DATA MINING LECTURE 8B

Time series analysis and
Sequence Segmentation

Sequential data

- Sequential data (or time series) refers to data that appear in a specific order.
- The order defines a time axis, that differentiates this data from other cases we have seen so far
- Examples
- The price of a stock (or of many stocks) over time
- Environmental data (pressure, temperature, precipitation etc) over time
- The sequence of queries in a search engine, or the frequency of a query over time
- The words in a document as they appear in order
- A DNA sequence of nucleotides
- Event occurrences in a log over time
- Etc...
- Time series: usually we assume that we have a vector of numeric values that change over time.

Time-series data

- Financial time series, process monitoring...

Why deal with sequential data?

- Because all data is sequential ()
- All data items arrive in the data store in some order
- In some (many) cases the order does not matter
- E.g., we can assume a bag of words model for a document
- In many cases the order is of interest
- E.g., stock prices do not make sense without the time information.

Time series analysis

- The addition of the time axis defines new sets of problems
- Discovering periodic patterns in time series
- Defining similarity between time series
- Finding bursts, or outliers
- Also, some existing problems need to be revisited taking sequential order into account
- Association rules and Frequent Itemsets in sequential data
- Summarization and Clustering: Sequence Segmentation

Sequence Segmentation

- Goal: discover structure in the sequence and provide a concise summary
- Given a sequence T, segment it into K contiguous segments that are as homogeneous as possible
- Similar to clustering but now we require the points in the cluster to be contiguous
- Commonly used for summarization of histograms in databases

Example

Basic definitions

- Sequence $T=\left\{t_{1}, t_{2}, \ldots, t_{N}\right\}$: an ordered set of $N d$-dimensional real points $t_{i} \in R^{d}$
- A K-segmentation S : a partition of T into K contiguous segments $\left\{\mathrm{s}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}\right\}$.
- Each segment se S is represented by a single vector $\mu_{\mathrm{s}} \in \mathrm{R}^{d}$ (the representative of the segment -- same as the centroid of a cluster)
- Error E(S): The error of replacing individual points with representatives
- Different error functions, define different representatives.
- Sum of Squares Error (SSE):

$$
E(S)=\sum_{s \in S} \sum_{t \in S}\left(t-\mu_{s}\right)^{2}
$$

- Representative of segment s with SSE: mean $\mu_{s}=\frac{1}{|s|} \sum_{t \in s} t$

Basic Definitions

- Observation: a K-segmentation S is defined by $\mathrm{K}+1$ boundary points $b_{0}, b_{1}, \ldots, b_{K-1}, b_{K}$.

- $b_{0}=0, b_{k}=N+1$ always.
- We only need to specify b_{1}, \ldots, b_{K-1}

The K-segmentation problem

Given a sequence T of length N and a value K, find a K-segmentation $S=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of T such that the SSE error E is minimized.

- Similar to K-means clustering, but now we need the points in the clusters to respect the order of the sequence.
- This actually makes the problem easier.

Optimal solution for the k-segmentation problem

- Bellman'61: The K-segmentation problem can be solved optimally using a standard dynamicprogramming algorithm
- Dynamic Programming:
- Construct the solution of the problem by using solutions to problems of smaller size
- Define the dynamic programming recursion
- Build the solution bottom up from smaller to larger instances
- Define the dynamic programming table that stores the solutions to the sub-problems

Rule of thumb

- Most optimization problems where order is involved can be solved optimally in polynomial time using dynamic programming.
- The polynomial exponent may be large though

Dynamic Programming Recursion

- Terminology:
- $T[1, n]$: subsequence $\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ for $n \leq N$
- $E(S[1, n], k)$: error of optimal segmentation of subsequence $T[1, n]$ with k segments for $k \leq K$
- Dynamic Programming Recursion:
$E(S[1, n], k)$

Minimum over all possible placements of the last boundary point b_{k-1}

Error of optimal segmentation S[1,j] with k -1 segments

Error of k-th (last) segment when the last segment is $[\mathrm{j}+1, \mathrm{n}]$

Dynamic programming table

- Two-dimensional table $A[1 \ldots K, 1 \ldots N]$

$$
A[k, n]=E(S[1, n], k)
$$

- Fill the table top to bottom, left to right.

Example

$E(S[1, n], k)$

$$
\begin{aligned}
& =\min _{k \leq j \leq \mathrm{n}-1}\{E(S[1, j], k-1) \\
& \left.+\sum_{j+1 \leq t \leq n}\left(t-\mu_{[j+1, n]}\right)^{2}\right\}
\end{aligned}
$$

Where should we place boundary b_{2} ?

Example

$E(S[1, n], k)$

$$
\begin{aligned}
& =\min _{k \leq j \leq n-1}\{E(S[1, j], k-1) \\
& \left.+\sum_{j+1 \leq t \leq n}\left(t-\mu_{[j+1, n]}\right)^{2}\right\}
\end{aligned}
$$

Where should we place boundary b_{2} ?

Example

$$
E(S[1, n], k)
$$

$$
\begin{aligned}
& =\min _{k \leq j \leq \mathrm{n}-1}\{E(S[1, j], k-1) \\
& \left.+\sum_{j+1 \leq t \leq n}\left(t-\mu_{[j+1, n]}\right)^{2}\right\}
\end{aligned}
$$

Where should we place boundary b_{2} ?

Example

$$
E(S[1, n], k)
$$

$$
\begin{aligned}
& =\min _{k \leq j \leq \mathrm{n}-1}\{E(S[1, j], k-1) \\
& \left.+\sum_{j+1 \leq t \leq n}\left(t-\mu_{[j+1, n]}\right)^{2}\right\}
\end{aligned}
$$

Where should we place boundary b_{2} ?

Example

Optimal segmentation S[1:n]

The cell $\mathrm{A}[3, \mathrm{n}]$ stores the error of the optimal solution 3 -segmentation of T[1,n]

In the cell (or in a different table) we also store the position $\mathrm{n}-3$ of the boundary so
 we can trace back the segmentation

Dynamic-programming algorithm

- Input: Sequence T, length N, K segments, error function E()
- For $\mathrm{i}=1$ to $\mathrm{N} / /$ Initialize first row
$-\mathbf{A}[1, i]=E(T[1$...i]) //Error when everything is in one cluster
- For k=1 to K // Initialize diagonal
$-\mathbf{A}[\mathbf{k}, \mathbf{k}]=0 / /$ Error when each point in its own cluster
- For k=2 to K
- For i=k+1 to N

$$
\cdot A[k, i]=\min _{j<i}\{A[k-1, j]+E(T[j+1 \ldots i])\}
$$

- To recover the actual segmentation (not just the optimal cost) store also the minimizing values j

Algorithm Complexity

- What is the complexity?
- NK cells to fill
- Computation per cell $E(S[1, n], k)=\min _{k \leq j \leq n}\left\{E(S[1, j], k-1)+\sum_{j+1 \leq t \leq n}\left(t-\mu_{[j+1, n]}\right)^{2}\right\}$
- O(N) boundaries to check per cell
- $\mathrm{O}(\mathrm{N})$ to compute the second term per checked boundary
- $\mathrm{O}\left(\mathrm{N}^{3} \mathrm{~K}\right)$ in the naïve computation
- We can avoid the last $\mathrm{O}(\mathrm{N})$ factor by observing that

$$
\sum_{j+1 \leq t \leq n}\left(t-\mu_{[j+1, n]}\right)^{2}=\sum_{j+1 \leq t \leq n} t^{2}-\frac{1}{n-j}\left(\sum_{j+1 \leq t \leq n} t\right)^{2}
$$

- We can compute in constant time by precomputing partial sums
- Precompute $\sum_{1 \leq t \leq n} t$ and $\sum_{1 \leq t \leq n} t^{2}$ for all $\mathrm{n}=1$..N
- Algorithm Complexity: O(N2K)

Heuristics

- Top-down greedy (TD): O(NK)
- Introduce boundaries one at the time so that you get the largest decrease in error, until K segments are created.
- Bottom-up greedy (BU): O(NlogN)
- Merge adjacent points each time selecting the two points that cause the smallest increase in the error until K segments
- Local Search Heuristics: O(NKI)
- Assign the breakpoints randomly and then move them so that you reduce the error

Other time series analysis

- Using signal processing techniques is common for defining similarity between series
- Fast Fourier Transform
- Wavelets
- Rich literature in the field

