
DATA MINING 

LECTURE 6 
Min-Hashing, Locality Sensitive Hashing 

Clustering 



MIN-HASHING 

AND  

LOCALITY SENSITIVE 

HASHING 
Thanks to: 

Rajaraman and Ullman, “Mining Massive Datasets” 

Evimaria Terzi, slides for Data Mining Course.  



Motivating problem 

• Find duplicate and near-duplicate documents 

from a web crawl. 

 

• If we wanted exact duplicates we could do this by 

hashing 

• We will see how to adapt this technique for near 

duplicate documents 



Main issues 

• What is the right representation of the document 

when we check for similarity? 

• E.g., representing a document as a set of characters 

will not do (why?) 

• When we have billions of documents, keeping the 

full text in memory is not an option. 

• We need to find a shorter representation 

• How do we do pairwise comparisons of billions of 

documents? 

• If exact match was the issue it would be ok, can we 

replicate this idea? 
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The Big Picture 

Docu- 

ment 

The set 

of strings 

of length k 

that appear 

in the doc- 

ument 

Signatures : 

short integer 

vectors that 

represent the 

sets, and 

reflect their 

similarity 

Locality- 

sensitive 

Hashing 

Candidate 

pairs : 

those pairs 

of signatures 

that we need 

to test for 

similarity. 



Shingling 

• Shingle: a sequence of k contiguous characters 

a rose is  

 rose is a 

rose is a  

ose is a r 

se is a ro 

e is a ros 

 is a rose 

is a rose  

s a rose i 

 a rose is 

1111 

2222 

3333 

4444 

5555 

6666 

7777 

8888 

9999 

0000 

Set of Shingles Set of 64-bit integers 
Hash function 

(Rabin’s fingerprints) 
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Basic Data Model: Sets 

• Document: A document is represented as a set 

shingles (more accurately, hashes of shingles) 

 

• Document similarity: Jaccard similarity of the sets 

of shingles. 

• Common shingles over the union of shingles 

• Sim (C1, C2) = |C1C2|/|C1C2|. 

 

• Applicable to any kind of sets. 

• E.g., similar customers or items. 



Signatures  

• Key idea: “hash” each set S  to a small signature Sig 
(S), such that: 

 

1. Sig (S) is small enough that we can fit a signature in main 
memory for each set. 

 

2. Sim (S1, S2) is (almost) the same as the “similarity” of Sig 
(S1) and Sig (S2). (signature preserves similarity). 

 

• Warning: This method can produce false negatives, 
and false positives (if an additional check is not 
made). 
• False negatives: Similar items deemed as non-similar 

• False positives: Non-similar items deemed as similar 
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From Sets to Boolean Matrices 

• Represent the data as a boolean matrix M 

• Rows = the universe of all possible set elements  

• In our case, shingle fingerprints take values in [0…264-1] 

• Columns = the sets  

• In our case, documents, sets of shingle fingerprints 

• M(r,S) = 1 in row r  and column S  if and only if r  is a 

member of S. 

 

• Typical matrix is sparse. 

• We do not really materialize the matrix 
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Minhashing 

• Pick a random permutation of the rows (the 

universe U). 

• Define “hash” function for set S 

• h(S) = the index of the first row (in the permuted order) 

in which column S has 1. 

• OR  

• h(S) = the index of the first element of S in the permuted 

order. 

• Use k (e.g., k = 100) independent random 

permutations to create a signature. 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

A 

C 

G 

F 

B 

E 

D 

S1 S2 S3 S4 

1 A 1 0 1 0 

2 C 0 1 0 1 

3 G 1 0 1 0 

4 F 1 0 1 0 

5 B 1 0 0 1 

6 E 0 1 0 1 

7 D 0 1 0 1 

1 2 1 2 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

D 

B 

A 

C 

F 

G 

E 

S1 S2 S3 S4 

1 D 0 1 0 1 

2 B 1 0 0 1 

3 A 1 0 1 0 

4 C 0 1 0 1 

5 F 1 0 1 0 

6 G 1 0 1 0 

7 E 0 1 0 1 

2 1 3 1 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

C 

D 

G 

F 

A 

B 

E 

S1 S2 S3 S4 

1 C 0 1 0 1 

2 D 0 1 0 1 

3 G 1 0 1 0 

4 F 1 0 1 0 

5 A 1 0 1 0 

6 B 1 0 0 1 

7 E 0 1 0 1 

3 1 3 1 



Example of minhash signatures 

• Input matrix 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

S1 S2 S3 S4 

h1 1 2 1 2 

h2 2 1 3 1 

h3 3 1 3 1 

≈ 

• Sig(S) = vector of hash values  
• e.g., Sig(S2) = [2,1,1] 

• Sig(S,i) = value of the i-th hash 

function for set S 
• E.g., Sig(S2,3) = 1 

Signature matrix 
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Hash function Property 

 

Pr(h(S1) = h(S2)) = Sim(S1,S2) 

 

• where the probability is over all choices of  
permutations.  

 

• Why? 
• The first row where one of the two sets has value 1 

belongs to the union. 

• Recall that union contains rows with at least one 1. 

• We have equality if both sets have value 1, and this row 
belongs to the intersection 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

Rows C,D could be anywhere 

they do not affect the probability 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

The * rows belong to the union 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

The question is what is the value 

of the first * element 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

If it belongs to the intersection 

then h(X) = h(Y) 



Example 

• Universe: U = {A,B,C,D,E,F,G} 

• X = {A,B,F,G} 

• Y = {A,E,F,G} 

 

• Union =  

      {A,B,E,F,G} 

• Intersection =  

      {A,F,G} 

 

 

 

 

X Y 

A 1 1 

B 1 0 

C 0 0 

D 0 0 

E 0 1 

F 1 1 

G 1 1 

D 

* 

* 

C 

* 

* 

* 

X Y 

D 0 0 

C 0 0 

Every element of the union is equally likely 

to be the * element 

Pr(h(X) = h(Y)) = 
| A,F,G |
| A,B,E,F,G |

= 
3
5
= Sim(X,Y) 

 



Zero similarity is preserved 

High similarity is well approximated 
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Similarity for Signatures 

• The similarity of signatures  is the fraction of the 
hash functions in which they agree. 

 

 

 

 

 

 

 

• With multiple signatures we get a good 
approximation 

S1 S2 S3 S4 

A 1 0 1 0 

B 1 0 0 1 

C 0 1 0 1 

D 0 1 0 1 

E 0 1 0 1 

F 1 0 1 0 

G 1 0 1 0 

S1 S2 S3 S4 

1 2 1 2 

2 1 3 1 

3 1 3 1 

≈ 

Actual Sig 

(S1, S2) 0 0 

(S1, S3) 3/5 2/3 

(S1, S4) 1/7 0 

(S2, S3) 0 0 

(S2, S4) 3/4 1 

(S3, S4) 0 0 

Signature matrix 



Is it now feasible? 

• Assume a billion rows 

• Hard to pick a random permutation of 1…billion 

• Even representing a random permutation 

requires 1 billion entries!!! 

• How about accessing rows in permuted order?  



Being more practical 

• Instead of permuting the rows we will apply a hash 

function that maps the rows to a new (possibly larger) 

space 

• The value of the hash function is the position of the row in 

the new order (permutation). 

• Each set is represented by the smallest hash value among 

the elements in the set 

 

• The space of the hash functions should be such that 

if we select one at random each element (row) has 

equal probability to have the smallest value 

• Min-wise independent hash functions  



Algorithm – One set, one hash function 

Computing Sig(S,i) for a single column S and 

single hash function hi 

 

for each row r  

     compute hi (r )  

      if column S that has 1 in row r  

  if hi (r ) is a smaller value than Sig(S,i) then 

    Sig(S,i) = hi (r); 

 

 
Sig(S,i) will become the smallest value of hi(r) among all rows 

(shingles) for which column S has value 1 (shingle belongs in S); 

i.e., hi (r) gives the min index for the i-th permutation 

In practice only the rows (shingles) 

that appear in the data 

hi (r) = index of row r in permutation 

S contains row r 

Find the row r with minimum index 



Algorithm – All sets, k hash functions 

Pick k=100 hash functions (h1,…,hk) 

 

for each row r  

   for each hash function hi  

      compute hi (r )  

      for each column S that has 1 in row r  

  if hi (r ) is a smaller value than Sig(S,i) then 

    Sig(S,i) = hi (r); 

 

 

In practice this means selecting the 

hash function parameters 

Compute hi (r) only once for all sets 
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Example 

Row S1 S2 

  A  1  0 

  B  0  1 

  C  1  1 

  D  1  0 

  E  0  1 

h(x) = x+1 mod 5 

g(x) = 2x+3 mod 5 

h(0) = 1  1 - 

g(0) = 3  3 - 

h(1) = 2  1 2 

g(1) = 0  3 0 

h(2) = 3  1 2 

g(2) = 2  2 0 

h(3) = 4  1 2 

g(3) = 4  2 0 

h(4) = 0  1 0 

g(4) = 1  2 0 

Sig1 Sig2 

Row S1 S2 

  E    0  1  

  A    1  0 

  B    0  1 

  C    1  1 

  D    1  0 

   

Row S1 S2 

  B    0  1  

  E    0  1  

  C    1  0 

  A    1  1 

  D   1  0 

   

x 

0 

1 

2 

3 

4 

h(Row) 

0 

1 

2 

3 

4 

g(Row) 

0 

1 

2 

3 

4 

h(x) 

1 

2 

3 

4 

0 

g(x) 

3 

0 

2 

4 

1 
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Implementation 

• Often, data is given by column, not row. 

• E.g., columns = documents, rows = shingles. 

• If so, sort matrix once so it is by row. 

• And always  compute hi (r ) only once for each 

row. 
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Finding similar pairs 

• Problem: Find all pairs of documents with 

similarity at least t = 0.8 

• While the signatures of all columns may fit in 

main memory, comparing the signatures of all 

pairs of columns is quadratic in the number of 

columns. 

• Example: 106 columns implies 5*1011 column-

comparisons. 

• At 1 microsecond/comparison: 6 days. 
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Locality-Sensitive Hashing 

• What we want: a function f(X,Y) that tells whether or not X  
and Y  is a candidate pair: a pair of elements whose 
similarity must be evaluated. 

 

• A simple idea: X and Y are a candidate pair if they have 
the same min-hash signature. 
• Easy to test by hashing the signatures. 

• Similar sets are more likely to have the same signature. 

• Likely to produce many false negatives. 
• Requiring full match of signature is strict, some similar sets will be lost. 

 

• Improvement: Compute multiple signatures; candidate 
pairs should have at least one common signature.  
• Reduce the probability for false negatives. 

! Multiple levels of Hashing! 
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Signature matrix reminder 

Matrix M 

n hash functions 

Sig(S): 

signature for set S 

hash function i 

Sig(S,i) 

signature for set S’ 

Sig(S’,i) 

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’) 
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Partition into Bands – (1) 

• Divide the signature matrix Sig  into b  bands of r  

rows. 

• Each band is a mini-signature with r hash functions. 
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Partitioning into bands 

Matrix Sig 

r  rows 

per band 

b  bands 

   One 

signature 

n = b*r   hash functions 

b  mini-signatures 
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Partition into Bands – (2) 

• Divide the signature matrix Sig  into b  bands of r  

rows. 

• Each band is a mini-signature with r hash functions. 

• For each band, hash the mini-signature to a hash 

table with k  buckets. 

• Make k  as large as possible so that mini-signatures that 

hash to the same bucket are almost certainly identical. 
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Matrix M 

r  rows b  bands 

3 2 1 5 6 4 7 

Hash Table Columns 2 and 6 

are (almost certainly) identical. 

Columns 6 and 7 are 

surely different. 
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Partition into Bands – (3) 

• Divide the signature matrix Sig  into b  bands of r  
rows. 
• Each band is a mini-signature with r hash functions. 

• For each band, hash the mini-signature to a hash table 
with k  buckets. 
• Make k  as large as possible so that mini-signatures that hash 

to the same bucket are almost certainly identical. 

• Candidate column pairs are those that hash to the 
same bucket for at least 1 band. 

• Tune b and r  to catch most similar pairs, but few non-
similar pairs. 
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Analysis of LSH – What We Want 

       Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

No chance 

if s < t 

Probability 

= 1 if s > t 
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What One Band of One Row Gives You 

Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

Remember: 

probability of 

equal hash-values 

= similarity 

Single hash signature 

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’) 
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What b  Bands of r  Rows Gives You 

Similarity s  of two sets 

Probability 

of sharing 

a bucket 

t 

s r  

All rows 

of a band 

are equal 

1 - 

Some row 

of a band 

unequal 

( )b  

 

No bands 

identical 

1 - 

At least 

one band 

identical 

t ~ (1/b)1/r  
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Example: b  = 20; r  = 5 

 s  1-(1-sr)b 

.2    .006 

.3    .047 

.4    .186 

.5    .470 

.6    .802 

.7    .975 

.8    .9996 

t = 0.5 
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Suppose S1, S2 are 80% Similar 

• We want all 80%-similar pairs. Choose 20 bands of 5 
integers/band. 

 

• Probability S1, S2 identical in one particular band:  

(0.8)5 = 0.328. 

 

• Probability S1, S2 are not  similar in any of the 20 bands: 

(1-0.328)20 = 0.00035  
 

• i.e., about 1/3000-th of the 80%-similar column pairs are false negatives. 

 

• Probability S1, S2 are similar in at least one of the 20 
bands:  

1-0.00035 = 0.999 
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Suppose S1, S2 Only 40% Similar 

• Probability S1, S2 identical in any one particular 
band:  

  (0.4)5  = 0.01 . 

 

• Probability S1, S2 identical in at least 1 of 20 
bands:  

   ≤ 20 * 0.01 = 0.2 . 

 

• But false positives much lower for similarities 
<< 40%.  
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LSH Summary 

• Tune to get almost all pairs with similar 

signatures, but eliminate most pairs that do not 

have similar signatures. 

• Check in main memory that candidate pairs 

really do have similar signatures. 

• Optional: In another pass through data, check 

that the remaining candidate pairs really 

represent similar sets . 



Locality-sensitive hashing (LSH) 

• Big Picture: Construct hash functions h: Rd
 U 

such that for any pair of points p,q, for distance 

function D we have: 

• If D(p,q)≤r, then Pr[h(p)=h(q)] ≥ α  is high 

• If D(p,q)≥cr, then Pr[h(p)=h(q)] ≤ β  is small 

• Then, we can find close pairs by hashing 

 

• LSH is a general framework: for a given distance 

function D we need to find the right h 

• h is (r,cr, α, β)-sensitive 
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LSH for Cosine Distance 

• For cosine distance, there is a technique 

analogous to minhashing for generating a 

(d1,d2,(1-d1/180),(1-d2/180))- sensitive family 

for any d1 and d2. 

• Called random hyperplanes. 
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Random Hyperplanes 

• Pick a random vector v, which determines a 

hash function hv  with two buckets. 

• hv(x) = +1 if v.x > 0; = -1 if v.x < 0. 

• LS-family H = set of all functions derived from 

any vector. 

• Claim: Prob[h(x)=h(y)] = 1 – (angle between x   

and y  divided by 180). 
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Proof of Claim 

x 

y 

Look in the 

plane of x 

and y. 

Prob[Red case] 

= θ/180 

θ 
Hyperplanes 

(normal to v ) 

for which h(x) 

<> h(y) 

v 

Hyperplanes 

for which 

h(x) = h(y) 
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Signatures for Cosine Distance 

• Pick some number of vectors, and hash your 

data for each vector. 

• The result is a signature (sketch ) of +1’s and –

1’s that can be used for LSH like the minhash 

signatures for Jaccard distance. 
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Simplification 

• We need not pick from among all possible vectors 

v  to form a component of a sketch. 

• It suffices to consider only vectors v  consisting of 

+1 and –1 components. 



CLUSTERING 



What is a Clustering? 

• In general a grouping of objects such that the objects in a 

group (cluster) are similar (or related) to one another and 

different from (or unrelated to) the objects in other groups 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 



Applications of Cluster Analysis 

• Understanding 

• Group related documents for 

browsing, group genes and 

proteins that have similar 

functionality, or group stocks 

with similar price fluctuations 

 

• Summarization 

• Reduce the size of large data 

sets 

 

 Discovered Clusters Industry Group 

1 
Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 

Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 

Sun-DOWN 

 

 

Technology1-DOWN 

2 
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 

ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 

Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 

 

Technology2-DOWN 

3 
Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 

MBNA-Corp-DOWN,Morgan-Stanley-DOWN 
 

Financial-DOWN 

4 
Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 

Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 

Oil-UP 

 

 

Clustering precipitation 

in Australia 



Early applications of cluster analysis 

• John Snow, London 1854 



Notion of a Cluster can be Ambiguous 

How many clusters? 

Four Clusters  Two Clusters  

Six Clusters  



Types of Clusterings 

• A clustering is a set of clusters 
 

• Important distinction between hierarchical and 
partitional sets of clusters  
 

• Partitional Clustering 
• A division data objects into subsets (clusters) such 

that each data object is in exactly one subset 
 

• Hierarchical clustering 
• A set of nested clusters organized as a hierarchical 

tree  



Partitional Clustering 

Original Points A Partitional  Clustering 



Hierarchical Clustering 

p4

p1
p3

p2

 

p4 

p1 
p3 

p2 

p4p1 p2 p3

p4p1 p2 p3

Traditional Hierarchical 

Clustering 

Non-traditional Hierarchical 

Clustering 

Non-traditional Dendrogram 

Traditional Dendrogram 



Other types of clustering 

• Exclusive (or non-overlapping) versus non-
exclusive (or overlapping)  
• In non-exclusive clusterings, points may belong to 

multiple clusters. 
• Points that belong to multiple classes, or ‘border’ points 

 
• Fuzzy (or soft) versus non-fuzzy (or hard) 

• In fuzzy clustering, a point belongs to every cluster 
with some weight between 0 and 1 
• Weights usually must sum to 1 (often interpreted as probabilities) 

 
• Partial versus complete 

• In some cases, we only want to cluster some of the 
data 

 



Types of Clusters: Well-Separated 

• Well-Separated Clusters:  
• A cluster is a set of points such that any point in a cluster is 

closer (or more similar) to every other point in the cluster than 
to any point not in the cluster.  

 

3 well-separated clusters 



Types of Clusters: Center-Based 

• Center-based 
•  A cluster is a set of objects such that an object in a cluster is 

closer (more similar) to the “center” of a cluster, than to the 
center of any other cluster   

• The center of a cluster is often a centroid, the minimizer of 
distances from all the points in the cluster, or a medoid, the 
most “representative” point of a cluster  

 

4 center-based clusters 



Types of Clusters: Contiguity-Based 

• Contiguous Cluster (Nearest neighbor or 
Transitive) 
• A cluster is a set of points such that a point in a cluster is 

closer (or more similar) to one or more other points in the 
cluster than to any point not in the cluster. 

 

8 contiguous clusters 



Types of Clusters: Density-Based 

• Density-based 
• A cluster is a dense region of points, which is separated by 

low-density regions, from other regions of high density.  

• Used when the clusters are irregular or intertwined, and when 
noise and outliers are present.  

6 density-based clusters 



Types of Clusters: Conceptual Clusters 

• Shared Property or Conceptual Clusters 
• Finds clusters that share some common property or represent 

a particular concept.  

.  

2 Overlapping Circles 



Types of Clusters: Objective Function 

• Clustering as an optimization problem 
• Finds clusters that minimize or maximize an objective function.  

• Enumerate all possible ways of dividing the points into clusters 
and evaluate the `goodness' of each potential set of clusters by 
using the given objective function.  (NP Hard) 

•  Can have global or local objectives. 

•  Hierarchical clustering algorithms typically have local objectives 

•  Partitional algorithms typically have global objectives 

• A variation of the global objective function approach is to fit the 
data to a parameterized model.  

•  The parameters for the model are determined from the data, and they 
determine the clustering 

•  E.g., Mixture models assume that the data is a ‘mixture' of a number 
of statistical distributions.   



Clustering Algorithms 

• K-means and its variants 
 

• Hierarchical clustering 

 

• DBSCAN 

 

 



K-MEANS 



K-means Clustering 

• Partitional clustering approach  

• Each cluster is associated with a centroid 
(center point)  

• Each point is assigned to the cluster with the 
closest centroid 

• Number of clusters, K, must be specified 

• The objective is to minimize the sum of 
distances of the points to their respective 
centroid 



K-means Clustering 

 

• Problem: Given a set X of n points in a d-

dimensional space and an integer K group the 

points into K clusters C= {C1, C2,…,Ck} such that 

𝐶𝑜𝑠𝑡 𝐶 =  𝑑𝑖𝑠𝑡(𝑥, 𝑐)

𝑥∈𝐶𝑖

𝑘

𝑖=1

 

 

 is minimized, where ci is the centroid of the points 

in cluster Ci 



K-means Clustering 

• Most common definition is with euclidean distance, 
minimizing the Sum of Squares Error (SSE) function 
• Sometimes K-means is defined like that 

 

• Problem: Given a set X of n points in a d-
dimensional space and an integer K group the points 
into K clusters C= {C1, C2,…,Ck} such that 

𝐶𝑜𝑠𝑡 𝐶 =  𝑥 − 𝑐𝑖
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 

is minimized, where ci is the mean of the points in 
cluster Ci Sum of Squares Error (SSE) 



Complexity of the k-means problem 

• NP-hard if the dimensionality of the data is at 

least 2 (d>=2) 

• Finding the best solution in polynomial time is infeasible 

 

• For d=1 the problem is solvable in polynomial 

time (how?) 

 

• A simple iterative algorithm works quite well in 

practice 



K-means Algorithm 

• Also known as Lloyd’s algorithm. 

• K-means is sometimes synonymous with this 

algorithm 



K-means Algorithm – Initialization 

• Initial centroids are often chosen randomly. 

• Clusters produced vary from one run to another. 

 



Two different K-means Clusterings 
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Importance of Choosing Initial Centroids 
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Importance of Choosing Initial Centroids 
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Importance of Choosing Initial Centroids 
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Importance of Choosing Initial Centroids … 
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Dealing with Initialization 

• Do multiple runs and select the clustering with the 

smallest error 

 

• Select original set of  points by methods other 

than random . E.g.,  pick the most distant (from 

each other) points as cluster centers (K-means++ 

algorithm) 

 



K-means Algorithm – Centroids 

• The centroid depends on the distance function 
• The minimizer for the distance function 

• ‘Closeness’ is measured by Euclidean distance 
(SSE), cosine similarity, correlation, etc. 

• Centroid: 
• The mean of the points in the cluster for SSE, and cosine 

similarity 

• The median for Manhattan distance. 

 

• Finding the centroid is not always easy  
• It can be an NP-hard problem for some distance functions 

• E.g., median form multiple dimensions 

 



K-means Algorithm – Convergence 

• K-means will converge for common similarity 

measures mentioned above. 

• Most of the convergence happens in the first few 

iterations. 

• Often the stopping condition is changed to ‘Until 

relatively few points change clusters’ 

• Complexity is O( n * K * I * d ) 

• n = number of points, K = number of clusters,  

I = number of iterations, d = dimensionality 

• In general a fast and efficient algorithm 

 



Limitations of K-means 

• K-means has problems when clusters are of 

different  

• Sizes 

• Densities 

• Non-globular shapes 

 

• K-means has problems when the data contains 

outliers. 



Limitations of K-means: Differing Sizes 

 
 
 

 

Original Points K-means (3 Clusters) 



Limitations of K-means: Differing Density 
 

 
 

 

Original Points K-means (3 Clusters) 



Limitations of K-means: Non-globular Shapes 

 
 
 

 

Original Points K-means (2 Clusters) 



Overcoming K-means Limitations 
 

 
 

 

Original Points    K-means Clusters 

One solution is to use many clusters. 

Find parts of clusters, but need to put together. 



Overcoming K-means Limitations 
 

 
 

 

Original Points    K-means Clusters 



Overcoming K-means Limitations 

 
 
 

 

Original Points    K-means Clusters 



Variations 

• K-medoids: Similar problem definition as in K-

means, but the centroid of the cluster is defined 

to be one of the points in the cluster (the medoid). 

 

• K-centers: Similar problem definition as in K-

means, but the goal now is to minimize the 

maximum diameter of the clusters (diameter of a 

cluster is maximum distance between any two 

points in the cluster).  


