N_{C}}{N}
$$

$$
\text { e.g., } P(C=N o)=7 / 10,
$$

$$
P(C=Y e s)=3 / 10
$$

- For discrete attributes:

$$
P\left(A_{i}=a \mid C=c\right)=\frac{N_{a, c}}{N_{c}}
$$

where $N_{a, c}$ is number of instances having attribute $A_{i}=a$ and belongs to class c

- Examples:
$P($ Status $=$ Married $\mid N o)=4 / 7$ $P($ Refund $=$ Yes \mid Yes $)=0$

How to Estimate Probabilities from Data?

- For continuous attributes:
- Discretize the range into bins
- one ordinal attribute per bin
- violates independence assumption
- Two-way split: $(\mathrm{A}<\mathrm{v})$ or $(\mathrm{A}>\mathrm{v})$
- choose only one of the two splits as new attribute
- Probability density estimation:
- Assume attribute follows a normal distribution
- Use data to estimate parameters of distribution (e.g., mean μ and standard deviation σ)
- Once probability distribution is known, can use it to estimate the conditional probability $\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \mid \mathrm{C}\right)$

How to Estimate Probabilities from Data?

| Tid | Refund | Marital
 Status | Taxable
 Income | Evade |
| :--- | :--- | :--- | :--- | :--- |$|$| 1 | Yes | Single | 125 K |
| :--- | :--- | :--- | :--- |
| 2 | No | Married | 100 K |
| 3 | No | Single | 70 K |
| 4 | Yes | Married | 120 K |
| 5 | No | Divorced | No |
| 6 | No | Married | 60 K |
| 7 | Yes | Divorced | 220 K |
| 8 | No | Single | 85 K |
| 9 | No | Married | 75 K |
| 10 | No | Single | 90 K |

- Normal distribution:

$$
P\left(A_{i}=a \mid c_{j}\right)=\frac{1}{\sqrt{2 \pi \sigma_{i j}^{2}}} e^{-\frac{\left(a-\mu_{i}\right)^{2}}{2 \sigma_{i j}^{2}}}
$$

- One for each $\left(\mathrm{a}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}\right)$ pair
- For (Income, Class=No):
- If Class=No
- sample mean = 110
- sample variance $=2975$
$P($ Income $=120 \mid$ No $)=\frac{1}{\sqrt{2 \pi}(54.54)} e^{\frac{\left(20-100^{2}\right.}{2(2937)}}=0.0072$

Example of Naïve Bayes Classifier

Given a Test Record:

$X=($ Refund $=$ No, Married, Income $=120 \mathrm{~K})$

naive Bayes Classifier:

```
P(Refund=Yes |No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes/Yes)=0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) =2/7
P(Marital Status=Divorced/No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single}|\mathrm{ Yes ) =2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes)=0
For taxable income:
If class=No: sample mean=110
    sample variance=2975
If class=Yes: sample mean=90
    sample variance=25
```

- $P(X \mid C l a s s=N o)=P($ Refund $=$ No \mid Class=No $)$
$\times \mathrm{P}$ (Married| Class=No)
$\times \mathrm{P}($ Income $=120 \mathrm{~K} \mid$ Class=No $)$

$$
=4 / 7 \times 4 / 7 \times 0.0072=0.0024
$$

- $\mathrm{P}(\mathrm{X} \mid$ Class $=\mathrm{Yes})=\mathrm{P}($ Refund $=$ No| Class=Yes $)$
$\times \mathrm{P}$ (Married| Class=Yes)
$\times \mathrm{P}$ (Income $=120 \mathrm{~K} \mid$ Class=Yes)
$=1 \times 0 \times 1.2 \times 10^{-9}=0$
Since $P(X \mid N o) P(N o)>P(X \mid Y e s) P(Y e s)$
Therefore $\mathrm{P}(\mathrm{No} \mid \mathrm{X})>\mathrm{P}(\mathrm{Yes} \mid \mathrm{X})$
=> Class = No

Example of Naïve Bayes Classifier

Given a Test Record:

$X=($ Refund $=$ No, Married, Income $=120 \mathrm{~K})$

naive Bayes Classifier:

```
P(Refund=Yes |No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes/Yes)=0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) =2/7
P(Marital Status=Divorced/No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single}|\mathrm{ Yes ) =2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes)=0
For taxable income:
If class=No: sample mean=110
    sample variance=2975
If class=Yes: sample mean=90
    sample variance=25
```

- $P(X \mid C l a s s=N o)=P($ Refund $=$ No \mid Class=No $)$
$\times \mathrm{P}$ (Married| Class=No)
$\times \mathrm{P}($ Income $=120 \mathrm{~K} \mid$ Class=No $)$

$$
=4 / 7 \times 4 / 7 \times 0.0072=0.0024
$$

- $\mathrm{P}(\mathrm{X} \mid$ Class $=\mathrm{Yes})=\mathrm{P}($ Refund $=$ No| Class=Yes $)$
$\times \mathrm{P}$ (Married| Class=Yes)
$\times \mathrm{P}$ (Income $=120 \mathrm{~K} \mid$ Class=Yes)
$=1 \times 0 \times 1.2 \times 10^{-9}=0$
Since $P(X \mid N o) P(N o)>P(X \mid Y e s) P(Y e s)$
Therefore $\mathrm{P}(\mathrm{No} \mid \mathrm{X})>\mathrm{P}(\mathrm{Yes} \mid \mathrm{X})$
=> Class = No

Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original: $P\left(A_{i}=a \mid C=c\right)=\frac{N_{a c}}{N_{c}}$
Laplace: $P\left(A_{i}=a \mid C=c\right)=\frac{N_{a c}+1}{N_{c}+N_{i}}$
N_{i} : number of attribute values for attribute A_{i}
p: prior probability
m : parameter
m-estimate : $P\left(A_{i}=a \mid C=c\right)=\frac{N_{a c}+m p}{N_{c}+m}$

Implementation details

- Computing the conditional probabilities involves multiplication of many very small numbers
- Numbers get very close to zero, and there is a danger of numeric instability
- We can deal with this by computing the logarithm of the conditional probability

$$
\begin{gathered}
\log P(C \mid A) \sim \log P(A \mid C)+\log P(A) \\
=\sum_{i} \log \left(A_{i} \mid C\right)+\log P(A)
\end{gathered}
$$

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
- Use other techniques such as Bayesian Belief Networks (BBN)
- Naïve Bayes can produce a probability estimate, but it is usually a very biased one
- Logistic Regression is better for obtaining probabilities.

Generative vs Discriminative models

- Naïve Bayes is a type of a generative model
- Generative process:
- First pick the category of the record
- Then given the category, generate the attribute values from the distribution of the category
- Conditional independence given C

- We use the training data to learn the distribution of the values in a class

Generative vs Discriminative models

- Logistic Regression and SVM are discriminative models
- The goal is to find the boundary that discriminates between the two classes from the training data
- In order to classify the language of a document, you can
- Either learn the two languages and find which is more likely to have generated the words you see
- Or learn what differentiates the two languages.

SUPERVISED LEARNING

Learning

- Supervised Learning: learn a model from the data using labeled data.
- Classification and Regression are the prototypical examples of supervised learning tasks. Other are possible (e.g., ranking)
- Unsupervised Learning: learn a model - extract structure from unlabeled data.
- Clustering and Association Rules are prototypical examples of unsupervised learning tasks.
- Semi-supervised Learning: learn a model for the data using both labeled and unlabeled data.

Supervised Learning Steps

- Model the problem
- What is you are trying to predict? What kind of optimization function do you need? Do you need classes or probabilities?
- Extract Features
- How do you find the right features that help to discriminate between the classes?
- Obtain training data
- Obtain a collection of labeled data. Make sure it is large enough, accurate and representative. Ensure that classes are well represented.
- Decide on the technique
- What is the right technique for your problem?
- Apply in practice
- Can the model be trained for very large data? How do you test how you do in practice? How do you improve?

Modeling the problem

- Sometimes it is not obvious. Consider the following three problems
- Detecting if an email is spam
- Categorizing the queries in a search engine
- Ranking the results of a web search

Feature extraction

- Feature extraction, or feature engineering is the most tedious but also the most important step
- How do you separate the players of the Greek national team from those of the Swedish national team?
- One line of thought: throw features to the classifier and the classifier will figure out which ones are important
- More features, means that you need more training data
- Another line of thought: select carefully the features using various functions and techniques
- Computationally intensive

Training data

- An overlooked problem: How do you get labeled data for training your model?
- E.g., how do you get training data for ranking?
- Usually requires a lot of manual effort and domain expertise and carefully planned labeling
- Results are not always of high quality (lack of expertise)
- And they are not sufficient (low coverage of the space)
- Recent trends:
- Find a source that generates the labeled data for you.
- Crowd-sourcing techniques

Dealing with small amount of labeled data

- Semi-supervised techniques have been developed for this purpose.
- Self-training: Train a classifier on the data, and then feed back the high-confidence output of the classifier as input
- Co-training: train two "independent" classifiers and feed the output of one classifier as input to the other.
- Regularization: Treat learning as an optimization problem where you define relationships between the objects you want to classify, and you exploit these relationships
- Example: Image restoration

Technique

- The choice of technique depends on the problem requirements (do we need a probability estimate?) and the problem specifics (does independence assumption hold? Do we think classes are linearly separable?)
- For many cases finding the right technique may be trial and error
- For many cases the exact technique does not matter.

Big Data Trumps Better Algorithms

- If you have enough data then the algorithms are not so important
- The web has made this possible.
- Especially for text-related tasks
- Search engine uses the collective human intelligence
http://www.youtube.com/n atch? $\mathrm{v}=\mathrm{nU}$ 8DcBF-qo4

Figure 1. Learning Curves for Confusion Set Disambiguation

Apply-Test

- How do you scale to very large datasets?
- Distributed computing - map-reduce implementations of machine learning algorithms (Mahut, over Hadoop)
- How do you test something that is running online?
- You cannot get labeled data in this case
- A/B testing
- How do you deal with changes in data?
- Active learning

GRAPHS AND LINK ANALYSIS RANKING

Graphs - Basics

- A graph is a powerful abstraction for modeling entities and their pairwise relationships.
- $G=(V, E)$
- Set of nodes $V=\left\{v_{1}, \ldots, v_{5}\right\}$
- Set of edges $E=\left\{\left(v_{1}, v_{2}\right), \ldots\left(v_{4}, v_{5}\right)\right\}$
- Examples:
- Social network
- Twitter Followers
- Web
- Collaboration graphs

Undirected Graphs

- Undirected Graph: The edges are undirected pairs - they can be traversed in any direction.
- Degree of node: Number of edges incident on the node
- Path: A sequence of edges from one node to another
- We say that the node is reachable
- Connected Component: A set of nodes such that there is a path between any two nodes in the set

Directed Graphs

- Directed Graph: The edges are ordered pairs - they can be traversed in the direction from first to second.
- In-degree and Out-degree of a node.
- Path: A sequence of directed edges from one node to another
- We say that the node is reachable
- Strongly Connected Component: A set of nodes such that there is a directed path between any two nodes in the set
- Weakly Connected Component: A set of nodes such that there is an undirected path between any two nodes in the set

Bipartite Graph

- A graph where the vertex set V is partitioned into two sets $V=\{L, R\}$, of size greater than one, such that there is no edge within each set.

Importance problem

-What are the most important nodes in the graph?

- What are the most authoritative pages on the web
- Who are the important users in Facebook?
- What are the most influential Twitter accounts?

Why is this important?

- When you make a query "microsoft" to Google why do you get the home page of Microsoft as the first result?

Link Analysis

- First generation search engines
- view documents as flat text files
- could not cope with size, spamming, user needs
- Second generation search engines
- Ranking becomes critical
- use of Web specific data: Link Analysis
- shift from relevance to authoritativeness
- a success story for the network analysis

Link Analysis: Intuition

- A link from page p to page q denotes endorsement
- page p considers page q an authority on a subject
- use the graph of recommendations
- assign an authority value to every page

Popularity: InDegree algorithm

- Rank pages according to the popularity of incoming edges

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page

Popularity

- Could you think of the case where this could be a problem?

- It is not important only how many link to you, but how important are the people that link to you.

PageRank algorithm [BP98]

- Good authorities should be pointed by good authorities
- The value of a page is the value of the people that link to you
- How do we implement that?
- Each page has a value.
- Proceed in iterations,
- in each iteration every page distributes the value to the neighbors
- Continue until there is convergence.

$$
P R(p)=\sum_{q \rightarrow p} \frac{P R(q)}{|F(q)|}
$$

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page

Random Walks on Graphs

- What we described is equivalent to a random walk on the graph
- Random walk:
- Pick a node uniformly at random
- Pick one of the outgoing edges uniformly at random
- Repeat.
- Question:
- What is the probability that after N steps you will be at node x ? Or, after N steps, what is the fraction of times times have you visited node x ?
- The answer is the same for these two questions
- When $N \rightarrow \infty$ this number converges to a single value regardless of the starting point!

PageRank algorithm [BP98]

- Random walk on the web graph (the Random Surfer model)
- pick a page at random
- with probability 1- α jump to a random page
- with probability a follow a random outgoing link
- Rank according to the stationary distribution

$$
P R(p)=\alpha \sum_{q \rightarrow p} \frac{P R(q)}{|F(q)|}+(1-\alpha) \frac{1}{n}
$$

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page

Markov chains

- A Markov chain describes a discrete time stochastic process over a set of states

$$
S=\left\{s_{1}, s_{2}, \ldots s_{n}\right\}
$$

according to a transition probability matrix

$$
P=\left\{P_{i j}\right\}
$$

- $P_{i j}=$ probability of moving to state j when at state i
- $\sum_{\mathrm{j}} \mathrm{P}_{\mathrm{ij}}=1$ (stochastic matrix)
- Memorylessness property: The next state of the chain depends only at the current state and not on the past of the process (first order MC)
- higher order MCs are also possible

Random walks

- Random walks on graphs correspond to Markov Chains
- The set of states S is the set of nodes of the graph G
- The transition probability matrix is the probability that we follow an edge from one node to another

An example

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 1 / 2
\end{array}\right]
$$

State probability vector

- The vector $q^{t}=\left(q_{1}^{t}, q_{2}^{t}, \ldots, q_{n}^{t}\right)$ that stores the probability of being at state i at time t
$-q_{i}^{0}=$ the probability of starting from state i

$$
q^{t}=q^{t-1} p
$$

An example

$$
\begin{aligned}
& P= {\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right] } \\
& q^{t+1}=1 / 3 q_{4}^{t}+1 / 2 q_{5}^{t} \\
& q^{t+1}=1 / 2 q_{1}^{t}+q_{3}^{t}+1 / 3 q_{4}^{t} \\
& q^{t+1}{ }_{3}=1 / 2 q_{1}^{t}+1 / 3 q_{4}^{t} \\
& q^{t+1}=1 / 2 q_{5}^{t} \\
& q^{t+1}{ }_{5}=q_{2}^{t}
\end{aligned}
$$

Stationary distribution

- A stationary distribution for a MC with transition matrix P, is a probability distribution π, such that $\pi=\pi P$
- A MC has a unique stationary distribution if
- it is irreducible
- the underlying graph is strongly connected
- it is aperiodic
- for random walks, the underlying graph is not bipartite
- The probability π_{i} is the fraction of times that we visited state i as $t \rightarrow \infty$
- The stationary distribution is an eigenvector of matrix P
- the principal left eigenvector of P - stochastic matrices have maximum eigenvalue 1

Computing the stationary distribution

- The Power Method
- Initialize to some distribution q^{0}
- Iteratively compute $q^{t}=q^{t-1} P$
- After enough iterations $q^{\dagger} \approx \pi$
- Power method because it computes $q^{t}=q^{0} P^{t}$
-Why does it converge?
- follows from the fact that any vector can be written as a linear combination of the eigenvectors

$$
\cdot q^{0}=v_{1}+c_{2} v_{2}+\ldots c_{n} v_{n}
$$

-Rate of convergence

- determined by $\lambda_{2}{ }^{t}$

The PageRank random walk

- Vanilla random walk
- make the adjacency matrix stochastic and run a random walk

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

The PageRank random walk

-What about sink nodes?

- what happens when the random walk moves to a node without any outgoing inks?
$P=\left[\begin{array}{ccccc}0 & 1 / 2 & 1 / 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\ 1 / 2 & 0 & 0 & 1 / 2 & 0\end{array}\right]$

The PageRank random walk

- Replace these row vectors with a vector v
- typically, the uniform vector

The PageRank random walk

- How do we guarantee irreducibility?
- add a random jump to vector v with prob a
- typically, to a uniform vector

$$
\mathrm{P}^{\prime \prime}=\alpha\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 1 / 2
\end{array}\right]+(1-\alpha)\left[\begin{array}{ccccc}
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5
\end{array}\right]
$$

$P^{\prime \prime}=\alpha P^{\prime}+(1-\alpha) u v^{\top}$, where u is the vector of all $1 s$

Effects of random jump

- Guarantees irreducibility
- Motivated by the concept of random surfer
- Offers additional flexibility
- personalization
- anti-spam
- Controls the rate of convergence
- the second eigenvalue of matrix P " is a

A PageRank algorithm

- Performing vanilla power method is now too expensive - the matrix is not sparse

$$
\begin{aligned}
& q^{0}=v \\
& t=1 \\
& \text { repeat } \\
& \quad q^{t}=\left(P^{\prime}\right)^{\top} q^{t-1} \\
& \delta=\left\|q^{t}-q^{t-1}\right\| \\
& t=t+1
\end{aligned}
$$

until $\delta<\varepsilon$

Efficient computation of $y=\left(P^{\prime \prime}\right)^{\top} x$

$$
\begin{aligned}
& \mathrm{y}=\alpha \mathrm{P}^{\mathrm{T}} \mathrm{x} \\
& \beta=\|\mathrm{x}\|_{1}-\|\mathrm{y}\|_{1} \\
& \mathrm{y}=\mathrm{y}+\beta \mathrm{v}
\end{aligned}
$$

Random walks on undirected graphs

- In the stationary distribution of a random walk on an undirected graph, the probability of being at node i is proportional to the (weighted) degree of the vertex
- Random walks on undirected graphs are not so "interesting"

