DATA MINING
LECTURE 8

Dimensionality Reduction
PCA -- SVD




The curse of dimensionality

Real data usually have thousands, or millions of

dimensions

- E.g., web documents, where the dimensionality is the
vocabulary of words

- Facebook graph, where the dimensionality is the
number of users

Huge number of dimensions causes problems

- Data becomes very sparse, some algorithms become
meaningless (e.g. density based clustering)

- The complexity of several algorithms depends on the
dimensionality and they become infeasible.



Dimensionality Reduction

Usually the data can be described with fewer
dimensions, without losing much of the meaning
of the data.

- The data reside in a space of lower dimensionality

Essentially, we assume that some of the data is
noise, and we can approximate the useful part
with a lower dimensionality space.

- Dimensionality reduction does not just reduce the
amount of data, it often brings out the useful part of the
data



Dimensionality Reduction

We have already seen a form of dimensionality
reduction

LSH, and random projections reduce the
dimension while preserving the distances



Data In the form of a matrix

We are given n objects and d attributes describing
the objects. Each object has d numeric values
describing it.

We will represent the data as a nxd real matrix A.

- We can now use tools from linear algebra to process the
data matrix

Our goal is to produce a new nxk matrix B such that

- It preserves as much of the information in the original matrix
A as possible

- It reveals something about the structure of the data in A



Example: Document matrices

d terms
(e.g., theorem, proof, etc.)

(

A

n
documents

= frequency of the |-th
\ term in the i-th document

Find subsets of terms that bring documents
together



Example: Recommendation systems

d movies

n A

customers Aij — rating of j-th

product by the i-th
\ customer /

Find subsets of movies that capture the
behavior or the customers



Linear algebra

- We assume that vectors are column vectors.

- We use v! for the transpose of vector v (row vector)
- Dot product: u"v (1xn,nx1 - 1x1)
- The dot product is the projection of vector v on u (and vice versa)

4
11,231 1] = 12
9.
- ulv = |vlllull cos(u,v) 06— __. |

- If ||u]| = 1 (unit vector) then u”v is the projection length of v on u

4
- [-1,2,3] [_1] =0 orthogonal vectors
2

- Orthonormal vectors: two unit vectors that are orthogonal




Matrices
- An nxm matrix A is a collection of n row vectors and m column
vectors
— o -
A= |la; a, aj A= |- af -
— ol -

- Matrix-vector multiplication

- Right multiplication Au: projection of u onto the row vectors of 4, or
projection of row vectors of A onto u.

- Left-multiplication u" A: projection of u onto the column vectors of 4, or
projection of column vectors of A onto u

- Example:
1 0
[1,2,3] [0 1] = [1,2]
0 0



e
Rank

Row space of A: The set of vectors that can be
written as a linear combination of the rows of A

- All vectors of the form v = u’A4

Column space of A: The set of vectors that can be
written as a linear combination of the columns of A

- All vectors of the form v = Au.

Rank of A: the number of linearly independent row (or
column) vectors

- These vectors define a basis for the row (or column) space
of A



Rank-1 matrices

In a rank-1 matrix, all columns (or rows) are
multiples of the same column (or row) vector

1 2 -1
A=12 4 =2
3 6 —3

All rows are multiples of r = 1,2, —1]
All columns are multiples of ¢ = [1,2,3]7

External product: uv’ (nx1,1xm - nxm)

- The resulting nxm has rank 1: all rows (or columns) are
linearly dependent

A =rcT



Eigenvectors

- (Right) Eigenvector of matrix A: a vector v such
that Av = Av

- 1. elgenvalue of eigenvector v

- A square matrix A of rank r, has r orthonormal
eigenvectors ., u,, ..., 1, With eigenvalues
A, Ay, i, A

- Eigenvectors define an orthonormal basis for the
column space of A



Singular Value Decomposition

_0_1 0 _v]?"_

T

A=U 32 VT = [ugup,ud| %% V2
[nxm] =[nxr] [rxr] [r<m] 0 .

r: rank of matrix A

- 01,= 0, =+ = 0, singular values of matrix A (also, the square roots
of eigenvalues of 44" and A’ A)

Uq, Uy, ..., Uy left singular vectors of A (also eigenvectors of AAT)
- Uy, V5, ..., V0 right singular vectors of A (also, eigenvectors of A7 A)

A = oqu vl + ouyvl + -+ oou, vl



Symmetric matrices

- Special case: A I1s symmetric positive definite
matrix

A= Auud + Luul + -+ Lu,ul

A =4, =+ = 1. = 0: Eigenvalues of A
U4, Uy, ..., U. EIgenvectors of A



Singular Value Decomposition

- The left singular vectors are an orthonormal basis
for the row space of A.

- The right singular vectors are an orthonormal
pasis for the column space of A.

- If A has rank r, then A can be written as the sum
of r rank-1 matrices

- There are r “linear components” (tfrends) in A.

- Linear trend: the tendency of the row vectors of A to align
with vector v

- Strength of the I-th linear trend: ||Av;|| = o;



An (extreme) example

- Document-term matrix
- Blue and Red rows (colums) are linearly dependent

A=

- There are two prototype documents (vectors of words): blue
and red

- To describe the data is enough to describe the two prototypes, and the
projection weights for each row

- A'Is a rank-2 matrix



An (more realistic) example

Document-term matrix

A =

There are two prototype documents and words but
they are noisy

- We now have more than two singular vectors, but the
strongest ones are still about the two types.

- By keeping the two strongest singular vectors we obtain most
of the information in the data.

This is a rank-2 approximation of the matrix A



Rank-k approximations (A,)

/ Vo
e
\ )\

nxd n x k k x k kxd

U, (V,): orthogonal matrix containing the top k left (right)

singular vectors of A.
2. diagonal matrix containing the top k singular values of A

A, Is an approximation of A
IS the approximation of




SVD as an optimization

- The rank-k approximation matrix A, produced by
the top-k singular vectors of A minimizes the
Frobenious norm of the difference with the matrix

A

_ . 2
Ak - argB:rar#ka()l-(?):k”A B”F

|A —Bll& = Z(Aij — Bij)2
L,j



What does this mean?

We can project the row (and column) vectors of
the matrix A into a k-dimensional space and
preserve most of the information

(Ideally) The k dimensions reveal latent
features/aspects/topics of the term (document)
space.

(Ideally) The A, approximation of matrix A,
contains all the useful information, and what is
discarded iIs noise



Latent factor model

Rows (columns) are linear combinations of k
latent factors

- E.g., In our extreme document example there are two
factors

Some noise Is added to this rank-k matrix
resulting in higher rank

SVD retrieves the latent factors (hopefully).



SVD and Rank-k approximations

A

U ) A

features

significant

|
significant
noise

objects



Application: Recommender systems

Data: Users rating movies
- Sparse and often noisy
Assumption: There are k basic user profiles, and
each user is a linear combination of these profiles
- E.g., action, comedy, drama, romance
- Each user is a weighted cobination of these profiles

- The “true” matrix has rank k

What we observe is a noisy, and incomplete version
of this matrix A

- The rank-k approximation A, is provably close to 4,

Algorithm: compute £ A, and predict for user u and
movie m, the value Ak[m ul.

- Model-based collaborative filtering



e
SVD and PCA

- PCA is a special case of SVD on the centered
covariance matrix.



Covariance matrix

Goal: reduce the dimensionality while preserving the
“Information in the data”

Information in the data: variability in the data
- We measure variability using the covariance matrix.
- Sample covariance of variables X and Y

Z(xi - MX)T(YL' — Uy)

Given matrix A, remove the mean of each column
from the column vectors to get the centered matrix C

The matrix V = CTC is the covariance matrix of the
row vectors of A.



PCA: Principal Component Analysis

We will project the rows of matrix A into a new set
of attributes (dimensions) such that:

- The attributes have zero covariance to each other (they
are orthogonal)

- Each attribute captures the most remaining variance in
the data, while orthogonal to the existing attributes
The first attribute should capture the most variance in the data

For matrix C, the variance of the rows of C when
. . . 2

projected to vector x is given by o2 = ||Cx||

- The right singular vector of C maximizes o?!



Input: 2-d dimensional points

S | | | Output:

2nd (right)

1st (right) sinqular vector:
4L Vvector - direction of maximal variance,

2nd (right) sinqular vector:
direction of maximal variance,

3 . after removing the projection of
the data along the first singular
1st (right) vector.
singular vector
2 | | |

4.0 4.5 5.0 5.5 6.0



Singular values
S l l l
2nd (right
nd (1ony o, measures how much of the
ne | data variance is explained by
the first singular vector.
o,. measures how much of the
3r 7 data variance is explained by
the second singular vector.
1st (right)
singular vector
2 | | |

4.0 4.5 5.0 5.5 6.0



Singular values tell us something about

the variance

The variance in the direction of the k-th principal

component is given by the corresponding singular value
o’

Singular values can be used to estimate how many
components to keep

Rule of thumb: keep enough to explain 85% of the

- ] 2

variation: 21 o
J_

n
2
2.9
j=1

~ 0.85




Example

A= . T . students

legal illegal
a;;. usage of student | of drug j

A=U0xVT

Drug 1
First right singular vector v, 1 o
- More or less same weight to all drugs
- Discriminates heavy from light users P

Second right singular vector
- Positive values for legal drugs, negative for illegal




-
Another property of PCA/SVD

- The chosen vectors are such that minimize the sum of square
differences between the data vectors and the low-dimensional

projections
S l l l
4_ —
3 - —
1st (right)
singular vector
2 | | |

4.0 4.5 5.0 5.5 6.0



-
Application

- Latent Semantic Indexing (LSI):

- Apply PCA on the document-term matrix, and index the
k-dimensional vectors

- When a query comes, project it onto the k-dimensional
space and compute cosine similarity in this space

- Principal components capture main topics, and enrich
the document representation



SVD is “the Rolls-Royce and the Swiss
Army Knife of Numerical Linear

Algebra.”
*Dianne O’Leary, MMDS "06



