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NAIVE BAYES CLASSIFIER




Bayes Classifier

A probabilistic framework for solving classification
problems

A, C random variables
Joint probability: Pr(A=a,C=c)
Conditional probabillity: Pr(C=c | A=a)

Relationship between joint and conditional
probability distributions

Pr(C, A) = Pr(C | A)x Pr(A) = Pr(A|C) x Pr(C)

Bayes Theorem: P(A|C)P(C)

P(A)

P(C|A)=



Bayesian Classifiers

Consider each attribute and class label as random
variables

- Evade C
Tid Refund Marital Taxable .
Status  Income Evade Event space: {Yes, No}
P(C) =(0.3,0.7}
1 Yes Single 125K No
_ Refund A,
2 No Married |[100K No Event space: {Yes, NO}
3 No Single 70K No P(Al) =(0.3,0.7)
4 Yes Married |[120K No
5 No Divorced |95K Yes Martial Status A? _ _
_ Event space: {Single, Married, Divorced}
6 No Married |60K No P(Az) — (0.4’0_4’0.2)
7 Yes Divorced [220K No
R R &°K ViEe Taxable Income A,
9 |No Married |75K No Event space: R
10 [No Single 90K Yes P(A3) ~ Normal(p,c)




-
Bayesian Classifiers

Given a record X over attributes (A, A,,...,A,)
- E.g., X=("Yes’, ‘'Single’, 125K)

The goal is to predict class C

- Specifically, we want to find the value c of C that maximizes
P(C=c| X)

Can we estimate P(C| X) directly from data?

- This means that we estimate the probability for all possible
values of the class variable.



Bayesian Classifiers

Approach:

- compute the posterior probability P(C | A, A,, ..., A,) for all
values of C using the Bayes theorem

- Choose value of C that maximizes
P(C|A, A, ....,A)

- Equivalent to choosing value of C that maximizes
P(A, A, ...,A |C) P(C)

How to estimate P(A, A,, ..., A | C)?



Naive Bayes Classifier

- Assume Independence among attributes A; when class is
given:
° P(Al,Az, ,An|C) — P(A1|C) P(A2|C) P(An|C)

- We can estimate P(A| C) for all values of A, and C.
- New point X is classified to class c if

P(C =c|X) =P(C =c)][];P(Ai|c)
IS maximal over all possible values of C.



e
How to Estimate Probabilities from Data?

Tid Refund Marital

© 00 N oo o b~ W DN P

[EEN
o

Yes
No
No
Yes
No
No
Yes
No
No
No

Status

Single
Married
Single
Married
Divorced
Married
Divorced
Single
Married

Single

Taxable
Income

125K
100K
70K
120K
95K
60K
220K
85K
75K
90K

Evade

No
No
No
No
Yes
No
No
Yes
No

Yes

Class Prior Probabillity:

P(C =c) = %
e.g., P(C =No) =7/10,
P(C =Yes) = 3/10

For discrete attributes:

P(A. = alCc = ) = &£
(4 =alc =) =

where N, . iIs number of
instances havmg attribute
A; = a and belongs to class ¢

- Examples:

P(Status=Married|No) = 4/7
P(Refund=Yes|Yes)=0



e
How to Estimate Probabilities from Data?

For continuous attributes:

- Discretize the range into bins

one ordinal attribute per bin

violates independence assumption
- Two-way split: (A<v)or (A>v)

choose only one of the two splits as new attribute
- Probability density estimation:

Assume attribute follows a normal distribution

Use data to estimate parameters of distribution
(e.g., mean p and standard deviation )

Once probability distribution is known, can use it to estimate the
conditional probability P(A|c)



e
How to Estimate Probabilities from Data?

Tid Refund Marital Taxable Normal distribution:
Status Income Evade

(a—/lij)2

1 |Yes Single 125K No 1 T 202
° P(A =alc))=———e °

2 |No Married |100K No 270y
3 No Single 70K No
4 Yes Married |120K No ¢ One fOI' eaCh (ai’Ci) pall’
5 No Divorced |95K Yes = | Cl NO):
6 No Married |60K No or ( ncome, asSS= O)'
7 |Yes Divorced | 220K No - If Class=No
8 |No Single 85K Yes Samp|e mean = 110
N ° R 75K e sample variance = 2975
10 [No Single 90K Yes

P(Income =120| No) = ﬁ(; 54) e = _(0.0072
7T :




Example of Naive Bayes Classifier

Given a Test Record:

X = (Refund = No, Married, Income =120K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7 e P(X|Class=No) = P(Refuno_lzNolCIasE:No)
P(Refund=No|No) = 4/7 x P(Married| Class=No)
P(Refund=Yes|Yes) =0 x P(Income=120K]| Class=No)
P(Refund=No|Yes) = 1 = 4/7 x 4/7 x 0.0072 = 0.0024
P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7 e P(X|Class=Yes) = P(Refund=No| Class=Yes)
P(Marital Status=Married|No) = 4/7 P(Married| Class=Ye
P(Marital Status=Single|Yes) = 2/7 x P(Married| ss=Yes)
P(Marital Status=Divorced|Yes)=1/7 x P(Income=120K| Class=Yes)
P(Marital Status=Married|Yes) =0 =1x0x1.2x10°=0

For taxable income: Since P(X|No)P(No) > P(X|Yes)P(Yes)

If class=No: sample mean=110
sample variance=2975 Therefore P(No|X) > P(Yes|X)
If class=Yes: sample mean=90 => Class = No
sample variance=25
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Naive Bayes Classifier

If one of the conditional probability is zero, then
the entire expression becomes zero

Probability estimation:

P . NaC
Original : P(A =a|C =c) = N N;: number of attribute
\ - . values for attribute A,
_|_
Laplace: P(A =a|C =c) = N S N p: prior probability
+N.

C I
m: parameter

N_.+mp
N.+m

m-estimate: P(A =a|C =c) =



Implementation details

Computing the conditional probabilities involves
multiplication of many very small numbers

- Numbers get very close to zero, and there is a danger
of numeric instability

We can deal with this by computing the logarithm
of the conditional probability

log P(C|A)~log P(A|C) + log P(A)
= ZIOg(AiIC) + log P(A)



Naive Bayes (Summary)

Robust to isolated noise points

Handle missing values by ignoring the instance
during probability estimate calculations

Robust to irrelevant attributes

Independence assumption may not hold for some
attributes

° %JBsgNo)ther techniques such as Bayesian Belief Networks

Naive BaYes can produce a probability estimate, but
It is usually a very biased one

- Logistic Regression is better for obtaining probabilities.



Generative vs Discriminative models

Nailve Bayes Is a type of a generative model

- Generative process:
First pick the category of the record

Then given the category, generate the attribute values from the
distribution of the category

Conditional independence given C

We use the training data to learn the distribution
of the values in a class



Generative vs Discriminative models

Logistic Regression and SVM are discriminative
models

- The goal is to find the boundary that discriminates
between the two classes from the training data

In order to classify the language of a document,
you can

- Either learn the two languages and find which is more
likely to have generated the words you see

- Or learn what differentiates the two languages.



SUPERVISED LEARNING




Learning

Supervised Learning: learn a model from the data
using labeled data.

- Classification and Regression are the prototypical
examples of supervised learning tasks. Other are
possible (e.g., ranking)

Unsupervised Learning: learn a model — extract

structure from unlabeled data.

- Clustering and Association Rules are prototypical
examples of unsupervised learning tasks.

Semi-supervised Learning: learn a model for the
data using both labeled and unlabeled data.



Supervised Learning Steps

Model the problem

- What is you are trying to predict? What kind of optimization function
do you need? Do you need classes or probabilities?

Extract Features

- How do you find the right features that help to discriminate between
the classes?

Obtain training data

- Obtain a collection of labeled data. Make sure it is large enough,
accurate and representative. Ensure that classes are well

represented.
Decide on the technique
- What is the right technique for your problem?
Apply in practice
- Can the model be trained for very large data? How do you test how
you do in practice? How do you improve?



-
Modeling the problem

Sometimes it is not obvious. Consider the
following three problems

- Detecting if an email is spam

- Categorizing the gueries in a search engine

- Ranking the results of a web search



Feature extraction

Feature extraction, or feature engineering is the most
tedious but also the most important step

- How do you separate the players of the Greek national team
from those of the Swedish national team?

One line of thought: throw features to the classifier
and the classifier will figure out which ones are
Important

- More features, means that you need more training data

Another line of thought: select carefully the features
using various functions and techniques

- Computationally intensive



Training data

An overlooked problem: How do you get labeled
data for training your model?

- E.g., how do you get training data for ranking?

Usually requires a lot of manual effort and domain
expertise and carefully planned labeling

- Results are not always of high quality (lack of expertise)
- And they are not sufficient (low coverage of the space)
Recent trends:

- Find a source that generates the labeled data for you.
- Crowd-sourcing technigues



Dealing with small amount of labeled data

Semi-supervised techniques have been developed for this
purpose.

Self-training: Train a classifier on the data, and then feed
back the high-confidence output of the classifier as input

Co-training: train two “independent” classifiers and feed
the output of one classifier as input to the other.

Regularization: Treat learning as an optimization problem
where you define relationships between the objects you
want to classify, and you exploit these relationships

- Example: Image restoration



Technique

The choice of technique depends on the problem
requirements (do we need a probability
estimate?) and the problem specifics (does
Independence assumption hold? Do we think
classes are linearly separable?)

—or many cases finding the right technigue may
pe trial and error

—or many cases the exact technique does not
matter.




-
Big Data Trumps Better Algorithms

If you have enough data then the algorithms are
not so important

The web has made this
possible.
Especially for text-related
tasks |

Search engine uses the
collective human
Intelligence

http://www.youtube.com/v T T ___ = =
atch?v=nU8DcBF-qo4

Figure 1. Learning Curves for Confusion Set
Disambiguation



-
Apply-Test

How do you scale to very large datasets?

- Distributed computing — map-reduce implementations of
machine learning algorithms (Mahut, over Hadoop)

How do you test something that is running
online?

- You cannot get labeled data in this case

- A/B testing

How do you deal with changes in data?
- Active learning



GRAPHS AND LINK
ANALY SIS RANKING




Graphs - Basics

A graph is a powerful abstraction for modeling
entities and their pairwise relationships.

G = (V,E)
- Set of nodes V = {v,, ..., vs}
- Set of edges E = {(v{,v3), ... (U4, V5)} !

Examples: 7S /‘\
/

- Social network / \

- Twitter Followers \
- Web
- Collaboration graphs




Undirected Graphs

Undirected Graph: The edges are undirected pairs — they can
be traversed in any direction.

Degree of node: Number of edges incident on the node

Path: A sequence of edges from one node to another
- We say that the node is reachable

Connected Component: A set of nodes such that there IS a path
between any two nodes in the set

01 111

=0




Directed Graphs

Directed Graph: The edges are ordered pairs — they can be traversed in the
direction from first to second.

In-degree and Out-degree of a node.

Path: A sequence of directed edges from one node to another
- We say that the node is reachable

Strongly Connected Component: A set of nodes such that there is a directed
path between any two nodes in the set

Weakly Connected Component: A set of nodes such that there is an
undirected path between any two nodes in the set

01100 O




Bipartite Graph

A graph where the vertex set V Is partitioned into
two sets V = {L,R}, of size greater than one, such
that there is no edge within each set.

— .
o

Set L SetR

(%1
(%)
U3



Importance problem

What are the most important nodes in the graph?
- What are the most authoritative pages on the web

- Who are the important users in Facebook?

- What are the most influential Twitter accounts?



-
Why Is this important?

- When you make a query “microsoft” to Google
why do you get the home page of Microsoft as
the first result?



-
Link Analysis

First generation search engines
- view documents as flat text files
- could not cope with size, spamming, user needs

Second generation search engines
- Ranking becomes critical

- use of Web specific data: Link Analysis
- shift from relevance to authoritativeness
- a success story for the network analysis



Link Analysis: Intuition

- Alink from page p to page ¢ denotes
endorsement
- page p considers page ¢ an authority on a subject
- use the graph of recommendations
- assign an authority value to every page



Popularity: InDegree algorithm

- Rank pages according to the popularity of
Incoming edges

w3

1. Red Page

E 3. Blue Page

\ \ 4. Purple Page
w=2

/ 5. Green Page




-
Popularity

- Could you think of the case where this could be a
problem?

- It is not important only how many link to you, but
how important are the people that link to you.



PageRank algorithm [BP98]

Good authorities should be pointed
by good authorities

The value of a page is the value of the
people that link to you

How do we implement that?
Each page has a value.

Proceed in iterations,

In each iteration every page
distributes the value to the neighbors

Continue until there is
convergence.

1. Red Page
2. Purple Page

4. Blue Page
5. Green Page



-
Random Walks on Graphs

What we described is equivalent to a random walk on the
graph

Random walk:
- Pick a node uniformly at random

- Pick one of the outgoing edges uniformly at random
- Repeat.

Question:

- What is the probability that after N steps you will be at node x? Or,
after N steps, what is the fraction of times times have you visited
node Xx?

The answer is the same for these two questions

- When N — oo this number converges to a single value regardless of
the starting point!



PageRank algorithm [BP98]

Random walk on the web graph H
(the Random Surfer model) - \E

pick a page at random ”
with probability 1- o jump to a random \ \ /
page B E

with probability a follow a random
outgoing link

Rank according to the stationary
distribution

PR(p) = aZrR((q)T - a)l

1. Red Page
2. Purple Page

4. Blue Page
5. Green Page



Markov chains

A Markov chain describes a discrete time stochastic
process over a set of states

S=1{s;, Sy - Sy}

according to a transition probability matrix
P= {Pij}
- Pj; = probability of moving to state | when at state |
2 P = 1 (stochastic matrix)

Memorylessness property: The next state of the chain
depends only at the current state and not on the past of
the process (first order MC)

- higher order MCs are also possible



Random walks

- Random walks on graphs correspond to Markov
Chains
- The set of states S is the set of nodes of the graph G

- The transition probability matrix is the probability that
we follow an edge from one node to another



An example

01100 v, H"Z

0 12 12 0 0] B E
0 0 0 0 1

P={0 1 0 0 O Vs v,
1/3 1/3 1/3 0 0
1/2 0 0 0 172




-
State probability vector

- The vector ' = (9',,9%, ... ,q',) that stores the
probability of being at state | at time t

- 0° = the probability of starting from state i

qt — qt-l P



An example

0 12 12
0 0 0
P=l0 1 0
1/3 1/3 1/3

=1/3q%+1/2d'

qt+12 - 1/2 + qt3+ 1/3 qt4

qt+13 - 1/2 + 1/3 C|t4
qt+14 - 1/2 th

t+1 — Nt
g 5s=0Q,

0
0
0
0

12 0 0 12

o O O —» O




Stationary distribution

A stationary distribution for a MC with transition matrix P,
IS a probability distribution 11, such that = 1P

A MC has a unique stationary distribution if
- itis irreducible
the underlying graph is strongly connected
- It is aperiodic
for random walks, the underlying graph is not bipartite

The probability T, is the fraction of times that we visited
stateiast— o
The stationary distribution is an eigenvector of matrix P

- the principal left eigenvector of P — stochastic matrices have
maximum eigenvalue 1



Computing the stationary distribution

The Power Method

- Initialize to some distribution g°

- Iteratively compute g' = g*'P

- After enough iterations g'= 1

- Power method because it computes gt = g°P!

Why does it converge?

- follows from the fact that any vector can be written as a
linear combination of the eigenvectors
qQ°=v,+Cv, ... LV,
Rate of convergence
- determined by A.!



The PageRank random walk

- Vanilla random walk
- make the adjacency matrix stochastic and run a random

walk
"0 12 12 0 0] — //B\\
0 0 0 0 1 T\ \
P=l0 1 0 0 O
1/3 1/3 1/3 0 0 /
2o oo |=|—7]



The PageRank random walk

- What about sink nodes?

- what happens when the random walk moves to a node
without any outgoing inks?

|0 0 0 0 0 - .

0 12 12 0 0 - /H\

P-l0 1 0 0 O B
1/3 1/3 13 0 0 \\ /
12 0 0 1/2 0 B :




The PageRank random walk

- Replace these row vectors with a vector v
- typically, the uniform vector

15 Y5 15 15 15| Z\\

P=|0 1 0 0 O
13 13 13 0 0 \ /
/2 0 0 12 0 B E

1 ifiis sink
0 otherwise

0 Y212 0 0] | éﬂ\ﬂ

PP=P+dv’ d



The PageRank random walk

How do we guarantee irreducibility?

- add a random jump to vector v with prob a
typically, to a uniform vector

0 12 12 0 0 1/5 1/5 1/5 1/5 1/5]
1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5
P'=¢/ 0 1 0 0 O |+(1-a)1/5 15 1/5 1/5 1/5
1/3 13 1/3 0 0 1/5 1/5 1/5 1/5 1/5
12 0 0 0 12 1/5 1/5 1/5 1/5 1/5

P” =aP’ + (1-a)uv’, where u is the vector of all 1s



Effects of random jump

Guarantees irreducibility
Motivated by the concept of random surfer

Offers additional flexibility

- personalization

- anti-spam

Controls the rate of convergence

- the second eigenvalue of matrix P” is a



-
A PageRank algorithm

Performing vanilla power method is now too
expensive — the matrix is not sparse

q°=v Efficient computation of y = (P”")" x
t=1
repeat y =oP" X
q'=(P")'q” p={xl, ~Ivl,
o=l 0| | | y=yip
t=t+1
until 6 <€




Random walks on undirected graphs

In the stationary distribution of a random walk on
an undirected graph, the probability of being at
node | Is proportional to the (weighted) degree of

the vertex

Random walks on undirected graphs are not so
“interesting”



