
DATA MINING

LECTURE 8B
Time series analysis and

Sequence Segmentation

Sequential data

• Sequential data (or time series) refers to data that appear
in a specific order.
• The order defines a time axis, that differentiates this data from

other cases we have seen so far

• Examples
• The price of a stock (or of many stocks) over time

• Environmental data (pressure, temperature, precipitation etc) over
time

• The sequence of queries in a search engine, or the frequency of a
query over time

• The words in a document as they appear in order

• A DNA sequence of nucleotides

• Event occurrences in a log over time

• Etc…

• Time series: usually we assume that we have a vector of
numeric values that change over time.

Time-series data

 Financial time series, process monitoring…

Why deal with sequential data?

• Because all data is sequential
• All data items arrive in the data store in some order

• In some (many) cases the order does not matter
• E.g., we can assume a bag of words model for a

document

• In many cases the order is of interest
• E.g., stock prices do not make sense without the time

information.

Time series analysis

• The addition of the time axis defines new sets of
problems
• Discovering periodic patterns in time series

• Defining similarity between time series

• Finding bursts, or outliers

• Also, some existing problems need to be revisited
taking sequential order into account
• Association rules and Frequent Itemsets in sequential

data

• Summarization and Clustering: Sequence
Segmentation

Sequence Segmentation

• Goal: discover structure in the sequence and
provide a concise summary

• Given a sequence T, segment it into K contiguous
segments that are as homogeneous as possible

• Similar to clustering but now we require the
points in the cluster to be contiguous

• Commonly used for summarization of histograms
in databases

Example

t

R

t

R

Segmentation into 4 segments

Homogeneity: points are

close to the mean value

(small error)

Basic definitions

• Sequence T = {t1,t2,…,tN}: an ordered set of N d-dimensional real
points tiЄRd

• A K-segmentation S: a partition of T into K contiguous segments
{s1,s2,…,sK}.
• Each segment sЄS is represented by a single vector μsЄRd (the representative

of the segment -- same as the centroid of a cluster)

• Error E(S): The error of replacing individual points with
representatives
• Different error functions, define different representatives.

• Sum of Squares Error (SSE):

𝐸 𝑆 = 𝑡 − 𝜇𝑠
2

𝑡∈𝑠𝑠∈𝑆

• Representative of segment s with SSE: mean 𝜇𝑠 =
1

|𝑠|
 𝑡𝑡∈𝑠

Basic Definitions

• Observation: a K-segmentation S is defined by K+1
boundary points 𝑏0, 𝑏1, … , 𝑏𝐾−1, 𝑏𝐾.

• 𝑏0 = 0, 𝑏𝑘 = 𝑁 + 1 always.
• We only need to specify 𝑏1, … , 𝑏𝐾−1

t

R

𝑏0 𝑏1 𝑏2 𝑏3 𝑏4

The K-segmentation problem

• Similar to K-means clustering, but now we need
the points in the clusters to respect the order of
the sequence.
• This actually makes the problem easier.

 Given a sequence T of length N and a value K, find a
K-segmentation S = {s1, s2, …,sK} of T such that the SSE
error E is minimized.

Optimal solution for the k-segmentation problem

 [Bellman’61: The K-segmentation problem can be
solved optimally using a standard dynamic-
programming algorithm

• Dynamic Programming:
• Construct the solution of the problem by using solutions

to problems of smaller size
• Define the dynamic programming recursion

• Build the solution bottom up from smaller to larger
instances
• Define the dynamic programming table that stores the solutions

to the sub-problems

Rule of thumb

• Most optimization problems where order is

involved can be solved optimally in polynomial

time using dynamic programming.

• The polynomial exponent may be large though

Dynamic Programming Recursion

• Terminology:
• 𝑇[1, 𝑛]: subsequence {t1,t2,…,tn} for 𝑛 ≤ 𝑁
• 𝐸 𝑆[1, 𝑛], 𝑘 : error of optimal segmentation of subsequence 𝑇[1, 𝑛] with
𝑘 segments for 𝑘 ≤ 𝐾

• Dynamic Programming Recursion:

𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 + 𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

Error of k-th (last) segment

when the last segment is

[j+1,n]

Error of optimal

segmentation S[1,j]

with k-1 segments

Minimum over all possible

placements of the last

boundary point 𝑏𝑘−1

• Two−dimensional table 𝐴[1…𝐾, 1…𝑁]

𝐸 𝑆 1, 𝑛 , 𝑘 = min
𝑘≤j≤n−1

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 + 𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

• Fill the table top to bottom, left to right.

N 1

1

K

Dynamic programming table

k

n 𝐴 𝑘, 𝑛 = 𝐸 𝑆 1, 𝑛 , 𝑘

Error of optimal K-segmentation

Example

R

n-th point

k = 3

Where should we place boundary 𝑏2 ?

N 1

1

2

3

4

n
𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1

 𝐸 𝑆 1, 𝑗 , 𝑘 − 1

+ 𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

𝑏2 𝑏1

Example

R

n-th point

k = 3

Where should we place boundary 𝑏2 ?

N 1

1

2

3

4

n
𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1

 𝐸 𝑆 1, 𝑗 , 𝑘 − 1

+ 𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

𝑏2 𝑏1

Example

R

n-th point

k = 3

Where should we place boundary 𝑏2 ?

N 1

1

2

3

4

n
𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1

 𝐸 𝑆 1, 𝑗 , 𝑘 − 1

+ 𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

𝑏2 𝑏1

Example

R

n-th point

k = 3

Where should we place boundary 𝑏2 ?

N 1

1

2

3

4

n
𝐸 𝑆 1, 𝑛 , 𝑘

= min
𝑘≤j≤n−1

 𝐸 𝑆 1, 𝑗 , 𝑘 − 1

+ 𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

𝑏2 𝑏1

Example

R

n-th point

k = 3

Optimal segmentation S[1:n]
N 1

1

2

3

4

n

𝑏2 𝑏1

The cell A[3,n] stores the error of the

optimal solution 3-segmentation of T[1,n]

In the cell (or in a different table) we also

store the position n-3 of the boundary so

we can trace back the segmentation

n-3

Dynamic-programming algorithm

• Input: Sequence T, length N, K segments, error function E()

• For i=1 to N //Initialize first row

– A[1,i]=E(T[1…i]) //Error when everything is in one cluster

• For k=1 to K // Initialize diagonal
– A[k,k] = 0 // Error when each point in its own cluster

• For k=2 to K

– For i=k+1 to N

• A[k,i] = minj<i{A[k-1,j]+E(T[j+1…i])}

• To recover the actual segmentation (not just the optimal
cost) store also the minimizing values j

Algorithm Complexity

• What is the complexity?

• NK cells to fill

• Computation per cell

𝐸 𝑆 1, 𝑛 , 𝑘 = min
𝑘≤j<n

𝐸 𝑆 1, 𝑗 , 𝑘 − 1 + 𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

• O(N) boundaries to check per cell
• O(N) to compute the second term per checked boundary

• O(N3K) in the naïve computation

• We can avoid the last O(N) factor by observing that

 𝑡 − 𝜇 𝑗+1,𝑛
2

𝑗+1≤𝑡≤𝑛

= 𝑡2

𝑗+1≤𝑡≤𝑛

−
1

𝑛 − 𝑗
 𝑡

𝑗+1≤𝑡≤𝑛

2

• We can compute in constant time by precomputing partial sums
• Precompute 𝑡1≤𝑡≤𝑛 and 𝑡21≤𝑡≤𝑛 for all n = 1..N

• Algorithm Complexity: O(N2K)

Heuristics

• Top-down greedy (TD): O(NK)
• Introduce boundaries one at the time so that you get the

largest decrease in error, until K segments are created.

• Bottom-up greedy (BU): O(NlogN)
• Merge adjacent points each time selecting the two

points that cause the smallest increase in the error until
K segments

• Local Search Heuristics: O(NKI)
• Assign the breakpoints randomly and then move them

so that you reduce the error

Other time series analysis

• Using signal processing techniques is common

for defining similarity between series

• Fast Fourier Transform

• Wavelets

• Rich literature in the field

