DATA MINING LECTURE 8B

Time series analysis and Sequence Segmentation

Sequential data

- Sequential data (or time series) refers to data that appear in a specific order.
 - The order defines a time axis, that differentiates this data from other cases we have seen so far
- Examples
 - The price of a stock (or of many stocks) over time
 - Environmental data (pressure, temperature, precipitation etc) over time
 - The sequence of queries in a search engine, or the frequency of a query over time
 - The words in a document as they appear in order
 - A DNA sequence of nucleotides
 - Event occurrences in a log over time
 - Etc...
- Time series: usually we assume that we have a vector of numeric values that change over time.

Time-series data

• Financial time series, process monitoring...

Why deal with sequential data?

- Because all data is sequential [©]
 - All data items arrive in the data store in some order
- In some (many) cases the order does not matter
 - E.g., we can assume a bag of words model for a document
- In many cases the order is of interest
 - E.g., stock prices do not make sense without the time information.

Time series analysis

- The addition of the time axis defines new sets of problems
 - Discovering periodic patterns in time series
 - Defining similarity between time series
 - Finding bursts, or outliers
- Also, some existing problems need to be revisited taking sequential order into account
 - Association rules and Frequent Itemsets in sequential data
 - Summarization and Clustering: Sequence Segmentation

Sequence Segmentation

- Goal: discover structure in the sequence and provide a concise summary
- Given a sequence T, segment it into K contiguous segments that are as homogeneous as possible
- Similar to clustering but now we require the points in the cluster to be contiguous
- Commonly used for summarization of histograms in databases

Example

Basic definitions

- Sequence T = {t₁,t₂,...,t_N}: an ordered set of N d-dimensional real points t_ieR^d
- A K-segmentation S: a partition of T into K contiguous segments {s₁,s₂,...,s_K}.
 - Each segment seS is represented by a single vector µ_seR^d (the representative of the segment -- same as the centroid of a cluster)
- Error E(S): The error of replacing individual points with representatives
 - Different error functions, define different representatives.
- Sum of Squares Error (SSE):

$$E(S) = \sum_{s \in S} \sum_{t \in S} (t - \mu_s)^2$$

• Representative of segment s with SSE: mean $\mu_s = \frac{1}{|s|} \sum_{t \in s} t$

Basic Definitions

 Observation: a K-segmentation S is defined by K+1 boundary points b₀, b₁, ..., b_{K-1}, b_K.

• $b_0 = 0, b_k = N + 1$ always.

• We only need to specify b_1, \dots, b_{K-1}

The K-segmentation problem

Given a sequence T of length N and a value K, find a K-segmentation $S = \{s_1, s_2, ..., s_K\}$ of T such that the SSE error E is minimized.

- Similar to K-means clustering, but now we need the points in the clusters to respect the order of the sequence.
 - This actually makes the problem easier.

Optimal solution for the k-segmentation problem

- Bellman'61: The K-segmentation problem can be solved optimally using a standard dynamicprogramming algorithm
- Dynamic Programming:
 - Construct the solution of the problem by using solutions to problems of smaller size
 - Define the dynamic programming recursion
 - Build the solution bottom up from smaller to larger instances
 - Define the dynamic programming table that stores the solutions to the sub-problems

Rule of thumb

- Most optimization problems where order is involved can be solved optimally in polynomial time using dynamic programming.
 - The polynomial exponent may be large though

Dynamic Programming Recursion

- Terminology:
 - T[1, n]: subsequence $\{t_1, t_2, \dots, t_n\}$ for $n \leq N$
 - E(S[1, n], k): error of optimal segmentation of subsequence T[1, n] with k segments for $k \le K$
- Dynamic Programming Recursion:

Dynamic programming table

• Two-dimensional table $A[1 \dots K, 1 \dots N]$

Fill the table top to bottom, left to right.

Error of optimal K-segmentation

$$= \min_{k \le j \le n-1} \left\{ E(S[1, j], k-1) + \sum_{j+1 \le t \le n} (t - \mu_{[j+1,n]})^2 \right\}$$

$$= \min_{k \le j \le n-1} \left\{ E(S[1, j], k-1) + \sum_{j+1 \le t \le n} (t - \mu_{[j+1,n]})^2 \right\}$$

$$= \min_{k \le j \le n-1} \left\{ E(S[1, j], k-1) + \sum_{j+1 \le t \le n} (t - \mu_{[j+1, n]})^2 \right\}$$

$$= \min_{k \le j \le n-1} \left\{ E(S[1, j], k-1) + \sum_{j+1 \le t \le n} (t - \mu_{[j+1,n]})^2 \right\}$$

Optimal segmentation S[1:n]

The cell A[3,n] stores the error of the optimal solution 3-segmentation of T[1,n]

In the cell (or in a different table) we also store the position n-3 of the boundary so we can trace back the segmentation

Dynamic-programming algorithm

- Input: Sequence T, length N, K segments, error function E()
 - For i=1 to N //Initialize first row

 A[1,i]=E(T[1...i]) //Error when everything is in one cluster
 - For k=1 to K // Initialize diagonal
 A[k,k] = 0 // Error when each point in its own cluster
 - For **k=2** to **K**
 - For i=k+1 to N
 - A[k,i] = min_{j<i}{A[k-1,j]+E(T[j+1...i])}
- To recover the actual segmentation (not just the optimal cost) store also the minimizing values j

Algorithm Complexity

- What is the complexity?
- NK cells to fill
- Computation per cell $E(S[1,n],k) = \min_{k \le i \le n} \left\{ E(S[1,j],k-1) + \sum_{j+1 \le t \le n} (t - \mu_{[j+1,n]})^2 \right\}$
 - O(N) boundaries to check per cell
 - O(N) to compute the second term per checked boundary
- O(N³K) in the naïve computation
- We can avoid the last O(N) factor by observing that

$$\sum_{j+1 \le t \le n} \left(t - \mu_{[j+1,n]} \right)^2 = \sum_{j+1 \le t \le n} t^2 - \frac{1}{n-j} \left(\sum_{j+1 \le t \le n} t \right)^2$$

- We can compute in constant time by precomputing partial sums
 - Precompute $\sum_{1 \le t \le n} t$ and $\sum_{1 \le t \le n} t^2$ for all n = 1..N
- Algorithm Complexity: O(N²K)

Heuristics

Top-down greedy (TD): O(NK)

- Introduce boundaries one at the time so that you get the largest decrease in error, until K segments are created.
- Bottom-up greedy (BU): O(NlogN)
 - Merge adjacent points each time selecting the two points that cause the smallest increase in the error until K segments
- Local Search Heuristics: O(NKI)
 - Assign the breakpoints randomly and then move them so that you reduce the error

Other time series analysis

- Using signal processing techniques is common for defining similarity between series
 - Fast Fourier Transform
 - Wavelets
- Rich literature in the field