
DATA MINING 

LECTURE 8 
Dimensionality Reduction 

PCA -- SVD 



The curse of dimensionality 

• Real data usually have thousands, or millions of 

dimensions 

• E.g., web documents, where the dimensionality is the 

vocabulary of words 

• Facebook graph, where the dimensionality is the 

number of users 

• Huge number of dimensions causes problems 

• Data becomes very sparse, some algorithms become 

meaningless (e.g. density based clustering) 

• The complexity of several algorithms depends on the 

dimensionality and they become infeasible. 



Dimensionality Reduction 

• Usually the data can be described with fewer 

dimensions, without losing much of the meaning 

of the data. 

• The data reside in a space of lower dimensionality 

 

• Essentially, we assume that some of the data is 

noise, and we can approximate the useful part 

with a lower dimensionality space. 

• Dimensionality reduction does not just reduce the 

amount of data, it often brings out the useful part of the 

data 



Dimensionality Reduction 

• We have already seen a form of dimensionality 

reduction 

 

• LSH, and random projections reduce the 

dimension while preserving the distances 



Data in the form of a matrix 

• We are given n objects and d attributes describing 
the objects. Each object has d numeric values 
describing it. 

 

• We will represent the data as a nd real matrix A. 
• We can now use tools from linear algebra to process the 

data matrix 

 

• Our goal is to produce a new nk matrix B such that 
• It preserves as much of the information in the original matrix 

A as possible 

• It reveals something about the structure of the data in A 



Example: Document matrices 

n 

documents 

d terms  

(e.g., theorem, proof, etc.) 

Aij = frequency of the j-th 

term in the i-th document 

Find  subsets of terms that bring documents 

together 



Example: Recommendation systems 

n 

customers 

d movies 

 

Aij = rating of j-th  

product by the i-th 

customer 

Find subsets of movies that capture the 

behavior or the customers 



Linear algebra 

• We assume that vectors are column vectors.  

• We use 𝑣𝑇 for the transpose of vector 𝑣 (row vector) 

• Dot product: 𝑢𝑇𝑣 (1𝑛, 𝑛1 →  11)  
• The dot product is the projection of vector 𝑣 on 𝑢 (and vice versa) 

• 1, 2, 3
4
1
2

= 12  

• 𝑢𝑇𝑣 = 𝑣 𝑢 cos(𝑢, 𝑣) 
 

• If ||𝑢||  =  1 (unit vector) then 𝑢𝑇𝑣 is the projection length of 𝑣 on 𝑢 

 

• −1, 2, 3
4

−1
2

= 0 orthogonal vectors 

 

• Orthonormal vectors: two unit vectors that are orthogonal 



Matrices 

• An nm matrix A is a collection of n row vectors and m column 
vectors 

 𝐴 =  
| | |

𝑎1 𝑎2 𝑎3

| | |
 𝐴 =  

− 𝛼1
𝑇 −

− 𝛼2
𝑇 −

− 𝛼3
𝑇 −

 

 

• Matrix-vector multiplication 
• Right multiplication 𝐴𝑢: projection of u onto the row vectors of 𝐴, or 

projection of row vectors of 𝐴 onto 𝑢. 

• Left-multiplication 𝑢𝑇𝐴: projection of 𝑢 onto the column vectors of 𝐴, or 
projection of column vectors of 𝐴 onto 𝑢 

• Example: 

1,2,3
1 0
0 1
0 0

= [1,2] 



Rank 

• Row space of A: The set of vectors that can be 
written as a linear combination of the rows of A 
• All vectors of the form 𝑣 = 𝑢𝑇𝐴 

 

• Column space of A: The set of vectors that can be 
written as a linear combination of the columns of A 
• All vectors of the form 𝑣 = 𝐴𝑢. 

 

• Rank of A: the number of linearly independent row (or 
column) vectors 
• These vectors define a basis for the row (or column) space 

of A 



Rank-1 matrices 

• In a rank-1 matrix, all columns (or rows) are 

multiples of the same column (or row) vector 

𝐴 =  
1 2 −1
2 4 −2
3 6 −3

 

• All rows are multiples of 𝑟 = [1,2, −1] 

• All columns are multiples of 𝑐 =  1,2,3 𝑇 

• External product: 𝑢𝑣𝑇 (𝑛1 , 1𝑚 →  𝑛𝑚)  

• The resulting 𝑛𝑚 has rank 1: all rows (or columns) are 

linearly dependent 

• 𝐴 = 𝑟𝑐𝑇 



Eigenvectors 

• (Right) Eigenvector of matrix A: a vector v such 

that 𝐴𝑣 = 𝜆𝑣 

• 𝜆: eigenvalue of eigenvector 𝑣 

 

• A square matrix A of rank r, has r orthonormal 

eigenvectors 𝑢1, 𝑢2, … , 𝑢𝑟 with eigenvalues 

𝜆1, 𝜆2, … , 𝜆𝑟. 

• Eigenvectors define an orthonormal basis for the 

column space of A 



Singular Value Decomposition 

𝐴 = 𝑈   Σ   𝑉𝑇 = 𝑢1, 𝑢2, ⋯ , 𝑢𝑟

𝜎1

𝜎2
0

0
⋱

𝜎𝑟

𝑣1
𝑇

𝑣2
𝑇

⋮
𝑣𝑟

𝑇

 

 

 
• 𝜎1, ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟: singular values of matrix 𝐴 (also, the square roots 

of eigenvalues of 𝐴𝐴𝑇 and 𝐴𝑇𝐴) 

 
• 𝑢1, 𝑢2, … , 𝑢𝑟: left singular vectors of 𝐴 (also eigenvectors of 𝐴𝐴𝑇) 

 
• 𝑣1, 𝑣2, … , 𝑣𝑟: right singular vectors of 𝐴 (also, eigenvectors of 𝐴𝑇𝐴) 

 
𝐴 = 𝜎1𝑢1𝑣1

𝑇 + 𝜎2𝑢2𝑣2
𝑇 + ⋯ + 𝜎𝑟𝑢𝑟𝑣𝑟

𝑇 

[n×r] [r×r] [r×m] 

r: rank of matrix A 

[n×m] = 



Symmetric matrices 

• Special case: A is symmetric positive definite 

matrix 

 
𝐴 = 𝜆1𝑢1𝑢1

𝑇 + 𝜆2𝑢2𝑢2
𝑇 + ⋯ + 𝜆𝑟𝑢𝑟𝑢𝑟

𝑇 

 

• 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑟 ≥ 0: Eigenvalues of A 

• 𝑢1, 𝑢2, … , 𝑢𝑟: Eigenvectors of A 



Singular Value Decomposition 

• The left singular vectors are an orthonormal basis 
for the row space of A. 

• The right singular vectors are an orthonormal 
basis for the column space of A. 

 

• If A has rank r, then A can be written as the sum 
of r rank-1 matrices 

 

• There are r “linear components” (trends) in A. 
• Linear trend: the tendency of the row vectors of A to align 

with vector v 
• Strength of the i-th linear trend: ||𝐴𝒗𝒊||  = 𝝈𝒊 

 



An (extreme) example 

• Document-term matrix 
• Blue and Red rows (colums) are linearly dependent  

 

 

 

 

 

• There are two prototype documents (vectors of words): blue 
and red 
• To describe the data is enough to describe the two prototypes, and the 

projection weights for each row 

 

• A is a rank-2 matrix 

𝐴 =  𝑤1, 𝑤2
𝑑1

𝑇

𝑑2
𝑇  

A =  



An (more realistic) example 

• Document-term matrix 

 

 

 

 

• There are two prototype documents and words but 
they are noisy 
• We now have more than two singular vectors, but the 

strongest ones are still about the two types. 

• By keeping the two strongest singular vectors we obtain most 
of the information in the data. 

• This is a rank-2 approximation of the matrix A 

A =  



Rank-k approximations (Ak) 

Uk (Vk): orthogonal matrix containing the top k left (right) 

singular vectors of A. 

k: diagonal matrix containing the top k singular values of A 

 

Ak is an approximation of A 

n x d n x k k x k k x d 

Ak is the best approximation of A 



SVD as an optimization 

• The rank-k approximation matrix 𝐴𝑘 produced by 

the top-k singular vectors of A minimizes the 

Frobenious norm of the difference with the matrix 

A 

𝐴𝑘 = arg max
𝐵:𝑟𝑎𝑛𝑘 𝐵 =𝑘

𝐴 − 𝐵 𝐹
2  

𝐴 − 𝐵 𝐹
2 =  𝐴𝑖𝑗 − 𝐵𝑖𝑗

2

𝑖,𝑗

 



What does this mean? 

• We can project the row (and column) vectors of 

the matrix A into a k-dimensional space and 

preserve most of the information 

• (Ideally) The k dimensions reveal latent 

features/aspects/topics of the term (document) 

space. 

• (Ideally) The 𝐴𝑘 approximation of matrix A, 

contains all the useful information, and what is 

discarded is noise 



Latent factor model  

• Rows (columns) are linear combinations of k 

latent factors 

• E.g., in our extreme document example there are two 

factors 

• Some noise is added to this rank-k matrix 

resulting in higher rank 

 

• SVD retrieves the latent factors (hopefully). 



A VT  U = 

objects 

features 

significant 

noise 
n
o
is

e
 noise 

s
ig

n
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a
n
t 

sig. 

= 

SVD and Rank-k  approximations  



Application: Recommender systems 

• Data: Users rating movies 
• Sparse and often noisy 

• Assumption: There are k basic user profiles, and 
each user is a linear combination of these profiles 
• E.g., action, comedy, drama, romance 

• Each user is a weighted cobination of these profiles 

• The “true” matrix has rank k 

• What we observe is a noisy, and incomplete version 
of this matrix 𝐴  
• The rank-k approximation 𝐴 𝑘 is provably close to 𝐴𝑘 

• Algorithm: compute 𝐴 𝑘 and predict for user 𝑢 and 
movie 𝑚, the value 𝐴 𝑘[𝑚, 𝑢]. 
• Model-based collaborative filtering 

 



SVD and PCA 

• PCA is a special case of SVD on the centered 

covariance matrix. 



Covariance matrix 

• Goal: reduce the dimensionality while preserving the 

“information in the data” 

• Information in the data: variability in the data 

• We measure variability using the covariance matrix. 

• Sample covariance of variables X and Y  

 𝑥𝑖 − 𝜇𝑋
𝑇(𝑦𝑖 − 𝜇𝑌)

𝑖

 

• Given matrix A, remove the mean of each column 

from the column vectors to get the centered matrix C 

• The matrix 𝑉 =  𝐶𝑇𝐶 is the covariance matrix of the 

row vectors of A. 



PCA: Principal Component Analysis 

• We will project the rows of matrix A into a new set 

of attributes (dimensions) such that: 

• The attributes have zero covariance to each other (they 

are orthogonal) 

• Each attribute captures the most remaining variance in 

the data, while orthogonal to the existing attributes 

• The first attribute should capture the most variance in the data 

 

• For matrix C, the variance of the rows of C when 

projected to vector x is given by 𝜎2 = 𝐶𝑥
2
 

• The right singular vector of C maximizes 𝜎2! 



4.0 4.5 5.0 5.5 6.0
2

3

4

5

PCA 

Input: 2-d dimensional points 

 

Output:  
 

 

1st (right) 

singular vector 

1st (right) singular vector:  

direction of maximal variance, 

2nd (right) 

singular 

vector 

2nd (right) singular vector:  
direction of maximal variance, 

after removing the projection of 

the data along the first singular 

vector. 



Singular values 

1: measures how much of the 

data variance is explained by 

the first singular vector. 

 

2: measures how much of the 

data variance is explained by 

the second singular vector. 
1 
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1st (right) 

singular vector 

2nd (right) 

singular 

vector 



Singular values tell us something about 

the variance 
• The variance in the direction of the k-th principal 

component is given by the corresponding singular value 

σk
2 

 

• Singular values can be used to estimate how many 

components to keep 

 

• Rule of thumb: keep enough to explain 85% of the 

variation:  
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Example 

𝐴 =  

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

 

 

 

𝐴 = 𝑈Σ𝑉𝑇 

 

• First right singular vector 𝑣1 
• More or less same weight to all drugs 

• Discriminates heavy from light users 

• Second right singular vector 
• Positive values for legal drugs, negative for illegal 

students 

drugs 

legal illegal 

𝑎𝑖𝑗: usage of student i of drug j 

Drug 2 

Drug 1 



Another property of PCA/SVD 

• The chosen vectors are such that minimize the sum of square 
differences between the data vectors and the low-dimensional 
projections 
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1st (right) 

singular vector 



Application 

• Latent Semantic Indexing (LSI): 

• Apply PCA on the document-term matrix, and index the 

k-dimensional vectors 

• When a query comes, project it onto the k-dimensional 

space and compute cosine similarity in this space 

• Principal components capture main topics, and enrich 

the document representation 

 



SVD is “the Rolls-Royce and the Swiss 
Army Knife of Numerical Linear 

Algebra.”* 

*Dianne O’Leary, MMDS ’06 


