
DATA MINING

LECTURE 8
Dimensionality Reduction

PCA -- SVD

The curse of dimensionality

• Real data usually have thousands, or millions of

dimensions

• E.g., web documents, where the dimensionality is the

vocabulary of words

• Facebook graph, where the dimensionality is the

number of users

• Huge number of dimensions causes problems

• Data becomes very sparse, some algorithms become

meaningless (e.g. density based clustering)

• The complexity of several algorithms depends on the

dimensionality and they become infeasible.

Dimensionality Reduction

• Usually the data can be described with fewer

dimensions, without losing much of the meaning

of the data.

• The data reside in a space of lower dimensionality

• Essentially, we assume that some of the data is

noise, and we can approximate the useful part

with a lower dimensionality space.

• Dimensionality reduction does not just reduce the

amount of data, it often brings out the useful part of the

data

Dimensionality Reduction

• We have already seen a form of dimensionality

reduction

• LSH, and random projections reduce the

dimension while preserving the distances

Data in the form of a matrix

• We are given n objects and d attributes describing
the objects. Each object has d numeric values
describing it.

• We will represent the data as a nd real matrix A.
• We can now use tools from linear algebra to process the

data matrix

• Our goal is to produce a new nk matrix B such that
• It preserves as much of the information in the original matrix

A as possible

• It reveals something about the structure of the data in A

Example: Document matrices

n

documents

d terms

(e.g., theorem, proof, etc.)

Aij = frequency of the j-th

term in the i-th document

Find subsets of terms that bring documents

together

Example: Recommendation systems

n

customers

d movies

Aij = rating of j-th

product by the i-th

customer

Find subsets of movies that capture the

behavior or the customers

Linear algebra

• We assume that vectors are column vectors.

• We use 𝑣𝑇 for the transpose of vector 𝑣 (row vector)

• Dot product: 𝑢𝑇𝑣 (1𝑛, 𝑛1 → 11)
• The dot product is the projection of vector 𝑣 on 𝑢 (and vice versa)

• 1, 2, 3
4
1
2

= 12

• 𝑢𝑇𝑣 = 𝑣 𝑢 cos(𝑢, 𝑣)

• If ||𝑢|| = 1 (unit vector) then 𝑢𝑇𝑣 is the projection length of 𝑣 on 𝑢

• −1, 2, 3
4

−1
2

= 0 orthogonal vectors

• Orthonormal vectors: two unit vectors that are orthogonal

Matrices

• An nm matrix A is a collection of n row vectors and m column
vectors

 𝐴 =
| | |

𝑎1 𝑎2 𝑎3

| | |
 𝐴 =

− 𝛼1
𝑇 −

− 𝛼2
𝑇 −

− 𝛼3
𝑇 −

• Matrix-vector multiplication
• Right multiplication 𝐴𝑢: projection of u onto the row vectors of 𝐴, or

projection of row vectors of 𝐴 onto 𝑢.

• Left-multiplication 𝑢𝑇𝐴: projection of 𝑢 onto the column vectors of 𝐴, or
projection of column vectors of 𝐴 onto 𝑢

• Example:

1,2,3
1 0
0 1
0 0

= [1,2]

Rank

• Row space of A: The set of vectors that can be
written as a linear combination of the rows of A
• All vectors of the form 𝑣 = 𝑢𝑇𝐴

• Column space of A: The set of vectors that can be
written as a linear combination of the columns of A
• All vectors of the form 𝑣 = 𝐴𝑢.

• Rank of A: the number of linearly independent row (or
column) vectors
• These vectors define a basis for the row (or column) space

of A

Rank-1 matrices

• In a rank-1 matrix, all columns (or rows) are

multiples of the same column (or row) vector

𝐴 =
1 2 −1
2 4 −2
3 6 −3

• All rows are multiples of 𝑟 = [1,2, −1]

• All columns are multiples of 𝑐 = 1,2,3 𝑇

• External product: 𝑢𝑣𝑇 (𝑛1 , 1𝑚 → 𝑛𝑚)

• The resulting 𝑛𝑚 has rank 1: all rows (or columns) are

linearly dependent

• 𝐴 = 𝑟𝑐𝑇

Eigenvectors

• (Right) Eigenvector of matrix A: a vector v such

that 𝐴𝑣 = 𝜆𝑣

• 𝜆: eigenvalue of eigenvector 𝑣

• A square matrix A of rank r, has r orthonormal

eigenvectors 𝑢1, 𝑢2, … , 𝑢𝑟 with eigenvalues

𝜆1, 𝜆2, … , 𝜆𝑟.

• Eigenvectors define an orthonormal basis for the

column space of A

Singular Value Decomposition

𝐴 = 𝑈 Σ 𝑉𝑇 = 𝑢1, 𝑢2, ⋯ , 𝑢𝑟

𝜎1

𝜎2
0

0
⋱

𝜎𝑟

𝑣1
𝑇

𝑣2
𝑇

⋮
𝑣𝑟

𝑇

• 𝜎1, ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟: singular values of matrix 𝐴 (also, the square roots

of eigenvalues of 𝐴𝐴𝑇 and 𝐴𝑇𝐴)

• 𝑢1, 𝑢2, … , 𝑢𝑟: left singular vectors of 𝐴 (also eigenvectors of 𝐴𝐴𝑇)

• 𝑣1, 𝑣2, … , 𝑣𝑟: right singular vectors of 𝐴 (also, eigenvectors of 𝐴𝑇𝐴)

𝐴 = 𝜎1𝑢1𝑣1

𝑇 + 𝜎2𝑢2𝑣2
𝑇 + ⋯ + 𝜎𝑟𝑢𝑟𝑣𝑟

𝑇

[n×r] [r×r] [r×m]

r: rank of matrix A

[n×m] =

Symmetric matrices

• Special case: A is symmetric positive definite

matrix

𝐴 = 𝜆1𝑢1𝑢1

𝑇 + 𝜆2𝑢2𝑢2
𝑇 + ⋯ + 𝜆𝑟𝑢𝑟𝑢𝑟

𝑇

• 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑟 ≥ 0: Eigenvalues of A

• 𝑢1, 𝑢2, … , 𝑢𝑟: Eigenvectors of A

Singular Value Decomposition

• The left singular vectors are an orthonormal basis
for the row space of A.

• The right singular vectors are an orthonormal
basis for the column space of A.

• If A has rank r, then A can be written as the sum
of r rank-1 matrices

• There are r “linear components” (trends) in A.
• Linear trend: the tendency of the row vectors of A to align

with vector v
• Strength of the i-th linear trend: ||𝐴𝒗𝒊|| = 𝝈𝒊

An (extreme) example

• Document-term matrix
• Blue and Red rows (colums) are linearly dependent

• There are two prototype documents (vectors of words): blue
and red
• To describe the data is enough to describe the two prototypes, and the

projection weights for each row

• A is a rank-2 matrix

𝐴 = 𝑤1, 𝑤2
𝑑1

𝑇

𝑑2
𝑇

A =

An (more realistic) example

• Document-term matrix

• There are two prototype documents and words but
they are noisy
• We now have more than two singular vectors, but the

strongest ones are still about the two types.

• By keeping the two strongest singular vectors we obtain most
of the information in the data.

• This is a rank-2 approximation of the matrix A

A =

Rank-k approximations (Ak)

Uk (Vk): orthogonal matrix containing the top k left (right)

singular vectors of A.

k: diagonal matrix containing the top k singular values of A

Ak is an approximation of A

n x d n x k k x k k x d

Ak is the best approximation of A

SVD as an optimization

• The rank-k approximation matrix 𝐴𝑘 produced by

the top-k singular vectors of A minimizes the

Frobenious norm of the difference with the matrix

A

𝐴𝑘 = arg max
𝐵:𝑟𝑎𝑛𝑘 𝐵 =𝑘

𝐴 − 𝐵 𝐹
2

𝐴 − 𝐵 𝐹
2 = 𝐴𝑖𝑗 − 𝐵𝑖𝑗

2

𝑖,𝑗

What does this mean?

• We can project the row (and column) vectors of

the matrix A into a k-dimensional space and

preserve most of the information

• (Ideally) The k dimensions reveal latent

features/aspects/topics of the term (document)

space.

• (Ideally) The 𝐴𝑘 approximation of matrix A,

contains all the useful information, and what is

discarded is noise

Latent factor model

• Rows (columns) are linear combinations of k

latent factors

• E.g., in our extreme document example there are two

factors

• Some noise is added to this rank-k matrix

resulting in higher rank

• SVD retrieves the latent factors (hopefully).

A VT  U =

objects

features

significant

noise
n
o
is

e
 noise

s
ig

n
if
ic

a
n
t

sig.

=

SVD and Rank-k approximations

Application: Recommender systems

• Data: Users rating movies
• Sparse and often noisy

• Assumption: There are k basic user profiles, and
each user is a linear combination of these profiles
• E.g., action, comedy, drama, romance

• Each user is a weighted cobination of these profiles

• The “true” matrix has rank k

• What we observe is a noisy, and incomplete version
of this matrix 𝐴
• The rank-k approximation 𝐴 𝑘 is provably close to 𝐴𝑘

• Algorithm: compute 𝐴 𝑘 and predict for user 𝑢 and
movie 𝑚, the value 𝐴 𝑘[𝑚, 𝑢].
• Model-based collaborative filtering

SVD and PCA

• PCA is a special case of SVD on the centered

covariance matrix.

Covariance matrix

• Goal: reduce the dimensionality while preserving the

“information in the data”

• Information in the data: variability in the data

• We measure variability using the covariance matrix.

• Sample covariance of variables X and Y

 𝑥𝑖 − 𝜇𝑋
𝑇(𝑦𝑖 − 𝜇𝑌)

𝑖

• Given matrix A, remove the mean of each column

from the column vectors to get the centered matrix C

• The matrix 𝑉 = 𝐶𝑇𝐶 is the covariance matrix of the

row vectors of A.

PCA: Principal Component Analysis

• We will project the rows of matrix A into a new set

of attributes (dimensions) such that:

• The attributes have zero covariance to each other (they

are orthogonal)

• Each attribute captures the most remaining variance in

the data, while orthogonal to the existing attributes

• The first attribute should capture the most variance in the data

• For matrix C, the variance of the rows of C when

projected to vector x is given by 𝜎2 = 𝐶𝑥
2

• The right singular vector of C maximizes 𝜎2!

4.0 4.5 5.0 5.5 6.0
2

3

4

5

PCA

Input: 2-d dimensional points

Output:

1st (right)

singular vector

1st (right) singular vector:

direction of maximal variance,

2nd (right)

singular

vector

2nd (right) singular vector:
direction of maximal variance,

after removing the projection of

the data along the first singular

vector.

Singular values

1: measures how much of the

data variance is explained by

the first singular vector.

2: measures how much of the

data variance is explained by

the second singular vector.
1

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st (right)

singular vector

2nd (right)

singular

vector

Singular values tell us something about

the variance
• The variance in the direction of the k-th principal

component is given by the corresponding singular value

σk
2

• Singular values can be used to estimate how many

components to keep

• Rule of thumb: keep enough to explain 85% of the

variation:

85.0

1

2

1

2











n

j

j

k

j

j





Example

𝐴 =

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

𝐴 = 𝑈Σ𝑉𝑇

• First right singular vector 𝑣1
• More or less same weight to all drugs

• Discriminates heavy from light users

• Second right singular vector
• Positive values for legal drugs, negative for illegal

students

drugs

legal illegal

𝑎𝑖𝑗: usage of student i of drug j

Drug 2

Drug 1

Another property of PCA/SVD

• The chosen vectors are such that minimize the sum of square
differences between the data vectors and the low-dimensional
projections

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st (right)

singular vector

Application

• Latent Semantic Indexing (LSI):

• Apply PCA on the document-term matrix, and index the

k-dimensional vectors

• When a query comes, project it onto the k-dimensional

space and compute cosine similarity in this space

• Principal components capture main topics, and enrich

the document representation

SVD is “the Rolls-Royce and the Swiss
Army Knife of Numerical Linear

Algebra.”*

*Dianne O’Leary, MMDS ’06

