DATA MINING LECTURE 8

Dimensionality Reduction PCA -- SVD

The curse of dimensionality

- Real data usually have thousands, or millions of dimensions
- E.g., web documents, where the dimensionality is the vocabulary of words
- Facebook graph, where the dimensionality is the number of users
- Huge number of dimensions causes problems
- Data becomes very sparse, some algorithms become meaningless (e.g. density based clustering)
- The complexity of several algorithms depends on the dimensionality and they become infeasible.

Dimensionality Reduction

- Usually the data can be described with fewer dimensions, without losing much of the meaning of the data.
- The data reside in a space of lower dimensionality
- Essentially, we assume that some of the data is noise, and we can approximate the useful part with a lower dimensionality space.
- Dimensionality reduction does not just reduce the amount of data, it often brings out the useful part of the data

Dimensionality Reduction

- We have already seen a form of dimensionality reduction
- LSH, and random projections reduce the dimension while preserving the distances

Data in the form of a matrix

- We are given n objects and d attributes describing the objects. Each object has d numeric values describing it.
- We will represent the data as a $n \times d$ real matrix A.
- We can now use tools from linear algebra to process the data matrix
- Our goal is to produce a new $n \times k$ matrix B such that
- It preserves as much of the information in the original matrix A as possible
- It reveals something about the structure of the data in A

Example: Document matrices

d terms
 (e.g., theorem, proof, etc.)

n

documents

Find subsets of terms that bring documents together

Example: Recommendation systems

d movies

Find subsets of movies that capture the behavior or the customers

Linear algebra

- We assume that vectors are column vectors.
- We use v^{T} for the transpose of vector v (row vector)
- Dot product: $u^{T} v(1 \times n, n \times 1 \rightarrow 1 \times 1)$
- The dot product is the projection of vector v on u (and vice versa)
- $[1,2,3]\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]=12$
- $u^{T} v=\|v\|\|u\| \cos (u, v)$
- If $\|u\|=1$ (unit vector) then $u^{T} v$ is the projection length of v on u
- $[-1,2,3]\left[\begin{array}{c}4 \\ -1 \\ 2\end{array}\right]=0 \quad$ orthogonal vectors
- Orthonormal vectors: two unit vectors that are orthogonal

Matrices

- An $n \times m$ matrix A is a collection of n row vectors and m column vectors

$$
A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
a_{1} & a_{2} & a_{3} \\
\mid & \mid & \mid
\end{array}\right] \quad A=\left[\begin{array}{lll}
- & \alpha_{1}^{T} & - \\
- & \alpha_{2}^{T} & - \\
- & \alpha_{3}^{T} & -
\end{array}\right]
$$

- Matrix-vector multiplication
- Right multiplication $A u$: projection of u onto the row vectors of A, or projection of row vectors of A onto u.
- Left-multiplication $u^{T} A$: projection of u onto the column vectors of A, or projection of column vectors of A onto u
- Example:

$$
[1,2,3]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]=[1,2]
$$

Rank

- Row space of A: The set of vectors that can be written as a linear combination of the rows of A
- All vectors of the form $v=u^{T} A$
- Column space of A: The set of vectors that can be written as a linear combination of the columns of A
- All vectors of the form $v=A u$.
- Rank of A: the number of linearly independent row (or column) vectors
- These vectors define a basis for the row (or column) space of A

Rank-1 matrices

- In a rank-1 matrix, all columns (or rows) are multiples of the same column (or row) vector

$$
A=\left[\begin{array}{lll}
1 & 2 & -1 \\
2 & 4 & -2 \\
3 & 6 & -3
\end{array}\right]
$$

- All rows are multiples of $r=[1,2,-1]$
- All columns are multiples of $c=[1,2,3]^{T}$
- External product: $u v^{T}(n \times 1,1 \times m \rightarrow n \times m)$
- The resulting $n \times m$ has rank 1 : all rows (or columns) are linearly dependent
- $A=r c^{T}$

Eigenvectors

- (Right) Eigenvector of matrix A: a vector v such that $A v=\lambda v$
- λ : eigenvalue of eigenvector v
- A square matrix A of rank r, has r orthonormal eigenvectors $u_{1}, u_{2}, \ldots, u_{r}$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$.
- Eigenvectors define an orthonormal basis for the column space of A

Singular Value Decomposition

$$
\begin{aligned}
& A=\begin{array}{lll}
A & \Sigma & V^{T}=\left[u_{1}, u_{2}, \cdots, u_{r}\right]
\end{array}\left[\begin{array}{ccccc}
\sigma_{1} & & & & \\
& \sigma_{2} & & & \\
& & \ddots & \\
& 0 & & & \sigma_{r}
\end{array}\right]\left[\begin{array}{c}
v_{1}^{T} \\
v_{2}^{T} \\
\vdots \\
v_{r}^{T}
\end{array}\right] \\
& \quad \begin{array}{lll}
{[n \times r][r \times r] \quad[r \times m]}
\end{array} \\
& \quad \text { : rank of matrix A }
\end{aligned}
$$

- $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$: singular values of matrix A (also, the square roots of eigenvalues of $A A^{T}$ and $A^{T} A$)
- $u_{1}, u_{2}, \ldots, u_{r}$: left singular vectors of A (also eigenvectors of $A A^{T}$)
- $v_{1}, v_{2}, \ldots, v_{r}$: right singular vectors of A (also, eigenvectors of $A^{T} A$)

$$
A=\sigma_{1} u_{1} v_{1}^{T}+\sigma_{2} u_{2} v_{2}^{T}+\cdots+\sigma_{r} u_{r} v_{r}^{T}
$$

Symmetric matrices

- Special case: A is symmetric positive definite matrix

$$
A=\lambda_{1} u_{1} u_{1}^{T}+\lambda_{2} u_{2} u_{2}^{T}+\cdots+\lambda_{r} u_{r} u_{r}^{T}
$$

- $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r} \geq 0$: Eigenvalues of A
- $u_{1}, u_{2}, \ldots, u_{r}$: Eigenvectors of A

Singular Value Decomposition

- The left singular vectors are an orthonormal basis for the row space of A .
- The right singular vectors are an orthonormal basis for the column space of A .
- If A has rank r, then A can be written as the sum of r rank-1 matrices
- There are r "linear components" (trends) in A.
- Linear trend: the tendency of the row vectors of A to align with vector v
- Strength of the i-th linear trend: $\left\|A v_{i}\right\|=\sigma_{i}$

An (extreme) example

- Document-term matrix
- Blue and Red rows (colums) are linearly dependent

- There are two prototype documents (vectors of words): blue and red
- To describe the data is enough to describe the two prototypes, and the projection weights for each row
- A is a rank- 2 matrix

$$
A=\left[w_{1}, w_{2}\right]\left[\begin{array}{l}
d_{1}^{T} \\
d_{2}^{T}
\end{array}\right]
$$

An (more realistic) example

- Document-term matrix

- There are two prototype documents and words but they are noisy
- We now have more than two singular vectors, but the strongest ones are still about the two types.
- By keeping the two strongest singular vectors we obtain most of the information in the data.
- This is a rank-2 approximation of the matrix A

Rank-k approximations $\left(A_{k}\right)$

$\mathrm{U}_{\mathrm{k}}\left(\mathrm{V}_{\mathrm{k}}\right)$: orthogonal matrix containing the top k left (right) singular vectors of A.
Σ_{k} : diagonal matrix containing the top k singular values of A
A_{k} is an approximation of A

SVD as an optimization

- The rank-k approximation matrix A_{k} produced by the top-k singular vectors of A minimizes the Frobenious norm of the difference with the matrix A

$$
\begin{gathered}
A_{k}=\arg \max _{B: \operatorname{rank}(B)=k}\|A-B\|_{F}^{2} \\
\|A-B\|_{F}^{2}=\sum_{i, j}\left(A_{i j}-B_{i j}\right)^{2}
\end{gathered}
$$

What does this mean?

- We can project the row (and column) vectors of the matrix A into a k-dimensional space and preserve most of the information
- (Ideally) The k dimensions reveal latent features/aspects/topics of the term (document) space.
- (Ideally) The A_{k} approximation of matrix A, contains all the useful information, and what is discarded is noise

Latent factor model

- Rows (columns) are linear combinations of k latent factors
- E.g., in our extreme document example there are two factors
- Some noise is added to this rank-k matrix resulting in higher rank
- SVD retrieves the latent factors (hopefully).

SVD and Rank-k approximations

$\mathbf{A}=\mathbf{U} \quad \Sigma \quad \mathbf{V}^{\top}$

Application: Recommender systems

- Data: Users rating movies
- Sparse and often noisy
- Assumption: There are k basic user profiles, and each user is a linear combination of these profiles
- E.g., action, comedy, drama, romance
- Each user is a weighted cobination of these profiles
- The "true" matrix has rank k
- What we observe is a noisy, and incomplete version of this matrix \tilde{A}
- The rank-k approximation \tilde{A}_{k} is provably close to A_{k}
- Algorithm: compute \tilde{A}_{k} and predict for user u and movie m, the value $\tilde{A}_{k}[m, u]$.
- Model-based collaborative filtering

SVD and PCA

- PCA is a special case of SVD on the centered covariance matrix.

Covariance matrix

- Goal: reduce the dimensionality while preserving the "information in the data"
- Information in the data: variability in the data
- We measure variability using the covariance matrix.
- Sample covariance of variables X and Y

$$
\sum_{i}\left(x_{i}-\mu_{X}\right)^{T}\left(y_{i}-\mu_{Y}\right)
$$

- Given matrix A, remove the mean of each column from the column vectors to get the centered matrix C
- The matrix $V=C^{T} C$ is the covariance matrix of the row vectors of A .

PCA: Principal Component Analysis

- We will project the rows of matrix A into a new set of attributes (dimensions) such that:
- The attributes have zero covariance to each other (they are orthogonal)
- Each attribute captures the most remaining variance in the data, while orthogonal to the existing attributes
- The first attribute should capture the most variance in the data
- For matrix C, the variance of the rows of C when projected to vector x is given by $\sigma^{2}=\|C x\|^{2}$
- The right singular vector of C maximizes σ^{2} !

PCA

Input: 2-d dimensional points

Output:

1st (right) singular vector: direction of maximal variance,

2nd (right) singular vector: direction of maximal variance, after removing the projection of the data along the first singular vector.

Singular values

σ_{1} : measures how much of the data variance is explained by the first singular vector.
σ_{2} : measures how much of the data variance is explained by the second singular vector.

Singular values tell us something about the variance

- The variance in the direction of the k-th principal component is given by the corresponding singular value $\sigma_{\mathrm{k}}{ }^{2}$
- Singular values can be used to estimate how many components to keep
- Rule of thumb: keep enough to explain 85\% of the variation:

$$
\frac{\sum_{j=1}^{n} \sigma_{j}^{2}}{\sum_{j=1}^{n} \sigma_{j}^{2}} \approx 0.85
$$

Example

$$
\begin{aligned}
& \text { drugs } \\
& A=\left[\begin{array}{ccc}
a_{11} & \cdots \cdot & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right] \text { students } \\
& \text { legal illegal } \\
& a_{i j} \text { : usage of student } \mathrm{i} \text { of drug } \mathrm{j} \\
& A=U \Sigma V^{T}
\end{aligned}
$$

- First right singular vector v_{1}
- More or less same weight to all drugs
- Discriminates heavy from light users
- Second right singular vector

Another property of PCA/SVD

- The chosen vectors are such that minimize the sum of square differences between the data vectors and the low-dimensional projections

Application

- Latent Semantic Indexing (LSI):
- Apply PCA on the document-term matrix, and index the k-dimensional vectors
- When a query comes, project it onto the k-dimensional space and compute cosine similarity in this space
- Principal components capture main topics, and enrich the document representation

SVD is "the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra."*
*Dianne O'Leary, MMDS '06

