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Classification 

 Naïve Bayes 

Graphs And Centrality 



NAÏVE BAYES CLASSIFIER 



Bayes Classifier 

• A probabilistic framework for solving classification 
problems 

• A, C random variables 

• Joint probability: Pr(A=a,C=c) 

• Conditional probability: Pr(C=c | A=a) 

• Relationship between joint and conditional 
probability distributions 

 

 

• Bayes Theorem: 
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Bayesian Classifiers 

• Consider each attribute and class label as random 

variables 

 
Tid Refund Marital 

Status 
Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Evade C  

Event space: {Yes, No} 

P(C) = (0.3,0.7} 

Refund A1 

Event space: {Yes, No} 

P(A1) = (0.3,0.7) 

Martial Status A2  

Event space: {Single, Married, Divorced} 

P(A2) = (0.4,0.4,0.2) 

Taxable Income A3  

Event space: R 

P(A3) ~ Normal(,) 



Bayesian Classifiers 

• Given a record X over attributes (A1, A2,…,An)  

• E.g., X = (‘Yes’, ‘Single’, 125K) 

 

• The goal is to predict class C 

• Specifically, we want to find the value c of C that maximizes 

P(C=c| X) 

 

• Can we estimate P(C| X) directly from data? 

• This means that we estimate the probability for all possible 

values of the class variable. 



Bayesian Classifiers 

• Approach: 

• compute the posterior probability P(C | A1, A2, …, An) for all 
values of C using the Bayes theorem 

 

 

 

• Choose value of C that maximizes  
  P(C | A1, A2, …, An) 
 

• Equivalent to choosing value of C that maximizes 
        P(A1, A2, …, An|C) P(C) 

 

• How to estimate P(A1, A2, …, An | C )? 
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Naïve Bayes Classifier 

• Assume independence among attributes Ai when class is 

given:     

• 𝑃(𝐴1, 𝐴2, … , 𝐴𝑛|𝐶) =  𝑃(𝐴1|𝐶) 𝑃(𝐴2 𝐶 ⋯𝑃(𝐴𝑛|𝐶) 

 

• We can estimate P(Ai| C) for all values of Ai and C. 

 

• New point X is classified to class c if  

   𝑃 𝐶 = 𝑐 𝑋 = 𝑃 𝐶 = 𝑐  𝑃(𝐴𝑖|𝑐)𝑖   

is maximal over all possible values of C. 

 



How to Estimate Probabilities from Data? 

• Class Prior Probability:   

 𝑃 𝐶 = 𝑐 =  
𝑁𝑐

𝑁 
    

 e.g.,  P(C = No) = 7/10,  

          P(C = Yes) = 3/10 

 

• For discrete attributes: 

𝑃 𝐴𝑖 = 𝑎 𝐶 = 𝑐 =
𝑁𝑎,𝑐
𝑁𝑐

 

where 𝑁𝑎,𝑐 is number of 
instances having attribute 
𝐴𝑖 = 𝑎 and belongs to class 𝑐 

• Examples: 
 

 P(Status=Married|No) = 4/7 
P(Refund=Yes|Yes)=0 

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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How to Estimate Probabilities from Data? 

• For continuous attributes:  
• Discretize the range into bins  

•  one ordinal attribute per bin 

•  violates independence assumption 

• Two-way split:  (A < v) or (A > v) 
•  choose only one of the two splits as new attribute 

• Probability density estimation: 
•  Assume attribute follows a normal distribution 

•  Use data to estimate parameters of distribution  
   (e.g., mean  and standard deviation ) 

•  Once probability distribution is known, can use it to estimate the 
conditional probability P(Ai|c) 



How to Estimate Probabilities from Data? 

• Normal distribution: 

 

 
 

• One for each (ai,ci) pair 
 

• For (Income, Class=No): 

• If Class=No 

•  sample mean = 110 

•  sample variance = 2975 

 

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Example of Naïve Bayes Classifier 

P(Refund=Yes|No) = 3/7

P(Refund=No|No) = 4/7

P(Refund=Yes|Yes) = 0

P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7

P(Marital Status=Married|No) = 4/7

P(Marital Status=Single|Yes) = 2/7

P(Marital Status=Divorced|Yes)=1/7

P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

naive Bayes Classifier:

120K)IncomeMarried,No,Refund( X

 P(X|Class=No) = P(Refund=No|Class=No) 

    P(Married| Class=No) 

    P(Income=120K| Class=No) 

               = 4/7  4/7  0.0072 = 0.0024 
 

 P(X|Class=Yes) = P(Refund=No| Class=Yes) 

                       P(Married| Class=Yes) 

                       P(Income=120K| Class=Yes) 

                = 1  0  1.2  10-9 = 0 
 

Since P(X|No)P(No) > P(X|Yes)P(Yes) 

Therefore P(No|X) > P(Yes|X) 

      => Class = No 

Given a Test Record: 



Example of Naïve Bayes Classifier 

P(Refund=Yes|No) = 3/7

P(Refund=No|No) = 4/7

P(Refund=Yes|Yes) = 0

P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7

P(Marital Status=Married|No) = 4/7

P(Marital Status=Single|Yes) = 2/7

P(Marital Status=Divorced|Yes)=1/7

P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

naive Bayes Classifier:

120K)IncomeMarried,No,Refund( X

 P(X|Class=No) = P(Refund=No|Class=No) 

    P(Married| Class=No) 

    P(Income=120K| Class=No) 

               = 4/7  4/7  0.0072 = 0.0024 
 

 P(X|Class=Yes) = P(Refund=No| Class=Yes) 

                       P(Married| Class=Yes) 

                       P(Income=120K| Class=Yes) 

                = 1  0  1.2  10-9 = 0 
 

Since P(X|No)P(No) > P(X|Yes)P(Yes) 

Therefore P(No|X) > P(Yes|X) 

      => Class = No 

Given a Test Record: 



Naïve Bayes Classifier 

• If one of the conditional probability is zero, then 

the entire expression becomes zero 

• Probability estimation: 
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Ni: number of attribute 

values for attribute Ai 

p: prior probability 

m: parameter 



Implementation details 

• Computing the conditional probabilities involves 

multiplication of many very small numbers  

• Numbers get very close to zero, and there is a danger 

of numeric instability 

• We can deal with this by computing the logarithm 

of the conditional probability 

 

log 𝑃 𝐶 𝐴 ~ log 𝑃 𝐴 𝐶 + log 𝑃 𝐴  

= log 𝐴𝑖 𝐶 + log 𝑃(𝐴)

𝑖

 

 



Naïve Bayes (Summary) 

• Robust to isolated noise points 
 

• Handle missing values by ignoring the instance 
during probability estimate calculations 
 

• Robust to irrelevant attributes 
 

• Independence assumption may not hold for some 
attributes 
• Use other techniques such as Bayesian Belief Networks 

(BBN) 
 

• Naïve Bayes can produce a probability estimate, but 
it is usually a very biased one 
• Logistic Regression is better for obtaining probabilities. 



Generative vs Discriminative models 

• Naïve Bayes is a type of a generative model 
• Generative process:  

• First pick the category of the record 

• Then given the category, generate the attribute values from the 
distribution of the category 

 

 

• Conditional independence given C 

 

 

• We use the training data to learn the distribution 
of the values in a class 

 

 

C 

𝐴1 𝐴2 𝐴𝑛 



Generative vs Discriminative models 

• Logistic Regression and SVM are discriminative 

models 

• The goal is to find the boundary that discriminates 

between the two classes from the training data 

 

• In order to classify the language of a document, 

you can  

• Either learn the two languages and find which is more 

likely to have generated the words you see 

• Or learn what differentiates the two languages. 

 



SUPERVISED LEARNING 



Learning 

• Supervised Learning: learn a model from the data 

using labeled data. 

• Classification and Regression are the prototypical 

examples of supervised learning tasks. Other are 

possible (e.g., ranking) 

• Unsupervised Learning: learn a model – extract 

structure from unlabeled data.  

• Clustering and Association Rules are prototypical 

examples of unsupervised learning tasks. 

• Semi-supervised Learning: learn a model for the 

data using both labeled and unlabeled data. 



Supervised Learning Steps 

• Model the problem 
• What is you are trying to predict? What kind of optimization function 

do you need? Do you need classes or probabilities? 

• Extract Features 
• How do you find the right features that help to discriminate between 

the classes? 

• Obtain training data 
• Obtain a collection of labeled data. Make sure it is large enough, 

accurate and representative. Ensure that classes are well 
represented. 

• Decide on the technique 
• What is the right technique for your problem? 

• Apply in practice 
• Can the model be trained for very large data? How do you test how 

you do in practice? How do you improve? 

 



Modeling the problem 

• Sometimes it is not obvious. Consider the 

following three problems 

• Detecting if an email is spam 

• Categorizing the queries in a search engine 

• Ranking the results of a web search 



Feature extraction  

• Feature extraction, or feature engineering is the most 
tedious but also the most important step 
• How do you separate the players of the Greek national team 

from those of the Swedish national team? 

 

• One line of thought: throw features to the classifier 
and the classifier will figure out which ones are 
important 
• More features, means that you need more training data 

• Another line of thought: select carefully the features 
using various functions and techniques 
• Computationally intensive 



Training data 

• An overlooked problem: How do you get labeled 

data for training your model? 

• E.g., how do you get training data for ranking? 

• Usually requires a lot of manual effort and domain 

expertise and carefully planned labeling 

• Results are not always of high quality (lack of expertise) 

• And they are not sufficient (low coverage of the space) 

• Recent trends: 

• Find a source that generates the labeled data for you. 

• Crowd-sourcing techniques 



Dealing with small amount of labeled data 

• Semi-supervised techniques have been developed for this 
purpose.  

 

• Self-training: Train a classifier on the data, and then feed 
back the high-confidence output of the classifier as input 

 

• Co-training: train two “independent” classifiers and feed 
the output of one classifier as input to the other. 

 

• Regularization: Treat learning as an optimization problem 
where you define relationships between the objects you 
want to classify, and you exploit these relationships 
• Example: Image restoration  



Technique 

• The choice of technique depends on the problem 

requirements (do we need a probability 

estimate?) and the problem specifics (does 

independence assumption hold? Do we think 

classes are linearly separable?) 

• For many cases finding the right technique may 

be trial and error 

• For many cases the exact technique does not 

matter. 



Big Data Trumps Better Algorithms 

 

 

• The web has made this 
possible. 
• Especially for text-related 

tasks 

• Search engine uses the 
collective human 
intelligence 

 

http://www.youtube.com/w
atch?v=nU8DcBF-qo4 

• If you have enough data then the algorithms are 
not so important 



Apply-Test 

• How do you scale to very large datasets? 
• Distributed computing – map-reduce implementations of 

machine learning algorithms (Mahut, over Hadoop) 

 

• How do you test something that is running 
online? 
• You cannot get labeled data in this case 

• A/B testing 

 

• How do you deal with changes in data? 
• Active learning 



GRAPHS AND LINK 

ANALYSIS RANKING 



Graphs - Basics 

• A graph is a powerful abstraction for modeling 

entities and their pairwise relationships. 

• G = (V,E) 

• Set of nodes 𝑉 = 𝑣1, … , 𝑣5  

• Set of edges 𝐸 = { 𝑣1, 𝑣2 , … 𝑣4, 𝑣5 } 

• Examples:  

• Social network 

• Twitter Followers 

• Web 

• Collaboration graphs 

𝑣1 

𝑣2 

𝑣3 𝑣4 

𝑣5 



Undirected Graphs  

• Undirected Graph: The edges are undirected pairs – they can 
be traversed in any direction. 

• Degree of node: Number of edges incident on the node 

• Path: A sequence of edges from one node to another 
• We say that the node is reachable 

• Connected Component: A set of nodes such that there is a path 
between any two nodes in the set 𝑣1 

𝑣2 

𝑣3 𝑣4 

𝑣5 
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Directed Graphs 

• Directed Graph: The edges are ordered pairs – they can be traversed in the 
direction from first to second. 

• In-degree and Out-degree of a node. 

• Path: A sequence of directed edges from one node to another 
• We say that the node is reachable 

• Strongly Connected Component: A set of nodes such that there is a directed 
path between any two nodes in the set 

• Weakly Connected Component: A set of nodes such that there is an 
undirected path between any two nodes in the set 𝑣1 

𝑣2 

𝑣3 𝑣4 

𝑣5 
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Bipartite Graph 

• A graph where the vertex set V is partitioned into 

two sets V = {L,R}, of size greater than one, such 

that there is no edge within each set. 

𝑣1 

𝑣2 

𝑣3 

𝑣4 

𝑣5 

Set L Set R 



Importance problem 

• What are the most important nodes in the graph? 

• What are the most authoritative pages on the web 

• Who are the important users in Facebook? 

• What are the most influential Twitter accounts? 



Why is this important? 

• When you make a query “microsoft” to Google 

why do you get the home page of Microsoft as 

the first result? 



Link Analysis 

• First generation search engines 
• view documents as flat text files 

• could not cope with size, spamming, user needs 

• Second generation search engines 
• Ranking becomes critical 

• use of Web specific data: Link Analysis 

• shift from relevance to authoritativeness 

• a success story for the network analysis 



Link Analysis: Intuition 

• A link from page p to page q denotes 

endorsement 

• page p considers page q an authority on a subject 

• use the graph of recommendations 

• assign an authority value to every page 



Popularity: InDegree algorithm 

• Rank pages according to the popularity of 

incoming edges 

1. Red Page 

2. Yellow Page 

3. Blue Page 

4. Purple Page 

5. Green Page 

w=1 w=1 

w=2 

w=3 
w=2 



Popularity 

• Could you think of the case where this could be a 
problem? 

 

 

 

 

 

 

• It is not important only how many link to you, but 
how important are the people that link to you. 



PageRank algorithm [BP98] 

• Good authorities should be pointed 
by good authorities 

• The value of a page is the value of the 
people that link to you 

 

• How do we implement that? 
• Each page has a value. 

• Proceed in iterations,  

• in each iteration every page 
distributes the value to the neighbors 

• Continue until there is 
convergence. 

1. Red Page 

2. Purple Page  

3. Yellow Page 

4. Blue Page 

5. Green Page 
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Random Walks on Graphs 

• What we described is equivalent to a random walk on the 
graph 

 

• Random walk: 
• Pick a node uniformly at random 

• Pick one of the outgoing edges uniformly at random 

• Repeat. 

 

• Question:  
• What is the probability that after N steps you will be at node x? Or, 

after N steps, what is the fraction of times times have you visited 
node x? 
• The answer is the same for these two questions 

• When 𝑁 → ∞ this number converges to a single value regardless of 
the starting point! 



PageRank algorithm [BP98] 

• Random walk on the web graph 

(the Random Surfer model) 

• pick a page at random 

• with probability 1- α jump to a random 

page 

• with probability α follow a random 

outgoing link 

• Rank according to the stationary 

distribution 

•   

 

1. Red Page 

2. Purple Page  

3. Yellow Page 

4. Blue Page 

5. Green Page 
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Markov chains 

• A Markov chain describes a discrete time stochastic 
process over a set of states 

 

 according to a transition probability matrix 

 
• Pij = probability of moving to state j when at state i 

• ∑jPij = 1 (stochastic matrix) 

 

• Memorylessness property: The next state of the chain 
depends only at the current state and not on the past of 
the process (first order MC) 
• higher order MCs are also possible 

S = {s1, s2, … sn} 

P = {Pij} 



Random walks 

• Random walks on graphs correspond to Markov 

Chains 

• The set of states S is the set of nodes of the graph G 

• The transition probability matrix is the probability that 

we follow an edge from one node to another 



An example 

v1 
v2 

v3 

v4 v5 
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State probability vector 

• The vector qt = (qt
1,q

t
2, … ,qt

n) that stores the 

probability of being at state i at time t 

• q0
i
 = the probability of starting from state i 

qt = qt-1 P 



An example 
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qt+1
1 = 1/3 qt

4 + 1/2 qt
5 

qt+1
2 = 1/2 qt

1 + qt
3 + 1/3 qt

4 

qt+1
3 = 1/2 qt

1 + 1/3 qt
4 

qt+1
4 = 1/2 qt

5 

qt+1
5 = qt

2  



Stationary distribution 

• A stationary distribution for a MC with transition matrix P, 
is a probability distribution π, such that π = πP 

 

• A MC has a unique stationary distribution if  
• it is irreducible 

• the underlying graph is strongly connected 

• it is aperiodic 
• for random walks, the underlying graph is not bipartite 

• The probability πi is the fraction of times that we visited  
state i as t → ∞ 

• The stationary distribution is an eigenvector of matrix P 
• the principal left eigenvector of P – stochastic matrices have 

maximum eigenvalue 1 



Computing the stationary distribution 

• The Power Method 
• Initialize to some distribution q0 

• Iteratively compute qt = qt-1P 

• After enough iterations qt ≈ π 

• Power method because it computes qt = q0Pt 

• Why does it converge? 
• follows from the fact that any vector can be written as a 

linear combination of the eigenvectors 
• q0 = v1 + c2v2 + … cnvn 

• Rate of convergence 
• determined by λ2

t 
 



The PageRank random walk 

• Vanilla random walk 

• make the adjacency matrix stochastic and run a random 

walk 
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The PageRank random walk 

• What about sink nodes? 

• what happens when the random walk moves to a node 

without any outgoing inks? 
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The PageRank random walk 

• Replace these row vectors with a vector v 

• typically, the uniform vector 

P’ = P + dvT 
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The PageRank random walk 

• How do we guarantee irreducibility? 

• add a random jump to vector v with prob α 

• typically, to a uniform vector 

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s 



Effects of random jump 

• Guarantees irreducibility 

• Motivated by the concept of random surfer 

• Offers additional flexibility  

• personalization 

• anti-spam 

• Controls the rate of convergence 

• the second eigenvalue of matrix P’’ is α 



A PageRank algorithm 

• Performing vanilla power method is now too 

expensive – the matrix is not sparse 

q0 = v 
t = 1 
repeat 
  
  
     t = t +1  
until δ < ε 

  1tTt q'P'q 
1tt qqδ 

Efficient computation of y = (P’’)T x 

βvyy

yx β

xαP'y

11

T









Random walks on undirected graphs 

• In the stationary distribution of a random walk on 

an undirected graph, the probability of being at 

node i is proportional to the (weighted) degree of 

the vertex 

 

• Random walks on undirected graphs are not so 

“interesting” 


