DATA MINING LECTURE 6

Min-Hashing, Locality Sensitive Hashing Clustering

MIN-HASHING AND LOCALITY SENSITIVE HASHING

Thanks to:

Rajaraman and Ullman, "Mining Massive Datasets" Evimaria Terzi, slides for Data Mining Course.

Motivating problem

- Find duplicate and near-duplicate documents from a web crawl.
- If we wanted exact duplicates we could do this by hashing
 - We will see how to adapt this technique for near duplicate documents

Main issues

- What is the right representation of the document when we check for similarity?
 - E.g., representing a document as a set of characters will not do (why?)
- When we have billions of documents, keeping the full text in memory is not an option.
 - We need to find a shorter representation
- How do we do pairwise comparisons of billions of documents?
 - If exact match was the issue it would be ok, can we replicate this idea?

The Big Picture

5

Shingling

Shingle: a sequence of k contiguous characters

Basic Data Model: Sets

- Document: A document is represented as a set shingles (more accurately, hashes of shingles)
- Document similarity: Jaccard similarity of the sets of shingles.
 - Common shingles over the union of shingles
 - Sim $(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$.

Applicable to any kind of sets.

• E.g., similar customers or items.

Signatures

- Key idea: "hash" each set S to a small signature Sig (S), such that:
 - 1. Sig (S) is small enough that we can fit a signature in main memory for each set.
 - 2. Sim (S_1, S_2) is (almost) the same as the "similarity" of Sig (S_1) and Sig (S_2) . (signature preserves similarity).
- Warning: This method can produce false negatives, and false positives (if an additional check is not made).
 - False negatives: Similar items deemed as non-similar
 - False positives: Non-similar items deemed as similar

From Sets to Boolean Matrices

- Represent the data as a boolean matrix M
 - Rows = the universe of all possible set elements
 - In our case, shingle fingerprints take values in [0...2⁶⁴-1]
 - Columns = the sets
 - In our case, documents, sets of shingle fingerprints
 - M(r,S) = 1 in row r and column S if and only if r is a member of S.
- Typical matrix is sparse.
 - We do not really materialize the matrix

Minhashing

- Pick a random permutation of the rows (the universe U).
- Define "hash" function for set S
 - h(S) = the index of the first row (in the permuted order) in which column S has 1.
 - OR
 - h(S) = the index of the first element of S in the permuted order.
- Use k (e.g., k = 100) independent random permutations to create a signature.

Input matrix

Input matrix

Input matrix

Input matrix

Signature matrix

	S ₁	S ₂	S ₃	S ₄
h ₁	1	2	1	2
h ₂	2	1	3	1
h ₃	3	1	3	1

- Sig(S) = vector of hash values
 - e.g., $Sig(S_2) = [2,1,1]$
- Sig(S,i) = value of the i-th hash function for set S
 - E.g., $Sig(S_2,3) = 1$

Hash function Property

 $Pr(h(S_1) = h(S_2)) = Sim(S_1, S_2)$

- where the probability is over all choices of permutations.
- Why?
 - The first row where one of the two sets has value 1 belongs to the union.
 - Recall that union contains rows with at least one 1.
 - We have equality if both sets have value 1, and this row belongs to the intersection

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

Rows C,D could be anywhere they do not affect the probability

Union = {A,B,E,F,G}
Intersection = {A,F,G}

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

The * rows belong to the union

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

Intersection =

 $\{A,F,G\}$

• Union =

The question is what is the value of the first * element

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

If it belongs to the intersection then h(X) = h(Y)

Union = {A,B,E,F,G}
Intersection =

 $\{A,F,G\}$

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

Every element of the union is equally likely to be the * element $Pr(h(X) = h(X)) = \frac{|\{A,F,G\}|}{|\{A,F,G\}|} = \frac{3}{2} = Sim(X)$

 $Pr(h(X) = h(Y)) = \frac{|\{A, F, G\}|}{|\{A, B, E, F, G\}|} = \frac{3}{5} = Sim(X, Y)$

Union = {A,B,E,F,G}
Intersection =

A,F,G

Similarity for Signatures

 The similarity of signatures is the fraction of the hash functions in which they agree.

	S ₁	S ₂	S ₃	S ₄	
Α	1	0	1	0	
В	1	0	0	1	
С	0	1	0	1	
D	0	1	0	1	
Е	0	1	0	1	
F	1	0	1	0	
G	1	0	1	0	Z

Signature matrix

S ₁	S ₂	S ₃	S ₄
1	2	1	2
2	1	3	1
3	1	3	1

	Actual	Sig
(S ₁ , S ₂)	0	0
(S ₁ , S ₃)	3/5	2/3
(S ₁ , S ₄)	1/7	0
(S ₂ , S ₃)	0	0
(S ₂ , S ₄)	3/4	1
(S ₃ , S ₄)	0	0

Zero similarity is preserved

High similarity is well approximated

 With multiple signatures we get a good approximation

Is it now feasible?

- Assume a billion rows
- Hard to pick a random permutation of 1...billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order? ③

Being more practical

- Instead of permuting the rows we will apply a hash function that maps the rows to a new (possibly larger) space
 - The value of the hash function is the position of the row in the new order (permutation).
 - Each set is represented by the smallest hash value among the elements in the set
- The space of the hash functions should be such that if we select one at random each element (row) has equal probability to have the smallest value
 - Min-wise independent hash functions

Algorithm – One set, one hash function

Computing Sig(S,i) for a single column S and single hash function h_i

In practice only the rows (shingles)
that appear in the datafor each row r $h_i(r)$ compute $h_i(r)$ $h_i(r) = index of row r in permutationif column S that has 1 in row rS contains row rif <math>h_i(r)$ is a smaller value than Sig(S,i) thenSig(S,i) = $h_i(r)$;Find the row r with minimum index

Sig(S,i) will become the smallest value of h_i(r) among all rows (shingles) for which column S has value 1 (shingle belongs in S); *i.e.*, h_i(r) gives the min index for the i-th permutation

Algorithm – All sets, k hash functions

Pick k=100 hash functions (h₁,...,h_k)

In practice this means selecting the hash function parameters

for each row r

for each hash function h_i

compute h_i (r)

Compute h_i (r) only once for all sets

for each column S that has 1 in row r

if h_i (r) is a smaller value than Sig(S,i) then
 Sig(S,i) = h_i (r);

 $h(x) = x + 1 \mod 5$

h(Row) Row S1 S2

Ε

Α

В

С

D

 $g(x) = 2x + 3 \mod 5$

Sig1 Sig2

xRowS1S2
$$h(x)$$
 $g(x)$ 0A10131B01202C11323D10444E0101

g(Row)Row<u>S1 S2</u>

В

Ε

С

А

D

0 h(1) = 2g(1) = 00 h(2) = 3g(2) = 20 h(3) = 4

h(0) = 1

g(0) = 3

$$g(3) = 4$$
 2

h(4) = 0g(4) = 1

Implementation

- Often, data is given by column, not row.
 - E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- And always compute h_i(r) only once for each row.

Finding similar pairs

- Problem: Find all pairs of documents with similarity at least t = 0.8
- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- Example: 10⁶ columns implies 5*10¹¹ columncomparisons.
- At 1 microsecond/comparison: 6 days.

Locality-Sensitive Hashing

- What we want: a function f(X,Y) that tells whether or not X and Y is a candidate pair: a pair of elements whose similarity must be evaluated.
- A simple idea: X and Y are a candidate pair if they have the same min-hash signature.
 - Easy to test by hashing the signatures.
 - Similar sets are more likely to have the same signature.
 - Likely to produce many false negatives.
 - Requiring full match of signature is strict, some similar sets will be lost.
- Improvement: Compute multiple signatures; candidate pairs should have at least one common signature.
 - Reduce the probability for false negatives.

! Multiple levels of Hashing!

Signature matrix reminder

Partition into Bands - (1)

- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.

Partitioning into bands

 $n = b^*r$ hash functions

Partition into Bands – (2)

- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
 - Make *k* as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.

Partition into Bands – (3)

- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
 - Make *k* as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.
- Candidate column pairs are those that hash to the same bucket for at least 1 band.
- Tune b and r to catch most similar pairs, but few nonsimilar pairs.

Analysis of LSH – What We Want

What One Band of One Row Gives You

What *b* Bands of *r* Rows Gives You

Example: b = 20; r = 5

Suppose S₁, S₂ are 80% Similar

- We want all 80%-similar pairs. Choose 20 bands of 5 integers/band.
- Probability S_1 , S_2 identical in one particular band: $(0.8)^5 = 0.328$.
- Probability S_1 , S_2 are not similar in any of the 20 bands: (1-0.328)²⁰ = 0.00035
 - i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.
- Probability S₁, S₂ are similar in at least one of the 20 bands:

1 - 0.00035 = 0.999

Suppose S₁, S₂ Only 40% Similar

 Probability S₁, S₂ identical in any one particular band:

$$(0.4)^5 = 0.01$$
.

 Probability S₁, S₂ identical in at least 1 of 20 bands:

$$\leq 20 * 0.01 = 0.2$$
 .

 But false positives much lower for similarities << 40%.

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.

Locality-sensitive hashing (LSH)

- Big Picture: Construct hash functions h: R^d→ U such that for any pair of points p,q, for distance function D we have:
 - If $D(p,q) \le r$, then $Pr[h(p)=h(q)] \ge \alpha$ is high
 - If $D(p,q) \ge cr$, then $Pr[h(p)=h(q)] \le \beta$ is small
- Then, we can find close pairs by hashing
- LSH is a general framework: for a given distance function D we need to find the right h
 - h is (r,cr, α, β)-sensitive

LSH for Cosine Distance

- For cosine distance, there is a technique analogous to minhashing for generating a (d₁,d₂,(1-d₁/180),(1-d₂/180)) sensitive family for any d₁ and d₂.
- Called random hyperplanes.

Random Hyperplanes

- Pick a random vector v, which determines a hash function h_v with two buckets.
- $h_v(x) = +1$ if v.x > 0; = -1 if v.x < 0.
- LS-family H = set of all functions derived from any vector.
- Claim: Prob[h(x)=h(y)] = 1 (angle between x and y divided by 180).

Proof of Claim

Signatures for Cosine Distance

- Pick some number of vectors, and hash your data for each vector.
- The result is a signature (sketch) of +1's and 1's that can be used for LSH like the minhash signatures for Jaccard distance.

Simplification

- We need not pick from among all possible vectors
 v to form a component of a sketch.
- It suffices to consider only vectors v consisting of +1 and -1 components.

CLUSTERING

What is a Clustering?

 In general a grouping of objects such that the objects in a group (cluster) are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

Summarization

 Reduce the size of large data sets

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Early applications of cluster analysis

John Snow, London 1854

Figure 1.1: Plotting cholera cases on a map of London

Notion of a Cluster can be Ambiguous

How many clusters?

Six Clusters

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Other types of clustering

- Exclusive (or non-overlapping) versus nonexclusive (or overlapping)
 - In non-exclusive clusterings, points may belong to multiple clusters.
 - Points that belong to multiple classes, or 'border' points
- Fuzzy (or soft) versus non-fuzzy (or hard)
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights usually must sum to 1 (often interpreted as probabilities)
- Partial versus complete
 - In some cases, we only want to cluster some of the data

Types of Clusters: Well-Separated

- Well-Separated Clusters:
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

3 well-separated clusters

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the minimizer of distances from all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters
 - Finds clusters that share some common property or represent a particular concept.

2 Overlapping Circles

Types of Clusters: Objective Function

- Clustering as an optimization problem
 - Finds clusters that minimize or maximize an objective function.
 - Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function. (NP Hard)
 - Can have global or local objectives.
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional algorithms typically have global objectives
 - A variation of the global objective function approach is to fit the data to a parameterized model.
 - The parameters for the model are determined from the data, and they determine the clustering
 - E.g., Mixture models assume that the data is a 'mixture' of a number of statistical distributions.

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- DBSCAN

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The objective is to minimize the sum of distances of the points to their respective centroid

K-means Clustering

• **Problem:** Given a set X of n points in a ddimensional space and an integer K group the points into K clusters $C = \{C_1, C_2, ..., C_k\}$ such that $Cost(C) = \sum_{i=1}^k \sum_{x \in C_i} dist(x, c)$

is minimized, where c_i is the centroid of the points in cluster C_i

K-means Clustering

 Most common definition is with euclidean distance, minimizing the Sum of Squares Error (SSE) function

Sometimes K-means is defined like that

 Problem: Given a set X of n points in a ddimensional space and an integer K group the points into K clusters C= {C₁, C₂,...,C_k} such that

$$Cost(C) = \sum_{i=1}^{\kappa} \sum_{x \in C_i} (x - c_i)^2$$

is minimized, where c_i is the mean of the points in cluster C_i Sum of Squares Error (SSE)

Complexity of the k-means problem

- NP-hard if the dimensionality of the data is at least 2 (d>=2)
 - Finding the best solution in polynomial time is infeasible
- For d=1 the problem is solvable in polynomial time (how?)
- A simple iterative algorithm works quite well in practice

K-means Algorithm

- Also known as Lloyd's algorithm.
- K-means is sometimes synonymous with this algorithm

1: Select K points as the initial centroids.

2: repeat

- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.

5: **until** The centroids don't change

K-means Algorithm – Initialization

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.

Two different K-means Clusterings

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids ...

Dealing with Initialization

- Do multiple runs and select the clustering with the smallest error
- Select original set of points by methods other than random . E.g., pick the most distant (from each other) points as cluster centers (K-means++ algorithm)

K-means Algorithm – Centroids

- The centroid depends on the distance function
 - The minimizer for the distance function
- 'Closeness' is measured by Euclidean distance (SSE), cosine similarity, correlation, etc.
- Centroid:
 - The mean of the points in the cluster for SSE, and cosine similarity
 - The median for Manhattan distance.
- Finding the centroid is not always easy
 - It can be an NP-hard problem for some distance functions
 - E.g., median form multiple dimensions

K-means Algorithm – Convergence

- K-means will converge for common similarity measures mentioned above.
 - Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 - I = number of iterations, d = dimensionality
- In general a fast and efficient algorithm

Limitations of K-means

- K-means has problems when clusters are of different
 - Sizes
 - Densities
 - Non-globular shapes
- K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Overcoming K-means Limitations

Original Points

K-means Clusters

One solution is to use many clusters. Find parts of clusters, but need to put together.

Overcoming K-means Limitations

Original Points

K-means Clusters

Overcoming K-means Limitations

Original Points

K-means Clusters

Variations

- K-medoids: Similar problem definition as in Kmeans, but the centroid of the cluster is defined to be one of the points in the cluster (the medoid).
- K-centers: Similar problem definition as in Kmeans, but the goal now is to minimize the maximum diameter of the clusters (diameter of a cluster is maximum distance between any two points in the cluster).