DATA MINING LECTURE 10

Classification

k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines

NEAREST NEIGHBOR CLASSIFICATION

Instance-Based Classifiers

Set of Stored Cases

Instance Based Classifiers

- Examples:
 - Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
 - Nearest neighbor
 - Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram defines the classification boundary

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the knearest neighbors
 - Weigh the vote according to distance
 - weight factor, $w = 1/d^2$

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

Solution: Normalize the vectors to unit length

Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
- Classifying unknown records are relatively expensive
 - Naïve algorithm: O(n)
 - Need for structures to retrieve nearest neighbors fast.
 - The Nearest Neighbor Search problem.

- Two-dimensional kd-trees
 - A data structure for answering nearest neighbor queries in R²

- kd-tree construction algorithm
 - Select the x or y dimension (alternating between the two)
 - Partition the space into two with a line passing from the median point
 - Repeat recursively in the two partitions as long as there are enough points

2-dimensional kd-trees

- A binary tree:
 - Size O(n)
 - Depth O(logn)
 - Construction time O(nlogn)
 - Query time: worst case O(n), but for many cases O(logn)

Generalizes to d dimensions

Example of Binary Space Partitioning

SUPPORT VECTOR MACHINES

• Find a linear hyperplane (decision boundary) that will separate the data

One Possible Solution

Another possible solution

Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

• Find hyperplane maximizes the margin => B1 is better than B2

- We want to maximize: Margin = $\frac{2}{\|\vec{w}\|^2}$
 - Which is equivalent to minimizing: $L(w) = \frac{\|\vec{w}\|^2}{2}$
 - But subjected to the following constraints:

$$\vec{w} \cdot \vec{x_i} + b \ge 1 \text{ if } y_i = 1$$

$$\vec{w} \cdot \vec{x_i} + b \le -1 \text{ if } y_i = -1$$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

• What if the problem is not linearly separable?

• What if the problem is not linearly separable?

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{\parallel \vec{w} \parallel^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$$

Subject to:

$$\vec{w} \cdot \vec{x_i} + b \ge 1 - \xi_i \text{ if } y_i = 1$$

$$\vec{w} \cdot \vec{x_i} + b \le -1 + \xi_i \text{ if } y_i = -1$$

Nonlinear Support Vector Machines

What if decision boundary is not linear?

Nonlinear Support Vector Machines

Transform data into higher dimensional space

LOGISTIC REGRESSION

Classification via regression

- Instead of predicting the class of an record we want to predict the probability of the class given the record
- The problem of predicting continuous values is called regression problem
- General approach: find a continuous function that models the continuous points.

Example: Linear regression

- Given a dataset of the form $\{(x_1, y_1), ..., (x_n, y_n)\}$ find a linear function that given the vector x_i predicts the y_i value as $y'_i = w^T x_i$
 - Find a vector of weights w that minimizes the sum of square errors

$$\sum_i (y_i' - y_i)^2$$

 Several techniques for solving the problem.

Classification via regression

Assume a linear classification boundary

 $w \cdot x > 0$

For the positive class the bigger the value of $w \cdot x$, the further the point is from the classification boundary, the higher our certainty for the membership to the positive class

• Define $P(C_+|x)$ as an increasing function of $w \cdot x$

For the negative class the smaller the value of $w \cdot x$, the further the point is from the classification boundary, the higher our certainty for the membership to the negative class

• Define $P(C_{-}|x)$ as a decreasing function of $w \cdot x$

Logistic Regression

$$\log \frac{P(C_+|x)}{P(C_-|x)} = w \cdot x$$

Logistic Regression: Find the vector *w* that maximizes the probability of the observed data

Logistic Regression

- Produces a probability estimate for the class membership which is often very useful.
- The weights can be useful for understanding the feature importance.
- Works for relatively large datasets
- Fast to apply.

NAÏVE BAYES CLASSIFIER

Bayes Classifier

- A probabilistic framework for solving classification problems
- A, C random variables
- Joint probability: Pr(A=a,C=c)
- Conditional probability: Pr(C=c | A=a)
- Relationship between joint and conditional probability distributions

 $Pr(C, A) = Pr(C | A) \times Pr(A) = Pr(A | C) \times Pr(C)$

• Bayes Theorem: $P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayesian Classifiers

- Consider each attribute and class label as random variables
- Given a record with attributes $(A_1, A_2, ..., A_n)$
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes P(C| A₁, A₂,...,A_n)
- Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

- Approach:
 - compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes
 P(C | A₁, A₂, ..., A_n)
- Equivalent to choosing value of C that maximizes P(A₁, A₂, ..., A_n|C) P(C)

• How to estimate P(A₁, A₂, ..., A_n | C)?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C_j) = P(A_1 | C_j) P(A_2 | C_j) \cdots P(A_n | C_j)$
 - We can estimate $P(A_i | C_i)$ for all A_i and C_i .
 - New point X is classified to C_j if $P(C_j|X) = P(C_j) \prod_i P(A_i|C_j)$

is maximal.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class:
$$P(C) = N_c/N$$

• e.g., P(No) = 7/10, P(Yes) = 3/10

- For discrete attributes: $P(A_i | C_k) = |A_{ik}| / N_{c_k}$
 - where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k
 - Examples:
 - P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(A_i|c)

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

 $P(Income = 120 | No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$

Example of Naïve Bayes Classifier

Given a Test Record:

```
X = (\text{Refund} = \text{No}, \text{Married}, \text{Income} = 120\text{K})
```

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7 P(Refund=No|No) = 4/7 P(Refund=Yes|Yes) = 0 P(Refund=No|Yes) = 1 P(Marital Status=Single|No) = 2/7 P(Marital Status=Divorced|No)=1/7 P(Marital Status=Married|No) = 4/7 P(Marital Status=Single|Yes) = 2/7 P(Marital Status=Divorced|Yes)=1/7 P(Marital Status=Married|Yes) = 0

For taxable income:

sample mean=110
sample variance=2975
sample mean=90
sample variance=25

• P(X|Class=No) = P(Refund=No|Class=No) $\times P(Married| Class=No)$ $\times P(Income=120K| Class=No)$ $= 4/7 \times 4/7 \times 0.0072 = 0.0024$

•
$$P(X|Class=Yes) = P(Refund=No|Class=Yes)$$

 $\times P(Married|Class=Yes)$
 $\times P(Income=120K|Class=Yes)$
 $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

Since P(X|No)P(No) > P(X|Yes)P(Yes) Therefore P(No|X) > P(Yes|X) => Class = No

Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original:
$$P(A_i | C) = \frac{N_{ic}}{N_c}$$

Laplace: $P(A_i | C) = \frac{N_{ic} + 1}{N_c + N_i}$
m - estimate: $P(A_i | C) = \frac{N_{ic} + mp}{N_c + m}$

N_i: number of attribute values for attribute A_i

p: prior probability

m: parameter

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes
M: mammals
N: non-mammals
$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$
$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$
$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$
$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Implementation details

- Computing the conditional probabilities involves multiplication of many very small numbers
 - Numbers get very close to zero, and there is a danger of numeric instability
- We can deal with this by computing the logarithm of the conditional probability

$$\log P(C|A) \sim \log P(A|C) + \log P(A)$$
$$= \sum_{i} \log P(A_i|C) + \log P(A)$$

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)
- Naïve Bayes can produce a probability estimate, but it is usually a very biased one
 - Logistic Regression is better for obtaining probabilities.

Generative vs Discriminative models

- Naïve Bayes is a type of a generative model
 - Generative process:
 - First pick the category of the record
 - Then given the category, generate the attribute values from the distribution of the category

Conditional independence given C

 We use the training data to learn the distribution of the values in a class

Generative vs Discriminative models

- Logistic Regression and SVM are discriminative models
 - The goal is to find the boundary that discriminates between the two classes from the training data
- In order to classify the language of a document, you can
 - Either learn the two languages and find which is more likely to have generated the words you see
 - Or learn what differentiates the two languages.