
DATA MINING

LECTURE 6
Min-Hashing, Locality Sensitive Hashing

Clustering

MIN-HASHING

AND

LOCALITY SENSITIVE

HASHING
Thanks to:

Rajaraman and Ullman, “Mining Massive Datasets”

Evimaria Terzi, slides for Data Mining Course.

Motivating problem

• Find duplicate and near-duplicate documents

from a web crawl.

• If we wanted exact duplicates we could do this by

hashing

• We will see how to adapt this technique for near

duplicate documents

Main issues

• What is the right representation of the document

when we check for similarity?

• E.g., representing a document as a set of characters

will not do (why?)

• When we have billions of documents, keeping the

full text in memory is not an option.

• We need to find a shorter representation

• How do we do pairwise comparisons of billions of

documents?

• If exact match was the issue it would be ok, can we

replicate this idea?

5

The Big Picture

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures :

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

sensitive

Hashing

Candidate

pairs :

those pairs

of signatures

that we need

to test for

similarity.

Shingling

• Shingle: a sequence of k contiguous characters

a rose is

 rose is a

rose is a

ose is a r

se is a ro

e is a ros

 is a rose

is a rose

s a rose i

 a rose is

1111

2222

3333

4444

5555

6666

7777

8888

9999

0000

Set of Shingles Set of 64-bit integers
Hash function

(Rabin’s fingerprints)

7

Basic Data Model: Sets

• Document: A document is represented as a set

shingles (more accurately, hashes of shingles)

• Document similarity: Jaccard similarity of the sets

of shingles.

• Common shingles over the union of shingles

• Sim (C1, C2) = |C1C2|/|C1C2|.

• Applicable to any kind of sets.

• E.g., similar customers or items.

Signatures

• Key idea: “hash” each set S to a small signature Sig
(S), such that:

1. Sig (S) is small enough that we can fit a signature in main
memory for each set.

2. Sim (S1, S2) is (almost) the same as the “similarity” of Sig
(S1) and Sig (S2). (signature preserves similarity).

• Warning: This method can produce false negatives,
and false positives (if an additional check is not
made).
• False negatives: Similar items deemed as non-similar

• False positives: Non-similar items deemed as similar

9

From Sets to Boolean Matrices

• Represent the data as a boolean matrix M

• Rows = the universe of all possible set elements

• In our case, shingle fingerprints take values in [0…264-1]

• Columns = the sets

• In our case, documents, sets of shingle fingerprints

• M(r,S) = 1 in row r and column S if and only if r is a

member of S.

• Typical matrix is sparse.

• We do not really materialize the matrix

10

Minhashing

• Pick a random permutation of the rows (the

universe U).

• Define “hash” function for set S

• h(S) = the index of the first row (in the permuted order)

in which column S has 1.

• OR

• h(S) = the index of the first element of S in the permuted

order.

• Use k (e.g., k = 100) independent random

permutations to create a signature.

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

A

C

G

F

B

E

D

S1 S2 S3 S4

1 A 1 0 1 0

2 C 0 1 0 1

3 G 1 0 1 0

4 F 1 0 1 0

5 B 1 0 0 1

6 E 0 1 0 1

7 D 0 1 0 1

1 2 1 2

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

D

B

A

C

F

G

E

S1 S2 S3 S4

1 D 0 1 0 1

2 B 1 0 0 1

3 A 1 0 1 0

4 C 0 1 0 1

5 F 1 0 1 0

6 G 1 0 1 0

7 E 0 1 0 1

2 1 3 1

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

C

D

G

F

A

B

E

S1 S2 S3 S4

1 C 0 1 0 1

2 D 0 1 0 1

3 G 1 0 1 0

4 F 1 0 1 0

5 A 1 0 1 0

6 B 1 0 0 1

7 E 0 1 0 1

3 1 3 1

Example of minhash signatures

• Input matrix

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

h1 1 2 1 2

h2 2 1 3 1

h3 3 1 3 1

≈

• Sig(S) = vector of hash values
• e.g., Sig(S2) = [2,1,1]

• Sig(S,i) = value of the i-th hash

function for set S
• E.g., Sig(S2,3) = 1

Signature matrix

15

Hash function Property

Pr(h(S1) = h(S2)) = Sim(S1,S2)

• where the probability is over all choices of
permutations.

• Why?
• The first row where one of the two sets has value 1

belongs to the union.

• Recall that union contains rows with at least one 1.

• We have equality if both sets have value 1, and this row
belongs to the intersection

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

Rows C,D could be anywhere

they do not affect the probability

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

The * rows belong to the union

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

The question is what is the value

of the first * element

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

If it belongs to the intersection

then h(X) = h(Y)

Example

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G}

• Y = {A,E,F,G}

• Union =

 {A,B,E,F,G}

• Intersection =

 {A,F,G}

X Y

A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*

*

C

*

*

*

X Y

D 0 0

C 0 0

Every element of the union is equally likely

to be the * element

Pr(h(X) = h(Y)) =
| A,F,G |
| A,B,E,F,G |

=
3
5
= Sim(X,Y)

Zero similarity is preserved

High similarity is well approximated

21

Similarity for Signatures

• The similarity of signatures is the fraction of the
hash functions in which they agree.

• With multiple signatures we get a good
approximation

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S4

1 2 1 2

2 1 3 1

3 1 3 1

≈

Actual Sig

(S1, S2) 0 0

(S1, S3) 3/5 2/3

(S1, S4) 1/7 0

(S2, S3) 0 0

(S2, S4) 3/4 1

(S3, S4) 0 0

Signature matrix

Is it now feasible?

• Assume a billion rows

• Hard to pick a random permutation of 1…billion

• Even representing a random permutation

requires 1 billion entries!!!

• How about accessing rows in permuted order?

Being more practical

• Instead of permuting the rows we will apply a hash

function that maps the rows to a new (possibly larger)

space

• The value of the hash function is the position of the row in

the new order (permutation).

• Each set is represented by the smallest hash value among

the elements in the set

• The space of the hash functions should be such that

if we select one at random each element (row) has

equal probability to have the smallest value

• Min-wise independent hash functions

Algorithm – One set, one hash function

Computing Sig(S,i) for a single column S and

single hash function hi

for each row r

 compute hi (r)

 if column S that has 1 in row r

 if hi (r) is a smaller value than Sig(S,i) then

 Sig(S,i) = hi (r);

Sig(S,i) will become the smallest value of hi(r) among all rows

(shingles) for which column S has value 1 (shingle belongs in S);

i.e., hi (r) gives the min index for the i-th permutation

In practice only the rows (shingles)

that appear in the data

hi (r) = index of row r in permutation

S contains row r

Find the row r with minimum index

Algorithm – All sets, k hash functions

Pick k=100 hash functions (h1,…,hk)

for each row r

 for each hash function hi

 compute hi (r)

 for each column S that has 1 in row r

 if hi (r) is a smaller value than Sig(S,i) then

 Sig(S,i) = hi (r);

In practice this means selecting the

hash function parameters

Compute hi (r) only once for all sets

26

Example

Row S1 S2

 A 1 0

 B 0 1

 C 1 1

 D 1 0

 E 0 1

h(x) = x+1 mod 5

g(x) = 2x+3 mod 5

h(0) = 1 1 -

g(0) = 3 3 -

h(1) = 2 1 2

g(1) = 0 3 0

h(2) = 3 1 2

g(2) = 2 2 0

h(3) = 4 1 2

g(3) = 4 2 0

h(4) = 0 1 0

g(4) = 1 2 0

Sig1 Sig2

Row S1 S2

 E 0 1

 A 1 0

 B 0 1

 C 1 1

 D 1 0

Row S1 S2

 B 0 1

 E 0 1

 C 1 0

 A 1 1

 D 1 0

x

0

1

2

3

4

h(Row)

0

1

2

3

4

g(Row)

0

1

2

3

4

h(x)

1

2

3

4

0

g(x)

3

0

2

4

1

27

Implementation

• Often, data is given by column, not row.

• E.g., columns = documents, rows = shingles.

• If so, sort matrix once so it is by row.

• And always compute hi (r) only once for each

row.

28

Finding similar pairs

• Problem: Find all pairs of documents with

similarity at least t = 0.8

• While the signatures of all columns may fit in

main memory, comparing the signatures of all

pairs of columns is quadratic in the number of

columns.

• Example: 106 columns implies 5*1011 column-

comparisons.

• At 1 microsecond/comparison: 6 days.

29

Locality-Sensitive Hashing

• What we want: a function f(X,Y) that tells whether or not X
and Y is a candidate pair: a pair of elements whose
similarity must be evaluated.

• A simple idea: X and Y are a candidate pair if they have
the same min-hash signature.
• Easy to test by hashing the signatures.

• Similar sets are more likely to have the same signature.

• Likely to produce many false negatives.
• Requiring full match of signature is strict, some similar sets will be lost.

• Improvement: Compute multiple signatures; candidate
pairs should have at least one common signature.
• Reduce the probability for false negatives.

! Multiple levels of Hashing!

30

Signature matrix reminder

Matrix M

n hash functions

Sig(S):

signature for set S

hash function i

Sig(S,i)

signature for set S’

Sig(S’,i)

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’)

31

Partition into Bands – (1)

• Divide the signature matrix Sig into b bands of r

rows.

• Each band is a mini-signature with r hash functions.

32

Partitioning into bands

Matrix Sig

r rows

per band

b bands

 One

signature

n = b*r hash functions

b mini-signatures

33

Partition into Bands – (2)

• Divide the signature matrix Sig into b bands of r

rows.

• Each band is a mini-signature with r hash functions.

• For each band, hash the mini-signature to a hash

table with k buckets.

• Make k as large as possible so that mini-signatures that

hash to the same bucket are almost certainly identical.

34

Matrix M

r rows b bands

3 2 1 5 6 4 7

Hash Table Columns 2 and 6

are (almost certainly) identical.

Columns 6 and 7 are

surely different.

35

Partition into Bands – (3)

• Divide the signature matrix Sig into b bands of r
rows.
• Each band is a mini-signature with r hash functions.

• For each band, hash the mini-signature to a hash table
with k buckets.
• Make k as large as possible so that mini-signatures that hash

to the same bucket are almost certainly identical.

• Candidate column pairs are those that hash to the
same bucket for at least 1 band.

• Tune b and r to catch most similar pairs, but few non-
similar pairs.

36

Analysis of LSH – What We Want

 Similarity s of two sets

Probability

of sharing

a bucket

t

No chance

if s < t

Probability

= 1 if s > t

37

What One Band of One Row Gives You

Similarity s of two sets

Probability

of sharing

a bucket

t

Remember:

probability of

equal hash-values

= similarity

Single hash signature

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’)

38

What b Bands of r Rows Gives You

Similarity s of two sets

Probability

of sharing

a bucket

t

s r

All rows

of a band

are equal

1 -

Some row

of a band

unequal

()b

No bands

identical

1 -

At least

one band

identical

t ~ (1/b)1/r

39

Example: b = 20; r = 5

 s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

t = 0.5

40

Suppose S1, S2 are 80% Similar

• We want all 80%-similar pairs. Choose 20 bands of 5
integers/band.

• Probability S1, S2 identical in one particular band:

(0.8)5 = 0.328.

• Probability S1, S2 are not similar in any of the 20 bands:

(1-0.328)20 = 0.00035

• i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.

• Probability S1, S2 are similar in at least one of the 20
bands:

1-0.00035 = 0.999

41

Suppose S1, S2 Only 40% Similar

• Probability S1, S2 identical in any one particular
band:

 (0.4)5 = 0.01 .

• Probability S1, S2 identical in at least 1 of 20
bands:

 ≤ 20 * 0.01 = 0.2 .

• But false positives much lower for similarities
<< 40%.

42

LSH Summary

• Tune to get almost all pairs with similar

signatures, but eliminate most pairs that do not

have similar signatures.

• Check in main memory that candidate pairs

really do have similar signatures.

• Optional: In another pass through data, check

that the remaining candidate pairs really

represent similar sets .

Locality-sensitive hashing (LSH)

• Big Picture: Construct hash functions h: Rd
 U

such that for any pair of points p,q, for distance

function D we have:

• If D(p,q)≤r, then Pr[h(p)=h(q)] ≥ α is high

• If D(p,q)≥cr, then Pr[h(p)=h(q)] ≤ β is small

• Then, we can find close pairs by hashing

• LSH is a general framework: for a given distance

function D we need to find the right h

• h is (r,cr, α, β)-sensitive

44

LSH for Cosine Distance

• For cosine distance, there is a technique

analogous to minhashing for generating a

(d1,d2,(1-d1/180),(1-d2/180))- sensitive family

for any d1 and d2.

• Called random hyperplanes.

45

Random Hyperplanes

• Pick a random vector v, which determines a

hash function hv with two buckets.

• hv(x) = +1 if v.x > 0; = -1 if v.x < 0.

• LS-family H = set of all functions derived from

any vector.

• Claim: Prob[h(x)=h(y)] = 1 – (angle between x

and y divided by 180).

46

Proof of Claim

x

y

Look in the

plane of x

and y.

Prob[Red case]

= θ/180

θ
Hyperplanes

(normal to v)

for which h(x)

<> h(y)

v

Hyperplanes

for which

h(x) = h(y)

47

Signatures for Cosine Distance

• Pick some number of vectors, and hash your

data for each vector.

• The result is a signature (sketch) of +1’s and –

1’s that can be used for LSH like the minhash

signatures for Jaccard distance.

48

Simplification

• We need not pick from among all possible vectors

v to form a component of a sketch.

• It suffices to consider only vectors v consisting of

+1 and –1 components.

CLUSTERING

What is a Clustering?

• In general a grouping of objects such that the objects in a

group (cluster) are similar (or related) to one another and

different from (or unrelated to) the objects in other groups

Inter-cluster
distances are
maximized

Intra-cluster
distances are

minimized

Applications of Cluster Analysis

• Understanding

• Group related documents for

browsing, group genes and

proteins that have similar

functionality, or group stocks

with similar price fluctuations

• Summarization

• Reduce the size of large data

sets

 Discovered Clusters Industry Group

1
Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,

Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down,

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,

Sun-DOWN

Technology1-DOWN

2
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN,

ADV-Micro-Device-DOWN,Andrew-Corp-DOWN,

Computer-Assoc-DOWN,Circuit-City-DOWN,

Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN

Technology2-DOWN

3
Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,

MBNA-Corp-DOWN,Morgan-Stanley-DOWN

Financial-DOWN

4
Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP,

Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP,

Schlumberger-UP

Oil-UP

Clustering precipitation

in Australia

Early applications of cluster analysis

• John Snow, London 1854

Notion of a Cluster can be Ambiguous

How many clusters?

Four Clusters Two Clusters

Six Clusters

Types of Clusterings

• A clustering is a set of clusters

• Important distinction between hierarchical and
partitional sets of clusters

• Partitional Clustering
• A division data objects into subsets (clusters) such

that each data object is in exactly one subset

• Hierarchical clustering
• A set of nested clusters organized as a hierarchical

tree

Partitional Clustering

Original Points A Partitional Clustering

Hierarchical Clustering

p4

p1
p3

p2

p4

p1
p3

p2

p4p1 p2 p3

p4p1 p2 p3

Traditional Hierarchical

Clustering

Non-traditional Hierarchical

Clustering

Non-traditional Dendrogram

Traditional Dendrogram

Other types of clustering

• Exclusive (or non-overlapping) versus non-
exclusive (or overlapping)
• In non-exclusive clusterings, points may belong to

multiple clusters.
• Points that belong to multiple classes, or ‘border’ points

• Fuzzy (or soft) versus non-fuzzy (or hard)

• In fuzzy clustering, a point belongs to every cluster
with some weight between 0 and 1
• Weights usually must sum to 1 (often interpreted as probabilities)

• Partial versus complete

• In some cases, we only want to cluster some of the
data

Types of Clusters: Well-Separated

• Well-Separated Clusters:
• A cluster is a set of points such that any point in a cluster is

closer (or more similar) to every other point in the cluster than
to any point not in the cluster.

3 well-separated clusters

Types of Clusters: Center-Based

• Center-based
• A cluster is a set of objects such that an object in a cluster is

closer (more similar) to the “center” of a cluster, than to the
center of any other cluster

• The center of a cluster is often a centroid, the minimizer of
distances from all the points in the cluster, or a medoid, the
most “representative” point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

• Contiguous Cluster (Nearest neighbor or
Transitive)
• A cluster is a set of points such that a point in a cluster is

closer (or more similar) to one or more other points in the
cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

• Density-based
• A cluster is a dense region of points, which is separated by

low-density regions, from other regions of high density.

• Used when the clusters are irregular or intertwined, and when
noise and outliers are present.

6 density-based clusters

Types of Clusters: Conceptual Clusters

• Shared Property or Conceptual Clusters
• Finds clusters that share some common property or represent

a particular concept.

.

2 Overlapping Circles

Types of Clusters: Objective Function

• Clustering as an optimization problem
• Finds clusters that minimize or maximize an objective function.

• Enumerate all possible ways of dividing the points into clusters
and evaluate the `goodness' of each potential set of clusters by
using the given objective function. (NP Hard)

• Can have global or local objectives.

• Hierarchical clustering algorithms typically have local objectives

• Partitional algorithms typically have global objectives

• A variation of the global objective function approach is to fit the
data to a parameterized model.

• The parameters for the model are determined from the data, and they
determine the clustering

• E.g., Mixture models assume that the data is a ‘mixture' of a number
of statistical distributions.

Clustering Algorithms

• K-means and its variants

• Hierarchical clustering

• DBSCAN

K-MEANS

K-means Clustering

• Partitional clustering approach

• Each cluster is associated with a centroid
(center point)

• Each point is assigned to the cluster with the
closest centroid

• Number of clusters, K, must be specified

• The objective is to minimize the sum of
distances of the points to their respective
centroid

K-means Clustering

• Problem: Given a set X of n points in a d-

dimensional space and an integer K group the

points into K clusters C= {C1, C2,…,Ck} such that

𝐶𝑜𝑠𝑡 𝐶 = 𝑑𝑖𝑠𝑡(𝑥, 𝑐)

𝑥∈𝐶𝑖

𝑘

𝑖=1

 is minimized, where ci is the centroid of the points

in cluster Ci

K-means Clustering

• Most common definition is with euclidean distance,
minimizing the Sum of Squares Error (SSE) function
• Sometimes K-means is defined like that

• Problem: Given a set X of n points in a d-
dimensional space and an integer K group the points
into K clusters C= {C1, C2,…,Ck} such that

𝐶𝑜𝑠𝑡 𝐶 = 𝑥 − 𝑐𝑖
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

is minimized, where ci is the mean of the points in
cluster Ci Sum of Squares Error (SSE)

Complexity of the k-means problem

• NP-hard if the dimensionality of the data is at

least 2 (d>=2)

• Finding the best solution in polynomial time is infeasible

• For d=1 the problem is solvable in polynomial

time (how?)

• A simple iterative algorithm works quite well in

practice

K-means Algorithm

• Also known as Lloyd’s algorithm.

• K-means is sometimes synonymous with this

algorithm

K-means Algorithm – Initialization

• Initial centroids are often chosen randomly.

• Clusters produced vary from one run to another.

Two different K-means Clusterings

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Sub-optimal Clustering

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Optimal Clustering

Original Points

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

Importance of Choosing Initial Centroids …

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

Dealing with Initialization

• Do multiple runs and select the clustering with the

smallest error

• Select original set of points by methods other

than random . E.g., pick the most distant (from

each other) points as cluster centers (K-means++

algorithm)

K-means Algorithm – Centroids

• The centroid depends on the distance function
• The minimizer for the distance function

• ‘Closeness’ is measured by Euclidean distance
(SSE), cosine similarity, correlation, etc.

• Centroid:
• The mean of the points in the cluster for SSE, and cosine

similarity

• The median for Manhattan distance.

• Finding the centroid is not always easy
• It can be an NP-hard problem for some distance functions

• E.g., median form multiple dimensions

K-means Algorithm – Convergence

• K-means will converge for common similarity

measures mentioned above.

• Most of the convergence happens in the first few

iterations.

• Often the stopping condition is changed to ‘Until

relatively few points change clusters’

• Complexity is O(n * K * I * d)

• n = number of points, K = number of clusters,

I = number of iterations, d = dimensionality

• In general a fast and efficient algorithm

Limitations of K-means

• K-means has problems when clusters are of

different

• Sizes

• Densities

• Non-globular shapes

• K-means has problems when the data contains

outliers.

Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.

Find parts of clusters, but need to put together.

Overcoming K-means Limitations

Original Points K-means Clusters

Overcoming K-means Limitations

Original Points K-means Clusters

Variations

• K-medoids: Similar problem definition as in K-

means, but the centroid of the cluster is defined

to be one of the points in the cluster (the medoid).

• K-centers: Similar problem definition as in K-

means, but the goal now is to minimize the

maximum diameter of the clusters (diameter of a

cluster is maximum distance between any two

points in the cluster).

