
DATA MINING 

LECTURE 8B 
Time series analysis and  

Sequence Segmentation 



Sequential data 

• Sequential data (or time series) refers to data that appear 
in a specific order. 
• The order defines a time axis, that differentiates this data from 

other cases we have seen so far 

• Examples 
• The price of a stock (or of many stocks) over time 

• Environmental data (pressure, temperature, precipitation etc) over 
time 

• The sequence of queries in a search engine, or the frequency of a 
query over time 

• The words in a document as they appear in order 

• A DNA sequence of nucleotides 

• Event occurrences in a log over time 

• Etc… 

• Time series: usually we assume that we have a vector of 
numeric values that change over time. 

 



Time-series data 

 Financial time series, process monitoring… 



Why deal with sequential data? 

• Because all data is sequential  
• All data items arrive in the data store in some order 

 

• In some (many) cases the order does not matter 
• E.g., we can assume a bag of words model for a 

document 

 

• In many cases the order is of interest 
• E.g., stock prices do not make sense without the time 

information. 



Time series analysis 

• The addition of the time axis defines new sets of 
problems 
• Discovering periodic patterns in time series 

• Defining similarity between time series 

• Finding bursts, or outliers 

 

• Also, some existing problems need to be revisited 
taking sequential order into account 
• Association rules and Frequent Itemsets in sequential 

data 

• Summarization and Clustering: Sequence 
Segmentation 



Sequence Segmentation 

• Goal: discover structure in the sequence and 
provide a concise summary 

 

• Given a sequence T, segment it into K contiguous 
segments that are as homogeneous as possible 

 

• Similar to clustering but now we require the  
points in the cluster to be contiguous 

 

• Commonly used for summarization of histograms 
in databases 
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Segmentation into 4 segments 

Homogeneity: points are 

close to the mean value 

(small error) 



Basic definitions 

• Sequence T = {t1,t2,…,tN}: an ordered set of N d-dimensional real 
points tiЄRd 

 

• A K-segmentation S: a partition of T into K contiguous segments 
{s1,s2,…,sK}.  
• Each segment sЄS is represented by a single vector μsЄRd (the representative 

of the segment -- same as the centroid of a cluster) 

 

• Error E(S): The error of replacing individual points with 
representatives 
• Different error functions, define different representatives. 

 

• Sum of Squares Error (SSE): 

𝐸 𝑆 =    𝑡 − 𝜇𝑠
2

𝑡∈𝑠𝑠∈𝑆

 

• Representative of segment s with SSE: mean 𝜇𝑠 =
1

|𝑠|
 𝑡𝑡∈𝑠  

 



Basic Definitions 

• Observation: a K-segmentation S is defined by K+1 
boundary points 𝑏0, 𝑏1, … , 𝑏𝐾−1, 𝑏𝐾. 

 

 

 

 

 

 

 

• 𝑏0 = 0, 𝑏𝑘 = 𝑁 + 1 always.  
• We only need to specify 𝑏1, … , 𝑏𝐾−1 

t 

R 

𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 



The K-segmentation problem 

 

• Similar to K-means clustering, but now we need 
the points in the clusters to respect the order of 
the sequence. 
• This actually makes the problem easier. 

 Given a sequence T of length N and a value K, find a 
K-segmentation S = {s1, s2, …,sK} of T such that the SSE 
error E is minimized. 



Optimal solution for the k-segmentation problem 

 [Bellman’61: The K-segmentation problem can be 
solved optimally using a standard dynamic-
programming algorithm 

• Dynamic Programming: 
• Construct the solution of the problem by using solutions 

to problems of smaller size 
• Define the dynamic programming recursion 

• Build the solution bottom up from smaller to larger 
instances 
• Define the dynamic programming table that stores the solutions 

to the sub-problems 

 



Rule of thumb 

• Most optimization problems where order is 

involved can be solved optimally in polynomial 

time using dynamic programming.  

• The polynomial exponent may be large though 



Dynamic Programming Recursion 

• Terminology:  
• 𝑇[1, 𝑛]: subsequence {t1,t2,…,tn} for 𝑛 ≤ 𝑁   
• 𝐸 𝑆[1, 𝑛], 𝑘 : error of optimal segmentation of subsequence 𝑇[1, 𝑛] with 
𝑘 segments for 𝑘 ≤ 𝐾 

 

• Dynamic Programming Recursion: 

 
𝐸 𝑆 1, 𝑛 , 𝑘

=   min
𝑘≤j≤n−1

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 +  𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

 

 
 

Error of k-th (last) segment 

when the last segment is 

[j+1,n] 

Error of optimal 

segmentation S[1,j] 

with k-1 segments 

Minimum over all possible 

placements of the last 

boundary point 𝑏𝑘−1 



• Two−dimensional table 𝐴[1…𝐾, 1…𝑁] 
 

 

 

 

 

 

 

𝐸 𝑆 1, 𝑛 , 𝑘 = min
𝑘≤j≤n−1

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 +  𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

 

• Fill the table top to bottom, left to right. 

 

N 1 

1 

K 

Dynamic programming table 

k 

n 𝐴 𝑘, 𝑛 =  𝐸 𝑆 1, 𝑛 , 𝑘  

Error of optimal K-segmentation 
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Optimal segmentation S[1:n] 
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𝑏2 𝑏1 

The cell A[3,n] stores the error of the 

optimal solution 3-segmentation of T[1,n] 

In the cell (or in a different table) we also 

store the position n-3 of the boundary so 

we can trace back the segmentation 

n-3 



Dynamic-programming algorithm 

• Input: Sequence T, length N, K segments, error function E() 

 
• For i=1 to N //Initialize first row 

– A[1,i]=E(T[1…i]) //Error when everything is in one cluster 

 

• For k=1 to K // Initialize diagonal 
– A[k,k] = 0 // Error when each point in its own cluster 

 

• For k=2 to K 

– For i=k+1 to N 

• A[k,i] = minj<i{A[k-1,j]+E(T[j+1…i])} 

 

• To recover the actual segmentation (not just the optimal 
cost) store also the minimizing values j 



Algorithm Complexity 

• What is the complexity? 

• NK cells to fill 

• Computation per cell 

𝐸 𝑆 1, 𝑛 , 𝑘 = min
𝑘≤j<n

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 +  𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛  

• O(N) boundaries to check per cell 
• O(N) to compute the second term per checked boundary 

• O(N3K) in the naïve computation 
 

• We can avoid the last O(N) factor by observing that  

 𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

=  𝑡2

𝑗+1≤𝑡≤𝑛

−
1

𝑛 − 𝑗
 𝑡

𝑗+1≤𝑡≤𝑛

2

 

 

• We can compute in constant time by precomputing partial sums 
• Precompute  𝑡1≤𝑡≤𝑛  and  𝑡21≤𝑡≤𝑛  for all n = 1..N 

 

• Algorithm Complexity: O(N2K) 
 



Heuristics 

• Top-down greedy (TD): O(NK) 
• Introduce boundaries one at the time so that you get the 

largest decrease in error, until K segments are created. 

 

• Bottom-up greedy (BU): O(NlogN) 
• Merge adjacent points each time selecting the two 

points that cause the smallest increase in the error until 
K segments 

 

• Local Search Heuristics: O(NKI) 
• Assign the breakpoints randomly and then move them 

so that you reduce the error 



Other time series analysis  

• Using signal processing techniques is common 

for defining similarity between series 

• Fast Fourier Transform 

• Wavelets 

 

• Rich literature in the field 


