DATA MINING LECTURE 8

Dimensionality Reduction PCA -- SVD

The curse of dimensionality

- Real data usually have thousands, or millions of dimensions
 - E.g., web documents, where the dimensionality is the vocabulary of words
 - Facebook graph, where the dimensionality is the number of users
- Huge number of dimensions causes problems
 - Data becomes very sparse, some algorithms become meaningless (e.g. density based clustering)
 - The complexity of several algorithms depends on the dimensionality and they become infeasible.

Dimensionality Reduction

- Usually the data can be described with fewer dimensions, without losing much of the meaning of the data.
 - The data reside in a space of lower dimensionality
- Essentially, we assume that some of the data is noise, and we can approximate the useful part with a lower dimensionality space.
 - Dimensionality reduction does not just reduce the amount of data, it often brings out the useful part of the data

Dimensionality Reduction

- We have already seen a form of dimensionality reduction
- LSH, and random projections reduce the dimension while preserving the distances

Data in the form of a matrix

- We are given n objects and d attributes describing the objects. Each object has d numeric values describing it.
- We will represent the data as a $n \times d$ real matrix A.
 - We can now use tools from linear algebra to process the data matrix
- Our goal is to produce a new n×k matrix B such that
 - It preserves as much of the information in the original matrix A as possible
 - It reveals something about the structure of the data in A

Example: Document matrices

Find subsets of terms that bring documents together

Example: Recommendation systems

Find subsets of movies that capture the behavior or the customers

Linear algebra

- We assume that vectors are column vectors.
- We use v^T for the transpose of vector v (row vector)
- Dot product: $u^T v$ (1×*n*, *n*×1 \rightarrow 1×1)
 - The dot product is the projection of vector v on u (and vice versa)

•
$$\begin{bmatrix} 1, 2, 3 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} = 12$$

•
$$u^T v = ||v|| ||u|| \cos(u, v)$$

• If ||u|| = 1 (unit vector) then $u^T v$ is the projection length of v on u

$$\begin{bmatrix} -1, 2, 3 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} = 0$$
 orthogonal vectors

Orthonormal vectors: two unit vectors that are orthogonal

Matrices

An n×m matrix A is a collection of n row vectors and m column vectors

$$A = \begin{bmatrix} | & | & | \\ a_1 & a_2 & a_3 \\ | & | & | \end{bmatrix} \qquad A = \begin{bmatrix} - & \alpha_1^T & - \\ - & \alpha_2^T & - \\ - & \alpha_3^T & - \end{bmatrix}$$

- Matrix-vector multiplication
 - Right multiplication Au: projection of u onto the row vectors of A, or projection of row vectors of A onto u.
 - Left-multiplication $u^T A$: projection of u onto the column vectors of A, or projection of column vectors of A onto u
- Example:

$$[1,2,3] \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = [1,2]$$

Rank

 Row space of A: The set of vectors that can be written as a linear combination of the rows of A

• All vectors of the form $v = u^T A$

 Column space of A: The set of vectors that can be written as a linear combination of the columns of A

• All vectors of the form v = Au.

- Rank of A: the number of linearly independent row (or column) vectors
 - These vectors define a basis for the row (or column) space of A

Rank-1 matrices

 In a rank-1 matrix, all columns (or rows) are multiples of the same column (or row) vector

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ 3 & 6 & -3 \end{bmatrix}$$

- All rows are multiples of r = [1, 2, -1]
- All columns are multiples of $c = [1,2,3]^T$
- External product: uv^T ($n \times 1$, $1 \times m \rightarrow n \times m$)
 - The resulting n×m has rank 1: all rows (or columns) are linearly dependent

•
$$A = rc^T$$

Eigenvectors

- (Right) Eigenvector of matrix A: a vector v such that $Av = \lambda v$
- λ : eigenvalue of eigenvector v
- A square matrix A of rank r, has r orthonormal eigenvectors $u_1, u_2, ..., u_r$ with eigenvalues $\lambda_1, \lambda_2, ..., \lambda_r$.
- Eigenvectors define an orthonormal basis for the column space of A

Singular Value Decomposition

$$A = U \Sigma V^{T} = \begin{bmatrix} u_{1}, u_{2}, \cdots, u_{r} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & 0 \\ & \sigma_{2} & \\ & & \ddots & \\ 0 & & \ddots & \\ & & & \sigma_{r} \end{bmatrix} \begin{bmatrix} v_{1}^{T} \\ v_{2}^{T} \\ \vdots \\ v_{r}^{T} \end{bmatrix}$$

r: rank of matrix A

• $\sigma_1, \geq \sigma_2 \geq \cdots \geq \sigma_r$: singular values of matrix *A* (also, the square roots of eigenvalues of AA^T and A^TA)

m

- $u_1, u_2, ..., u_r$: left singular vectors of A (also eigenvectors of AA^T)
- $v_1, v_2, ..., v_r$: right singular vectors of A (also, eigenvectors of $A^T A$)

$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_r u_r v_r^T$$

Symmetric matrices

 Special case: A is symmetric positive definite matrix

$$A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \dots + \lambda_r u_r u_r^T$$

• $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r \ge 0$: Eigenvalues of A • u_1, u_2, \dots, u_r : Eigenvectors of A

Singular Value Decomposition

- The left singular vectors are an orthonormal basis for the row space of A.
- The right singular vectors are an orthonormal basis for the column space of A.
- If A has rank r, then A can be written as the sum of r rank-1 matrices
- There are r "linear components" (trends) in A.
 - Linear trend: the tendency of the row vectors of A to align with vector v
 - Strength of the i-th linear trend: $||Av_i|| = \sigma_i$

An (extreme) example

- Document-term matrix
 - Blue and Red rows (colums) are linearly dependent

- There are two prototype documents (vectors of words): blue and red
 - To describe the data is enough to describe the two prototypes, and the projection weights for each row
- A is a rank-2 matrix

$$A = \begin{bmatrix} w_1, w_2 \end{bmatrix} \begin{bmatrix} d_1^T \\ d_2^T \end{bmatrix}$$

An (more realistic) example

Document-term matrix

- There are two prototype documents and words but they are noisy
 - We now have more than two singular vectors, but the strongest ones are still about the two types.
 - By keeping the two strongest singular vectors we obtain most of the information in the data.
 - This is a rank-2 approximation of the matrix A

 U_k (V_k): orthogonal matrix containing the top k left (right) singular vectors of A.

 Σ_k : diagonal matrix containing the top k singular values of A

 A_k is an approximation of A

Ak is the **best** approximation of A

SVD as an optimization

 The rank-k approximation matrix A_k produced by the top-k singular vectors of A minimizes the Frobenious norm of the difference with the matrix A

$$A_{k} = \arg \max_{\substack{B:rank(B)=k}} ||A - B||_{F}^{2}$$
$$||A - B||_{F}^{2} = \sum_{i,j} (A_{ij} - B_{ij})^{2}$$

What does this mean?

- We can project the row (and column) vectors of the matrix A into a k-dimensional space and preserve most of the information
- (Ideally) The k dimensions reveal latent features/aspects/topics of the term (document) space.
- (Ideally) The A_k approximation of matrix A, contains all the useful information, and what is discarded is noise

Latent factor model

- Rows (columns) are linear combinations of k latent factors
 - E.g., in our extreme document example there are two factors
- Some noise is added to this rank-k matrix resulting in higher rank
- SVD retrieves the latent factors (hopefully).

SVD and Rank-k approximations

Application: Recommender systems

- Data: Users rating movies
 - Sparse and often noisy
- Assumption: There are k basic user profiles, and each user is a linear combination of these profiles
 - E.g., action, comedy, drama, romance
 - Each user is a weighted cobination of these profiles
 - The "true" matrix has rank k
- What we observe is a noisy, and incomplete version of this matrix \tilde{A}
 - The rank-k approximation \tilde{A}_k is provably close to A_k
- Algorithm: compute \tilde{A}_k and predict for user u and movie m, the value $\tilde{A}_k[m, u]$.
 - Model-based collaborative filtering

SVD and PCA

 PCA is a special case of SVD on the centered covariance matrix.

Covariance matrix

- Goal: reduce the dimensionality while preserving the "information in the data"
- Information in the data: variability in the data
 - We measure variability using the covariance matrix.
 - Sample covariance of variables X and Y

$$\sum_{i} (x_i - \mu_X)^T (y_i - \mu_Y)$$

- Given matrix A, remove the mean of each column from the column vectors to get the centered matrix C
- The matrix $V = C^T C$ is the covariance matrix of the row vectors of A.

PCA: Principal Component Analysis

- We will project the rows of matrix A into a new set of attributes (dimensions) such that:
 - The attributes have zero covariance to each other (they are orthogonal)
 - Each attribute captures the most remaining variance in the data, while orthogonal to the existing attributes
 - The first attribute should capture the most variance in the data
- For matrix C, the variance of the rows of C when projected to vector x is given by $\sigma^2 = ||Cx||^2$
 - The right singular vector of C maximizes σ^2 !

PCA

Input: 2-d dimensional points

Output:

1st (right) singular vector: direction of maximal variance,

2nd (right) singular vector:

direction of maximal variance, after removing the projection of the data along the first singular vector.

Singular values

 σ_1 : measures how much of the data variance is explained by the first singular vector.

 σ_2 : measures how much of the data variance is explained by the second singular vector.

Singular values tell us something about the variance

- The variance in the direction of the k-th principal component is given by the corresponding singular value $\sigma_k{}^2$
- Singular values can be used to estimate how many components to keep
- **Rule of thumb:** keep enough to explain **85%** of the variation: $\sum_{j=1}^{2} \sigma_{j}^{2}$

$$\frac{\sum_{j=1}^{n} \sigma_{j}^{2}}{\sum_{i=1}^{n} \sigma_{j}^{2}} \approx 0.85$$

Example

- First right singular vector v_1
 - More or less same weight to all drugs
 - Discriminates heavy from light users
- Second right singular vector
 - Positive values for legal drugs, negative for illegal

Another property of PCA/SVD

 The chosen vectors are such that minimize the sum of square differences between the data vectors and the low-dimensional projections

Application

• Latent Semantic Indexing (LSI):

- Apply PCA on the document-term matrix, and index the k-dimensional vectors
- When a query comes, project it onto the k-dimensional space and compute cosine similarity in this space
- Principal components capture main topics, and enrich the document representation

SVD is "the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra."* *Dianne O'Leary, MMDS '06