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Instance-Based Classifiers 
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Instance Based Classifiers 

• Examples: 

• Rote-learner 

•  Memorizes entire training data and performs classification only if 

attributes of record match one of the training examples exactly 

 

• Nearest neighbor 

•  Uses k “closest” points (nearest neighbors) for performing 

classification 

 



Nearest Neighbor Classifiers 

• Basic idea: 

• If it walks like a duck, quacks like a duck, then it’s 

probably a duck 

Training 

Records 

Test 

Record 

Compute 

Distance 

Choose k of the 

“nearest” records 



Nearest-Neighbor Classifiers 

 Requires three things 

– The set of stored records 

– Distance Metric to compute 

distance between records 

– The value of k, the number of 

nearest neighbors to retrieve 

 

 To classify an unknown record: 

– Compute distance to other 

training records 

– Identify k nearest neighbors  

– Use class labels of nearest 

neighbors to determine the 

class label of unknown record 

(e.g., by taking majority vote) 

Unknown record



Definition of Nearest Neighbor 

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

    K-nearest neighbors of a record x are data points 

that have the k smallest distance to x 



1 nearest-neighbor 
Voronoi Diagram defines the classification boundary 

The area takes the 

class of the green 

point 



Nearest Neighbor Classification 

• Compute distance between two points: 

• Euclidean distance  

 

 

 

• Determine the class from nearest neighbor list 

• take the majority vote of class labels among the k-

nearest neighbors 

• Weigh the vote according to distance 

•  weight factor, w = 1/d2 
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Nearest Neighbor Classification… 

• Choosing the value of k: 

• If k is too small, sensitive to noise points 

• If k is too large, neighborhood may include points from 

other classes 

X



Nearest Neighbor Classification… 

• Scaling issues 

• Attributes may have to be scaled to prevent distance 

measures from being dominated by one of the attributes 

• Example: 

•  height of a person may vary from 1.5m to 1.8m 

•  weight of a person may vary from 90lb to 300lb 

•  income of a person may vary from $10K to $1M 



Nearest Neighbor Classification… 

• Problem with Euclidean measure: 

• High dimensional data  

•  curse of dimensionality 

• Can produce counter-intuitive results 

 

 

 

 

1 1 1 1 1 1 1 1 1 1 1 0 

0 1 1 1 1 1 1 1 1 1 1 1 

1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 

vs 

d = 1.4142 d = 1.4142 

  

 Solution: Normalize the vectors to unit length 



Nearest neighbor Classification… 

• k-NN classifiers are lazy learners  

• It does not build models explicitly 

• Unlike eager learners such as decision tree induction 

and rule-based systems 

• Classifying unknown records are relatively 

expensive 

• Naïve algorithm: O(n) 

• Need for structures to retrieve nearest neighbors fast. 

• The Nearest Neighbor Search problem. 



Nearest Neighbor Search 

• Two-dimensional kd-trees 
• A data structure for answering nearest neighbor queries 

in R2  

 

 

• kd-tree construction algorithm 
• Select the x or y dimension (alternating between the 

two) 

• Partition the space into two with a line passing from the 
median point 

• Repeat recursively in the two partitions as long as there 
are enough points   



2-dimensional kd-trees 

Nearest Neighbor Search 



2-dimensional kd-trees 

Nearest Neighbor Search 



2-dimensional kd-trees 

Nearest Neighbor Search 



2-dimensional kd-trees 

Nearest Neighbor Search 



2-dimensional kd-trees 

Nearest Neighbor Search 



2-dimensional kd-trees 

Nearest Neighbor Search 



region(u) – all the black points in the subtree of u 

2-dimensional kd-trees 

Nearest Neighbor Search 



 A binary tree: 

 Size O(n) 

 Depth O(logn) 

 Construction time O(nlogn) 

 Query time: worst case O(n), but for many cases O(logn) 

Generalizes to d dimensions 

 Example of Binary Space Partitioning 

2-dimensional kd-trees 

Nearest Neighbor Search 



SUPPORT VECTOR 

MACHINES 



Support Vector Machines 

• Find a linear hyperplane (decision boundary) that will separate the data 



Support Vector Machines 

• One Possible Solution 

B1



Support Vector Machines 

• Another possible solution 

B
2



Support Vector Machines 

• Other possible solutions 

B
2



Support Vector Machines 

• Which one is better? B1 or B2? 

• How do you define better? 

B
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Support Vector Machines 

• Find hyperplane maximizes the margin => B1 is better than B2 
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Support Vector Machines 
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Support Vector Machines 

• We want to maximize: 

 

• Which is equivalent to minimizing: 

 

• But subjected to the following constraints: 

 

 

 

•  This is a constrained optimization problem 

• Numerical approaches to solve it (e.g., quadratic programming) 
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𝑤 ∙ 𝑥𝑖 + 𝑏 ≤ −1 if 𝑦𝑖 = −1 



Support Vector Machines 

• What if the problem is not linearly separable? 



Support Vector Machines 

• What if the problem is not linearly separable? 

𝜉𝑖
𝑤

 



Support Vector Machines 

• What if the problem is not linearly separable? 

• Introduce slack variables 

•  Need to minimize: 
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Nonlinear Support Vector Machines 

• What if decision boundary is not linear? 



Nonlinear Support Vector Machines 

• Transform data into higher dimensional space 



LOGISTIC REGRESSION 



Classification via regression 

• Instead of predicting the class of an record we 

want to predict the probability of the class given 

the record 

• The problem of predicting continuous values is 

called regression problem 

• General approach: find a continuous function that 

models the continuous points. 



Example: Linear regression 

• Given a dataset of the 
form (𝑥1, 𝑦1) , … , (𝑥𝑛, 𝑦𝑛)   
find a linear function that 
given the vector 𝑥𝑖 
predicts the 𝑦𝑖 value as 
𝑦𝑖
′ = 𝑤𝑇𝑥𝑖  

• Find a vector of weights 𝑤 
that minimizes the sum of 
square errors 

 𝑦𝑖
′ − 𝑦𝑖

2

𝑖

 

• Several techniques for 
solving the problem. 



Classification via regression 

• Assume a linear classification boundary 

𝑤 ⋅ 𝑥 = 0 

𝑤 ⋅ 𝑥 > 0 

𝑤 ⋅ 𝑥 < 0 

For the positive class the bigger 

the value of 𝑤 ⋅ 𝑥, the further the 

point is from the classification 

boundary, the higher our certainty 

for the membership to the positive 

class 

• Define 𝑃(𝐶+|𝑥) as an increasing 

function of 𝑤 ⋅ 𝑥 

For the negative class the smaller 

the value of 𝑤 ⋅ 𝑥, the further the 

point is from the classification 

boundary, the higher our certainty 

for the membership to the negative 

class 

• Define 𝑃(𝐶−|𝑥) as a decreasing 

function of 𝑤 ⋅ 𝑥 



Logistic Regression 

𝑓 𝑡 =  
1

1 − 𝑒−𝑡
 

𝑃 𝐶+ 𝑥 =  
1

1 − 𝑒−𝑤⋅𝑥
 

𝑃 𝐶− 𝑥 =  
𝑒−𝑤⋅𝑥

1 − 𝑒−𝑤⋅𝑥
 

log
𝑃 𝐶+ 𝑥

𝑃 𝐶− 𝑥
= 𝑤 ⋅ 𝑥 Logistic Regression: Find the 

vector 𝑤 that maximizes the 

probability of the observed data 

The logistic function 



Logistic Regression 

• Produces a probability estimate for the class 

membership which is often very useful. 

• The weights can be useful for understanding the 

feature importance. 

• Works for relatively large datasets 

• Fast to apply. 



NAÏVE BAYES CLASSIFIER 



Bayes Classifier 

• A probabilistic framework for solving classification 
problems 

• A, C random variables 

• Joint probability: Pr(A=a,C=c) 

• Conditional probability: Pr(C=c | A=a) 

• Relationship between joint and conditional 
probability distributions 

 

 

• Bayes Theorem: 

)(

)()|(
)|(

AP

CPCAP
ACP 

)Pr()|Pr()Pr()|Pr(),Pr( CCAAACAC 



Example of Bayes Theorem 

• Given:  

• A doctor knows that meningitis causes stiff neck 50% of the time 

• Prior probability of any patient having meningitis is 1/50,000 

• Prior probability of any patient having stiff neck is 1/20 

 

•  If a patient has stiff neck, what’s the probability 

he/she has meningitis? 
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Bayesian Classifiers 

• Consider each attribute and class label as random 

variables 

 

• Given a record with attributes (A1, A2,…,An)  

• Goal is to predict class C 

• Specifically, we want to find the value of C that maximizes 

P(C| A1, A2,…,An ) 

 

• Can we estimate P(C| A1, A2,…,An ) directly from 

data? 



Bayesian Classifiers 

• Approach: 

• compute the posterior probability P(C | A1, A2, …, An) for all 
values of C using the Bayes theorem 

 

 

 

• Choose value of C that maximizes  
  P(C | A1, A2, …, An) 
 

• Equivalent to choosing value of C that maximizes 
        P(A1, A2, …, An|C) P(C) 

 

• How to estimate P(A1, A2, …, An | C )? 

)(

)()|(
)|(

21

21

21

n

n

n

AAAP

CPCAAAP
AAACP




 



Naïve Bayes Classifier 

• Assume independence among attributes Ai when class is 

given:     

• 𝑃(𝐴1, 𝐴2, … , 𝐴𝑛|𝐶𝑗)  =  𝑃(𝐴1|𝐶𝑗) 𝑃(𝐴2 𝐶𝑗 ⋯𝑃(𝐴𝑛|𝐶𝑗) 

 

• We can estimate P(Ai| Cj) for all Ai and Cj. 

 

• New point X is classified to Cj if  

   𝑃 𝐶𝑗 𝑋 = 𝑃 𝐶𝑗  𝑃(𝐴𝑖|𝐶𝑗)𝑖   

is maximal. 

 



How to Estimate Probabilities from Data? 

• Class:  P(C) = Nc/N 
• e.g.,  P(No) = 7/10,  

         P(Yes) = 3/10 

 

• For discrete attributes: 
   

     P(Ai | Ck) = |Aik|/ Nc  
 

• where |Aik| is number of 
instances having attribute Ai 
and belongs to class Ck 

• Examples: 
 

 P(Status=Married|No) = 4/7 

P(Refund=Yes|Yes)=0 

k 

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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How to Estimate Probabilities from Data? 

• For continuous attributes:  
• Discretize the range into bins  

•  one ordinal attribute per bin 

•  violates independence assumption 

• Two-way split:  (A < v) or (A > v) 
•  choose only one of the two splits as new attribute 

• Probability density estimation: 
•  Assume attribute follows a normal distribution 

•  Use data to estimate parameters of distribution  
   (e.g., mean and standard deviation) 

•  Once probability distribution is known, can use it to estimate the 
conditional probability P(Ai|c) 



How to Estimate Probabilities from Data? 

• Normal distribution: 

 

 
 

• One for each (Ai,ci) pair 
 

• For (Income, Class=No): 

• If Class=No 

•  sample mean = 110 

•  sample variance = 2975 

 

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Example of Naïve Bayes Classifier 

P(Refund=Yes|No) = 3/7

P(Refund=No|No) = 4/7

P(Refund=Yes|Yes) = 0

P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7

P(Marital Status=Divorced|No)=1/7

P(Marital Status=Married|No) = 4/7

P(Marital Status=Single|Yes) = 2/7

P(Marital Status=Divorced|Yes)=1/7

P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

naive Bayes Classifier:

120K)IncomeMarried,No,Refund( X

 P(X|Class=No) = P(Refund=No|Class=No) 

    P(Married| Class=No) 

    P(Income=120K| Class=No) 

               = 4/7  4/7  0.0072 = 0.0024 
 

 P(X|Class=Yes) = P(Refund=No| Class=Yes) 

                       P(Married| Class=Yes) 

                       P(Income=120K| Class=Yes) 

                = 1  0  1.2  10-9 = 0 
 

Since P(X|No)P(No) > P(X|Yes)P(Yes) 

Therefore P(No|X) > P(Yes|X) 

      => Class = No 

Given a Test Record: 



Naïve Bayes Classifier 

• If one of the conditional probability is zero, then 

the entire expression becomes zero 

• Probability estimation: 
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Example of Naïve Bayes Classifier 
Name Give Birth Can Fly Live in Water Have Legs Class

human yes no no yes mammals

python no no no no non-mammals

salmon no no yes no non-mammals

whale yes no yes no mammals

frog no no sometimes yes non-mammals

komodo no no no yes non-mammals

bat yes yes no yes mammals

pigeon no yes no yes non-mammals

cat yes no no yes mammals

leopard shark yes no yes no non-mammals

turtle no no sometimes yes non-mammals

penguin no no sometimes yes non-mammals

porcupine yes no no yes mammals

eel no no yes no non-mammals

salamander no no sometimes yes non-mammals

gila monster no no no yes non-mammals

platypus no no no yes mammals

owl no yes no yes non-mammals

dolphin yes no yes no mammals

eagle no yes no yes non-mammals

Give Birth Can Fly Live in Water Have Legs Class

yes no yes no ?

0027.0
20

13
004.0)()|(

021.0
20

7
06.0)()|(

0042.0
13

4

13

3

13

10

13

1
)|(

06.0
7

2

7

2

7

6

7

6
)|(









NPNAP

MPMAP

NAP

MAP

A: attributes 

M: mammals 

N: non-mammals 

P(A|M)P(M) > 

P(A|N)P(N) 

=> Mammals 



Implementation details 

• Computing the conditional probabilities involves 

multiplication of many very small numbers  

• Numbers get very close to zero, and there is a danger 

of numeric instability 

• We can deal with this by computing the logarithm 

of the conditional probability 

 

log 𝑃 𝐶 𝐴 ~ log 𝑃 𝐴 𝐶 + log 𝑃 𝐴  

= log𝑃 𝐴𝑖 𝐶 + log 𝑃(𝐴)

𝑖

 

 



Naïve Bayes (Summary) 

• Robust to isolated noise points 
 

• Handle missing values by ignoring the instance 
during probability estimate calculations 
 

• Robust to irrelevant attributes 
 

• Independence assumption may not hold for some 
attributes 
• Use other techniques such as Bayesian Belief Networks 

(BBN) 
 

• Naïve Bayes can produce a probability estimate, but 
it is usually a very biased one 
• Logistic Regression is better for obtaining probabilities. 



Generative vs Discriminative models 

• Naïve Bayes is a type of a generative model 
• Generative process:  

• First pick the category of the record 

• Then given the category, generate the attribute values from the 
distribution of the category 

 

 

• Conditional independence given C 

 

 

• We use the training data to learn the distribution 
of the values in a class 

 

 

C 

𝐴1 𝐴2 𝐴𝑛 



Generative vs Discriminative models 

• Logistic Regression and SVM are discriminative 

models 

• The goal is to find the boundary that discriminates 

between the two classes from the training data 

 

• In order to classify the language of a document, 

you can  

• Either learn the two languages and find which is more 

likely to have generated the words you see 

• Or learn what differentiates the two languages. 

 


