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CLUSTERING VALIDITY 



Cluster Validity  

• How do we evaluate the “goodness” of the resulting 
clusters? 

 

• But “clustering lies in the eye of the beholder”!  

 

• Then why do we want to evaluate them? 
• To avoid finding patterns in noise 

• To compare clustering algorithms 

• To compare two clusterings 

• To compare two clusters 



Clusters found in Random Data 
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1. Determining the clustering tendency of a set of data, i.e., 

distinguishing whether non-random structure actually exists in the 

data.  

2. Comparing the results of a cluster analysis to externally known 

results, e.g., to externally given class labels. 

3. Evaluating how well the results of a cluster analysis fit the data 

without reference to external information.  

 - Use only the data 

4. Comparing the results of two different sets of cluster analyses to 

determine which is better. 

5. Determining the ‘correct’ number of clusters. 

 

 For 2, 3, and 4, we can further distinguish whether we want to 

evaluate the entire clustering or just individual clusters.  

 

Different Aspects of Cluster Validation 



• Numerical measures that are applied to judge various aspects 

of cluster validity, are classified into the following three types. 

• External Index: Used to measure the extent to which cluster labels 

match externally supplied class labels. 
• E.g., entropy, precision, recall 

• Internal Index:  Used to measure the goodness of a clustering 

structure without reference to external information.  
• E.g., Sum of Squared Error (SSE) 

• Relative Index: Used to compare two different clusterings or 

clusters.  
• Often an external or internal index is used for this function, e.g., SSE or 

entropy 

• Sometimes these are referred to as criteria instead of indices 

• However, sometimes criterion is the general strategy and index is the 

numerical measure that implements the criterion. 

Measures of Cluster Validity 



• Two matrices  
• Similarity or Distance Matrix 

• One row and one column for each data point 

• An entry is the similarity or distance of the associated pair of points 

• “Incidence” Matrix 

• One row and one column for each data point 

• An entry is 1 if the associated pair of points belong to the same cluster 

• An entry is 0 if the associated pair of points belongs to different clusters 

• Compute the correlation between the two matrices 
• Since the matrices are symmetric, only the correlation between  

n(n-1) / 2 entries needs to be calculated. 

• High correlation (positive for similarity, negative for 
distance) indicates that points that belong to the same 
cluster are close to each other.  

• Not a good measure for some density or contiguity based 
clusters. 

Measuring Cluster Validity Via Correlation 



Measuring Cluster Validity Via Correlation 

• Correlation of incidence and proximity matrices 

for the K-means clusterings of the following two 

data sets.  
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• Order the similarity matrix with respect to cluster 

labels and inspect visually.  

 

Using Similarity Matrix for Cluster Validation 
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Using Similarity Matrix for Cluster Validation 

• Clusters in random data are not so crisp 
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Using Similarity Matrix for Cluster Validation 

• Clusters in random data are not so crisp 

 

K-means 
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Using Similarity Matrix for Cluster Validation 

• Clusters in random data are not so crisp 
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Using Similarity Matrix for Cluster Validation 

1 
2

3

5

6

4

7

DBSCAN 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500 2000 2500 3000

500

1000

1500

2000

2500

3000



• Internal Index:  Used to measure the goodness of a 

clustering structure without reference to external 

information 

• Example: SSE 

• SSE is good for comparing two clusterings or two clusters 

(average SSE). 

• Can also be used to estimate the number of clusters 

 

 

Internal Measures: SSE 
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Estimating the “right” number of clusters 

• Typical approach: find a “knee” in an internal measure curve. 

 

 

 

 

 

 

 

 

 

• Question: why not the k that minimizes the SSE? 
• Forward reference: minimize a measure, but with a “simple” clustering 

• Desirable property: the clustering algorithm does not require 
the number of clusters to be specified (e.g., DBSCAN) 
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Internal Measures: SSE 

• SSE curve for a more complicated data set 
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• Cluster Cohesion: Measures how closely related 

are objects in a cluster 

• Cluster Separation: Measure how distinct or well-

separated a cluster is from other clusters 

• Example: Squared Error 

• Cohesion is measured by the within cluster sum of squares (SSE) 

 

 

• Separation is measured by the between cluster sum of squares 

 

 

• Where mi is the size of cluster i  

 

Internal Measures: Cohesion and Separation 
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• A proximity graph based approach can also be used for 

cohesion and separation. 

• Cluster cohesion is the sum of the weight of all links within a cluster. 

• Cluster separation is the sum of the weights between nodes in the cluster 

and nodes outside the cluster. 

Internal Measures: Cohesion and Separation 

cohesion separation 



Internal measures – caveats  

• Internal measures have the problem that the 

clustering algorithm did not set out to optimize 

this measure, so it is will not necessarily do well 

with respect to the measure. 

 

• An internal measure can also be used as an 

objective function for clustering 



• Need a framework to interpret any measure.  
• For example, if our measure of evaluation has the value, 10, is that 

good, fair, or poor? 

• Statistics provide a framework for cluster validity 
• The more “non-random” a clustering result is, the more likely it 

represents valid structure in the data 

• Can compare the values of an index that result from random data or 

clusterings to those of a clustering result. 

• If the value of the index is unlikely, then the cluster results are valid 

• For comparing the results of two different sets of cluster 

analyses, a framework is less necessary. 
• However, there is the question of whether the difference between two 

index values is significant 

 

Framework for Cluster Validity 



• Example 
• Compare SSE of 0.005 against three clusters in random data 

• Histogram of SSE for three clusters in 500 random data sets of 

100 random points distributed in the range 0.2 – 0.8 for x and y 

• Value 0.005 is very unlikely 

 

Statistical Framework for SSE 
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• Correlation of incidence and proximity matrices for the 

K-means clusterings of the following two data sets.  

 

Statistical Framework for Correlation 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Corr = -0.9235 Corr = -0.5810 



Empirical p-value 

• If we have a measurement v (e.g., the SSE value) 

• ..and we have N measurements on random datasets 

• …the empirical p-value is the fraction of 
measurements in the random data that have value 
less or equal than value v (or greater or equal if we 
want to maximize)  
• i.e., the value in the random dataset is at least as good as 

that in the real data 

 

• We usually require that p-value ≤ 0.05 

 

• Hard question: what is the right notion of a random 
dataset? 



External Measures for Clustering Validity 

• Assume that the data is labeled with some class 
labels 
• E.g., documents are classified into topics, people classified 

according to their income, senators classified as republican 
or democrat. 

• In this case we want the clusters to be homogeneous 
with respect to classes 
• Each cluster should contain elements of mostly one class 

• Also each class should ideally be assigned to a single cluster 

• This does not always make sense 
• Clustering is not the same as classification 

• But this is what people use most of the time 



Measures 

• 𝑛 = number of points 

• 𝑚𝑖 = points in cluster i 

• 𝑐𝑗 = points in class j 

• 𝑚𝑖𝑗= points in cluster i coming 
from class j 

• 𝑝𝑖𝑗 = 𝑚𝑖𝑗/𝑚𝑖= prob of element 
from class j in cluster i 

• Entropy: 
• Of a cluster i: 𝑒𝑖 = − 𝑝𝑖𝑗 log 𝑝𝑖𝑗

𝐿
𝑗=1    

• Highest when uniform, zero when 
single class 

• Of a clustering: 𝑒 =   
𝑚𝑖

𝑛
𝑒𝑖

𝐾
𝑖=1  

• Purity: 
• Of a cluster i: 𝑝𝑖 = max

𝑗
𝑝𝑖𝑗 

• Of a clustering: 𝑝𝑢𝑟𝑖𝑡𝑦 =   
𝑚𝑖

𝑛
𝑝𝑖

𝐾
𝑖=1  

Class 1 Class 2 Class 3 

Cluster 1 𝑚11 𝑚12 𝑚13 𝑚1 

Cluster 2 𝑚21 𝑚22 𝑚23 𝑚2 

Cluster 3 𝑚31 𝑚32 𝑚33 𝑚3 

𝑐1 𝑐2 𝑐3 𝑛 



Measures 

• Precision: 

• Of cluster i with respect to class j: 𝑃𝑟𝑒𝑐 𝑖, 𝑗 = 𝑝𝑖𝑗 

• For the precision of a clustering you can take the maximum 

• Recall: 

• Of cluster i with respect to class j: 𝑅𝑒𝑐 𝑖, 𝑗 =
𝑚𝑖𝑗

𝑐𝑗
 

• For the precision of a clustering you can take the maximum 

• F-measure: 

• Harmonic Mean of Precision and Recall: 

𝐹 𝑖, 𝑗 =  
2 ∗ 𝑃𝑟𝑒𝑐 𝑖, 𝑗 ∗ 𝑅𝑒𝑐(𝑖, 𝑗)

𝑃𝑟𝑒𝑐 𝑖, 𝑗 + 𝑅𝑒𝑐(𝑖, 𝑗)
 



Good and bad clustering 

Class 1 Class 2 Class 3 

Cluster 1 20 35 35 90 

Cluster 2 30 42 38 110 

Cluster 3 38 35 27 100 

100 100 100 300 

Class 1 Class 2 Class 3 

Cluster 1 2 3 85 90 

Cluster 2 90 12 8 110 

Cluster 3 8 85 7 100 

100 100 100 300 

Purity: (0.94, 0.81, 0.85) – overall 0.86 

Precision: (0.94, 0.81, 0.85) 

Recall: (0.85, 0.9, 0.85)   

Purity: (0.38, 0.38, 0.38) – overall 0.38 

Precision: (0.38, 0.38, 0.38)  

Recall: (0.35, 0.42, 0.38)   



Another bad clustering 

Class 1 Class 2 Class 3 

Cluster 1 0 0 35 35 

Cluster 2 50 77 38 165 

Cluster 3 38 35 27 100 

100 100 100 300 

Cluster 1:  

Purity: 1 

Precision: 1 

Recall: 0.35   



External Measures of Cluster Validity: 

Entropy and Purity 



   “The validation of clustering structures is the most 
difficult and frustrating part of cluster analysis.  

   Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only to 
those true believers who have experience and 
great courage.” 

 

Algorithms for Clustering Data, Jain and Dubes 

Final Comment on Cluster Validity 



MINIMUM DESCRIPTION 

LENGTH 



Occam’s razor 

• Most data mining tasks can be described as 

creating a model for the data 

• E.g., the EM algorithm models the data as a mixture of 

Gaussians, the K-means models the data as a set of 

centroids. 

• What is the right model? 

 

• Occam’s razor: All other things being equal, the 

simplest model is the best. 

• A good principle for life as well 



Occam's Razor and MDL 

• What is a simple model? 

 

• Minimum Description Length Principle: Every 
model provides a (lossless) encoding of our data. 
The model that gives the shortest encoding (best 
compression) of the data is the best. 
• Related: Kolmogorov complexity. Find the shortest 

program that produces the data (uncomputable).  

• MDL restricts the family of models considered 

 

• Encoding cost: cost of party A to transmit to party B the 
data. 



Minimum Description Length (MDL) 

• The description length consists of two terms 
• The cost of describing the model (model cost) 

• The cost of describing the data given the model (data cost). 

• L(D) = L(M) + L(D|M) 

 

• There is a tradeoff between the two costs 
• Very complex models describe the data in a lot of detail but 

are expensive to describe the model 

• Very simple models are cheap to describe but it is expensive 
to describe the data given the model 

 

• This is generic idea for finding the right model 
• We use MDL as a blanket name. 



35 

Example 

• Regression: find a polynomial for describing a set of values 
• Model complexity (model cost): polynomial coefficients 

• Goodness of fit (data cost): difference between real value and the 
polynomial value 

Source: Grunwald et al. (2005) Tutorial on MDL. 

Minimum model cost 

High data cost 

High model cost 

Minimum data cost 

Low model cost 

Low data cost 

MDL avoids overfitting automatically! 



Example  

• Suppose you want to describe a set of integer numbers 
• Cost of describing a single number is proportional to the value of the 

number x (e.g., logx). 

• How can we get an efficient description? 

 

 

 

 

 

• Cluster integers into two clusters and describe the cluster by 
the centroid and the points by their distance from the centroid 
• Model cost: cost of the centroids 

• Data cost: cost of cluster membership and distance from centroid 

 

• What are the two extreme cases? 
 

 

 

 



MDL and Data Mining 

• Why does the shorter encoding make sense? 

• Shorter encoding implies regularities in the data 

• Regularities in the data imply patterns 

• Patterns are interesting 

 

• Example 

00001000010000100001000010000100001000010001000010000100001 

 

• Short description length, just repeat 12 times 00001 

0100111001010011011010100001110101111011011010101110010011100 

 

• Random sequence, no patterns, no compression 



Is everything about compression? 

• Jürgen Schmidhuber: A theory about creativity, art 
and fun 
• Interesting Art corresponds to a novel pattern that we cannot 

compress well, yet it is not too random so we can learn it 

• Good Humor corresponds to an input that does not 
compress well because it is out of place and surprising 

• Scientific discovery corresponds to a significant compression 
event 

• E.g., a law that can explain all falling apples. 

 

• Fun lecture: 
• Compression Progress: The Algorithmic Principle Behind 

Curiosity and Creativity 

 

http://www.idsia.ch/~juergen/creativity.html
http://www.idsia.ch/~juergen/creativity.html
http://vimeo.com/7441291
http://vimeo.com/7441291
http://vimeo.com/7441291


Issues with MDL 

• What is the right model family? 

• This determines the kind of solutions that we can have 

• E.g., polynomials  

• Clusterings 

 

• What is the encoding cost? 

• Determines the function that we optimize 

• Information theory 

 



INFORMATION THEORY 
A short introduction 



Encoding 

• Consider the following sequence 

 

     AAABBBAAACCCABACAABBAACCABAC 

 

• Suppose you wanted to encode it in binary form, 

how would you do it? 

A  0 

B  10 

C  11 

A is 50% of the sequence 

We should give it a shorter 

representation 

50% A  

25% B  

25% C  

This is actually provably the best encoding! 



Encoding 

• Prefix Codes: no codeword is a prefix of another 

 

 

 

 

• Codes and Distributions: There is one to one mapping 
between codes and distributions 
• If P is a distribution over a set of elements (e.g., {A,B,C}) then there 

exists a (prefix) code C where 𝐿𝐶 𝑥 = − log𝑃 𝑥 , 𝑥 ∈ {𝐴, 𝐵, 𝐶} 

• For every (prefix) code C of elements {A,B,C}, we can define a 
distribution 𝑃 𝑥 = 2−𝐶(𝑥) 

 

• The code defined has the smallest average codelength! 

A  0 

B  10 

C  11 

Uniquely directly decodable 

For every code we can find a prefix code 

of equal length 



Entropy 

• Suppose we have a random variable X that takes n distinct values 

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} 
  that have probabilities P X = 𝑝1, … , 𝑝𝑛  

 

• This defines a code C with 𝐿𝐶 𝑥𝑖 = − log𝑝𝑖 . The average codelength 
is  

− 𝑝𝑖 log 𝑝𝑖

𝑛

𝑖=1

 

• This (more or less) is the entropy 𝐻(𝑋) of the random variable X  

𝐻 𝑋 = − 𝑝𝑖 log 𝑝𝑖

𝑛

𝑖=1

 

• Shannon’s theorem: The entropy is a lower bound on the average 
codelength of any code that encodes the distribution P(X) 
• When encoding N numbers drawn from P(X), the best encoding length we can 

hope for is 𝑁 ∗ 𝐻(𝑋) 
• Reminder: Lossless encoding 



Entropy 

𝐻 𝑋 = − 𝑝𝑖 log 𝑝𝑖

𝑛

𝑖=1

 

• What does it mean? 

• Entropy captures different aspects of a distribution: 
• The compressibility of the data represented by random 

variable X 
• Follows from Shannon’s theorem 

• The uncertainty of the distribution (highest entropy for 
uniform distribution) 
• How well can I predict a value of the random variable? 

• The information content of the random variable X 
• The number of bits used for representing a value is the information 

content of this value. 

 



Claude Shannon 

Father of Information Theory 

 

Envisioned the idea of communication 

of information with 0/1 bits 

 

Introduced the word “bit”   

The word entropy was suggested by Von Neumann 

• Similarity to physics, but also  

• “nobody really knows what entropy really is, so in any 

conversation you will have an advantage” 
 



Some information theoretic measures 

• Conditional entropy H(Y|X): the uncertainty for Y 

given that we know X 

𝐻 𝑌 𝑋 = − 𝑝 𝑥  𝑝(𝑦|𝑥) log 𝑝(𝑦|𝑥)

𝑦𝑥 

= − 𝑝 𝑥, 𝑦 log
𝑝(𝑥, 𝑦)

𝑝(𝑥)
𝑥,𝑦

 

 

• Mutual Information I(X,Y): The reduction in the 

uncertainty for Y (or X) given that we know X (or Y) 

𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋) = 𝐻 𝑋 − 𝐻 𝑋 𝑌  



Some information theoretic measures 

• Cross Entropy: The cost of encoding distribution P, 
using the code of distribution Q 

− 𝑃 𝑥 log𝑄 𝑥

𝑥

 

• KL Divergence KL(P||Q): The increase in encoding 
cost for distribution P when using the code of 
distribution Q 

𝐾𝐿(𝑃| 𝑄 = − 𝑃 𝑥 log𝑄 𝑥

𝑥

+ 𝑃 𝑥 log𝑃 𝑥

𝑥

 

• Not symmetric 

• Problematic if Q not defined for all x of P. 

 

 



Some information theoretic measures 

• Jensen-Shannon Divergence JS(P,Q): distance 

between two distributions P and Q 

• Deals with the shortcomings of KL-divergence 

 

• If M = ½ (P+Q) is the mean distribution 

 

𝐽𝑆 𝑃, 𝑄 =
1

2
𝐾𝐿(𝑃| 𝑀 +

1

2
𝐾𝐿(𝑄||𝑀) 

 

• Jensen-Shannon is a metric 

 



USING MDL FOR  

CO-CLUSTERING 

(CROSS-ASSOCIATIONS) 
 

Thanks to Spiros Papadimitriou. 



Co-clustering 

• Simultaneous grouping of rows and columns of a 

matrix into homogeneous groups 
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Co-clustering 

• Step 1: How to define a “good” partitioning? 

   Intuition and formalization 

 

• Step 2: How to find it? 



Co-clustering 
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versus 

Column groups Column groups 

R
o

w
 g

ro
u

p
s
 

R
o

w
 g

ro
u

p
s
 

Good 

Clustering 

1. Similar nodes are 

grouped together 

2. As few groups as 

necessary 

A few, 

homogeneous 

blocks 

Good 

Compression 

Why is this 

better? 

implies 



log*k + log*ℓ log nimj 

i,j nimj H(pi,j) 

Co-clustering 
MDL formalization—Cost objective 
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ℓ = 3 col. groups 

density of ones 

n1m2 H(p1,2)  bits for (1,2) 

data cost 

bits total 

row-partition 
description 

col-partition 
description 

i,j 
transmit 
#ones ei,j 

+ 

+ 

model cost 
+ 

block size entropy 

+ 

transmit 
#partitions 



Co-clustering 
MDL formalization—Cost objective 

code cost 
(block contents) 

description cost 
(block structure) 

+ 

one row group 
one col group 

n row groups 
m col groups 

low 

high low 

high 

  



Co-clustering 
MDL formalization—Cost objective 

code cost 
(block contents) 

description cost 
(block structure) 

+ 

k = 3 row groups 
ℓ = 3 col groups 

low 

low 

 



Co-clustering 
MDL formalization—Cost objective 

k 

ℓ 

to
ta

l 
b

it
 c

o
s
t 

Cost vs. number of groups 

o
n

e
 ro

w
 g

ro
u

p
 

o
n
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l g
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u

p
 

n
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w
 g

ro
u

p
s
 

m
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o
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u

p
s
 

k =
 3

 ro
w

 g
ro
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p

s
 

ℓ =
 3

 c
o

l g
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u
p

s
 



Co-clustering 

• Step 1: How to define a “good” partitioning? 

   Intuition and formalization 

 

• Step 2: How to find it? 



Search for solution 
Overview: assignments w/ fixed number of groups (shuffles) 

row shuffle column shuffle row shuffle original groups 

No cost improvement: 

Discard 

reassign all rows, 

holding column 

assignments fixed 

reassign all columns, 

holding row 

assignments fixed 



Search for solution 
Overview: assignments w/ fixed number of groups (shuffles) 

row shuffle column shuffle column shuffle 

row shuffle column shuffle 

No cost improvement: 

Discard 

Final shuffle result 



Search for solution 
Shuffles 

• Let 

 

 denote row and col. partitions at the I-th iteration 

• Fix I and for every row x:  
• Splice into ℓ parts, one for each column group 

• Let j, for j = 1,…,ℓ, be the number of ones in each part 

• Assign row x to the row group i¤  I+1(x) such that, for all 

i = 1,…,k, 

 

p1,1 p1,2 p1,3 

p2,1 p2,2 p2,3 

p3,3 p3,2 p3,1 

Similarity (“KL-divergences”) 

of row fragments 

to blocks of a row group 

Assign to second row-group 



k = 5,  ℓ = 5 

Search for solution 
Overview: number of groups k and ℓ (splits & shuffles) 



col. split 
shuffle 

Search for solution 
Overview: number of groups k and ℓ (splits & shuffles) 

k=1, ℓ=2 k=2, ℓ=2 k=2, ℓ=3 k=3, ℓ=3 k=3, ℓ=4 k=4, ℓ=4 k=4, ℓ=5 

k = 1,  ℓ = 1 

row split 
shuffle 

Split: 
Increase k or ℓ 

Shuffle: 
Rearrange rows or cols 

col. split 
shuffle 

row split 
shuffle 

col. split 
shuffle 

row split 
shuffle 

col. split 
shuffle 

k = 5,  ℓ = 5 

row split 
shuffle 

k = 5,  ℓ = 6 

col. split 
shuffle 

No cost improvement: 

Discard 

row split 

k = 6,  ℓ = 5 



Search for solution 
Overview: number of groups k and ℓ (splits & shuffles) 

k=1, ℓ=2 k=2, ℓ=2 k=2, ℓ=3 k=3, ℓ=3 k=3, ℓ=4 k=4, ℓ=4 k=4, ℓ=5 

k = 1,  ℓ = 1 

Split: 
Increase k or ℓ 

Shuffle: 
Rearrange rows or cols 

k = 5,  ℓ = 5 

k = 5,  ℓ = 5 

Final result 



Co-clustering 
CLASSIC 

CLASSIC corpus 

• 3,893 documents 

• 4,303 words 

• 176,347 “dots” (edges) 

 

Combination of 3 sources: 

• MEDLINE (medical) 

• CISI (info. retrieval) 

• CRANFIELD (aerodynamics) 

D
o
c
u
m

e
n
ts

 

Words 



Graph co-clustering 
CLASSIC 

D
o
c
u
m

e
n
ts

 

Words 

“CLASSIC” graph of documents & words: 

 k = 15, ℓ = 19 



Co-clustering 
CLASSIC 

MEDLINE 

(medical) 

insipidus, alveolar, aortic, death, 

prognosis, intravenous 

blood, disease, clinical, 

cell, tissue, patient 

“CLASSIC” graph of documents & words: 

 k = 15, ℓ = 19 

CISI 

(Information 

Retrieval) 

providing, studying, records, 

development, students, rules 

abstract, notation, works, 

construct, bibliographies 

shape, nasa, leading, 

assumed, thin 

paint, examination, fall, 

raise, leave, based 

CRANFIELD 

(aerodynamics) 



Co-clustering 
CLASSIC 

Document 

cluster # 

Document class Precision 

CRANFIELD CISI MEDLINE 

1 0 1 390 0.997 

2 0 0 610 1.000 

3 2 676 9 0.984 

4 1 317 6 0.978 

5 3 452 16 0.960 

6 207 0 0 1.000 

7 188 0 0 1.000 

8 131 0 0 1.000 

9 209 0 0 1.000 

10 107 2 0 0.982 

11 152 3 2 0.968 

12 74 0 0 1.000 

13 139 9 0 0.939 

14 163 0 0 1.000 

15 24 0 0 1.000 

Recall 0.996 0.990 0.968 

0
.9

4
-1

.0
0
 

0.97-0.99 

0.999 

0.975 

0.987 


