DATA MINING LECTURE 6

Min-Hashing, Locality Sensitive Hashing Clustering

MIN-HASHING

 AND LOCALITY SENSITIVE HASHINGThanks to:
Rajaraman and Ullman, "Mining Massive Datasets"
Evimaria Terzi, slides for Data Mining Course.

Motivating problem

- Find duplicate and near-duplicate documents from a web crawl.
- If we wanted exact duplicates we could do this by hashing
- We will see how to adapt this technique for near duplicate documents

Main issues

- What is the right representation of the document when we check for similarity?
- E.g., representing a document as a set of characters will not do (why?)
- When we have billions of documents, keeping the full text in memory is not an option.
- We need to find a shorter representation
- How do we do pairwise comparisons of billions of documents?
- If exact match was the issue it would be ok, can we replicate this idea?

The Big Picture

Shingling

- Shingle: a sequence of k contiguous characters

Set of Shingles
Hash function
Set of 64-bit integers

a rose is
rose is a
rose is a
ose is a r
se is a ro
e is a ros
is a rose
is a rose
s a rose i
a rose is

(Rabin's fingerprints)	1111
\longrightarrow	2222
\longrightarrow	3333
\longrightarrow	4444
\longrightarrow	5555
\longrightarrow	7777
\longrightarrow	8888
$\longrightarrow \longrightarrow$	

Basic Data Model: Sets

- Document: A document is represented as a set shingles (more accurately, hashes of shingles)
- Document similarity: Jaccard similarity of the sets of shingles.
- Common shingles over the union of shingles
- $\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|$.
- Applicable to any kind of sets.
- E.g., similar customers or items.

Signatures

- Key idea: "hash" each set S to a small signature Sig (S), such that:

1. $\operatorname{Sig}(S)$ is small enough that we can fit a signature in main memory for each set.
2. $\operatorname{Sim}\left(S_{1}, S_{2}\right)$ is (almost) the same as the "similarity" of Sig $\left(S_{1}\right)$ and $\mathrm{Sig}_{(}\left(\mathrm{S}_{2}\right)$. (signature preserves similarity).

- Warning: This method can produce false negatives, and false positives (if an additional check is not made).
- False negatives: Similar items deemed as non-similar
- False positives: Non-similar items deemed as similar

From Sets to Boolean Matrices

- Represent the data as a boolean matrix M
- Rows = the universe of all possible set elements
- In our case, shingle fingerprints take values in [0...264-1]
- Columns = the sets
- In our case, documents, sets of shingle fingerprints
- $M(r, S)=1$ in row r and column S if and only if r is a member of S.
- Typical matrix is sparse.
- We do not really materialize the matrix

Minhashing

- Pick a random permutation of the rows (the universe U).
- Define "hash" function for set S
- $\mathrm{h}(\mathrm{S})=$ the index of the first row (in the permuted order) in which column S has 1 .
- OR
- $h(S)=$ the index of the first element of S in the permuted order.
- Use k (e.g., $k=100$) independent random permutations to create a signature.

Example of minhash signatures

- Input matrix

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

Example of minhash signatures

- Input matrix

		S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
1	D	0	1	0	1
2	B	1	0	0	1
3	A	1	0	1	0
4	C	0	1	0	1
5	F	1	0	1	0
6	G	1	0	1	0
7	E	0	1	0	1
		$\mathbf{2}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$

Example of minhash signatures

- Input matrix

		S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
1	C	0	1	0	1
2	D	0	1	0	1
3	G	1	0	1	0
4	F	1	0	1	0
5	A	1	0	1	0
6	B	1	0	0	1
7	E	0	1	0	1
		$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$

Example of minhash signatures

- Input matrix

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

Signature matrix

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	2	1	2
\mathbf{h}_{2}	2	1	3	1
\mathbf{h}_{3}	3	1	3	1

- $\operatorname{Sig}(S)=$ vector of hash values
- e.g., $\operatorname{Sig}\left(\mathrm{S}_{2}\right)=[2,1,1]$
- $\operatorname{Sig}(\mathrm{S}, \mathrm{i})=$ value of the i-th hash function for set S
- E.g., $\operatorname{Sig}\left(\mathrm{S}_{2}, 3\right)=1$

Hash function Property

$$
\operatorname{Pr}\left(\mathrm{h}\left(\mathrm{~S}_{1}\right)=\mathrm{h}\left(\mathrm{~S}_{2}\right)\right)=\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)
$$

- where the probability is over all choices of permutations.
-Why?
- The first row where one of the two sets has value 1 belongs to the union.
- Recall that union contains rows with at least one 1.
- We have equality if both sets have value 1, and this row belongs to the intersection

Example

- Universe: $U=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

Rows C,D could be anywhere they do not affect the probability

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0	*			
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: $\mathbb{U}=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$
- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0				
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: $U=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

The question is what is the value of the first * element

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1		D	0	0
B	1	0				
C	0	0				
D	0	0		C	0	0
E	0	1				
F	1	1				
G	1	1				

Example

- Universe: $U=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

If it belongs to the intersection then $h(X)=h(Y)$

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0				
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: $\mathbb{U}=\{A, B, C, D, E, F, G\}$

- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

Every element of the union is equally likely to be the * element

$$
\operatorname{Pr}(h(X)=h(Y))=\frac{|\{A, F, G\}|}{|\{A, B, E, F, G\}|}=\frac{3}{5}=\operatorname{Sim}(X, Y)
$$

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0	*			
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Similarity for Signatures

- The similarity of signatures is the fraction of the hash functions in which they agree.

	S_{1}	S_{2}	S_{3}	S_{4}
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

- With multiple signatures we get a good approximation

Is it now feasible?

- Assume a billion rows
- Hard to pick a random permutation of $1 .$. .billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order? :

Being more practical

- Instead of permuting the rows we will apply a hash function that maps the rows to a new (possibly larger) space
- The value of the hash function is the position of the row in the new order (permutation).
- Each set is represented by the smallest hash value among the elements in the set
- The space of the hash functions should be such that if we select one at random each element (row) has equal probability to have the smallest value
- Min-wise independent hash functions

Algorithm - One set, one hash function

Computing Sig(S,i) for a single column S and single hash function h_{i}
for each row r In practice only the rows (shingles) that appear in the data

$$
\operatorname{Sig}(\mathbf{S}, \mathbf{i})=h_{i}(\mathbf{r}) ;
$$

Find the row r with minimum index
Sig(S, i) will become the smallest value of $h_{i}(r)$ among all rows (shingles) for which column S has value 1 (shingle belongs in S); i.e., $h_{i}(r)$ gives the min index for the i-th permutation

Algorithm - All sets, k hash functions

Pick $k=100$ hash functions ($\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{k}}$)
In practice this means selecting the hash function parameters

for each row r

for each hash function h_{i}
compute $\mathrm{h}_{\mathrm{i}}(\mathrm{r})$
Compute $\mathrm{h}_{\mathrm{i}}(\mathrm{r})$ only once for all sets
for each column S that has 1 in row r
if $h_{i}(r)$ is a smaller value than $\operatorname{Sig}(S, i)$ then

$$
\operatorname{Sig}(\mathbf{S}, \mathbf{i})=h_{i}(\mathbf{r}) ;
$$

Example

x	Row	S1	S2	$h(x)$	$g(x)$	
0	A	1	0	1	3	
1	B	0	1	2	0	
2	C	1	1	3	2	
3	D	1	0	4	4	
4	E	0	1	0	1	

$$
\begin{aligned}
& h(x)=x+1 \bmod 5 \\
& g(x)=2 x+3 \bmod 5
\end{aligned}
$$

h(Row)	Row	S1 1	S2
0	E	0	1
1	A	1	0
2	B	0	1
3	C	1	1
4	D	1	0

g(Row)	Row	S1 1	S2
	B	B	1
1	E	0	1
2	C	1	0
3	A	1	1
4	D	1	0

$$
\begin{equation*}
h(4)=0 \quad 1 \tag{0
0}
\end{equation*}
$$

Implementation

- Often, data is given by column, not row.
- E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- And always compute $h_{i}(r)$ only once for each row.

Finding similar pairs

- Problem: Find all pairs of documents with similarity at least $t=0.8$
- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- Example: 10^{6} columns implies $5^{*} 10^{11}$ columncomparisons.
- At 1 microsecond/comparison: 6 days.

Locality-Sensitive Hashing

- What we want: a function $f(X, Y)$ that tells whether or not X and Y is a candidate pair: a pair of elements whose similarity must be evaluated.
- A simple idea: X and Y are a candidate pair if they have the same min-hash signature.
- Easy to test by hashing the signatures.
! Multiple levels of Hashing!
- Similar sets are more likely to have the same signature.
- Likely to produce many false negatives.
- Requiring full match of signature is strict, some similar sets will be lost.
- Improvement: Compute multiple signatures; candidate pairs should have at least one common signature.
- Reduce the probability for false negatives.

Signature matrix reminder

Partition into Bands - (1)

- Divide the signature matrix Sig into b bands of r rows.
- Each band is a mini-signature with r hash functions.

Partitioning into bands

$n=b^{*} r$ hash functions

Partition into Bands - (2)

- Divide the signature matrix Sig into b bands of r rows.
- Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
- Make k as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.

Partition into Bands - (3)

- Divide the signature matrix Sig into b bands of r rows.
- Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
- Make k as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.
- Candidate column pairs are those that hash to the same bucket for at least 1 band.
- Tune b and r to catch most similar pairs, but few nonsimilar pairs.

Analysis of LSH - What We Want

Similarity s of two sets

What One Band of One Row Gives You

Similarity s of two sets

What b Bands of r Rows Gives You

Similarity s of two sets

Example: $b=20 ; r=5$

\boldsymbol{s}	$\mathbf{1 - (1 - s r}^{\mathbf{r}} \mathbf{b}^{\mathbf{b}}$
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Figure 3.7: The S-curve

Suppose $\mathrm{S}_{1}, \mathrm{~S}_{2}$ are 80% Similar

- We want all 80%-similar pairs. Choose 20 bands of 5 integers/band.
- Probability $\mathrm{S}_{1}, \mathrm{~S}_{2}$ identical in one particular band:

$$
(0.8)^{5}=0.328
$$

- Probability $\mathrm{S}_{1}, \mathrm{~S}_{2}$ are not similar in any of the 20 bands:

$$
(1-0.328)^{20}=0.00035
$$

- i.e., about $1 / 3000$-th of the 80%-similar column pairs are false negatives.
- Probability S_{1}, S_{2} are similar in at least one of the 20 bands:

$$
1-0.00035=0.999
$$

Suppose $\mathrm{S}_{1}, \mathrm{~S}_{2}$ Only 40\% Similar

- Probability S_{1}, S_{2} identical in any one particular band:

$$
(0.4)^{5}=0.01
$$

- Probability S_{1}, S_{2} identical in at least 1 of 20 bands:

$$
\leq 20^{*} 0.01=0.2
$$

- But false positives much lower for similarities << 40\%.

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.

Locality-sensitive hashing (LSH)

- Big Picture: Construct hash functions $\mathrm{h}: \mathrm{R}^{\mathrm{d}} \rightarrow \mathrm{U}$ such that for any pair of points p, q, for distance function D we have:
- If $\mathrm{D}(\mathrm{p}, \mathrm{q}) \leq \mathrm{r}$, then $\operatorname{Pr}[\mathrm{h}(\mathrm{p})=\mathrm{h}(\mathrm{q})] \geq \alpha$ is high
- If $\mathrm{D}(\mathrm{p}, \mathrm{q}) \geq \mathrm{cr}$, then $\operatorname{Pr}[\mathrm{h}(\mathrm{p})=\mathrm{h}(\mathrm{q})] \leq \beta$ is small
- Then, we can find close pairs by hashing
- LSH is a general framework: for a given distance function D we need to find the right h
- h is ($r, c r, \alpha, \beta$)-sensitive

LSH for Cosine Distance

- For cosine distance, there is a technique analogous to minhashing for generating a $\left(d_{1}, d_{2},\left(1-d_{1} / 180\right),\left(1-d_{2} / 180\right)\right)$ - sensitive family for any d_{1} and d_{2}.
- Called random hyperplanes.

Random Hyperplanes

- Pick a random vector v, which determines a hash function h_{v} with two buckets.
- $h_{v}(x)=+1$ if $v . x>0 ;=-1$ if $v . x<0$.
- LS-family $\mathbf{H}=$ set of all functions derived from any vector.
- Claim: $\operatorname{Prob}[h(x)=h(y)]=1-$ (angle between x and y divided by 180).

Proof of Claim

Look in the plane of x and y.

Signatures for Cosine Distance

- Pick some number of vectors, and hash your data for each vector.
- The result is a signature (sketch) of +1 's and 1's that can be used for LSH like the minhash signatures for Jaccard distance.

Simplification

- We need not pick from among all possible vectors v to form a component of a sketch.
- It suffices to consider only vectors v consisting of +1 and -1 components.

CLUSTERING

What is a Clustering?

- In general a grouping of objects such that the objects in a group (cluster) are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

- Understanding

- Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

| Discovered Clusters | Industry Group |
| :---: | :---: | :---: |
| Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,
 Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
 DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,
 Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down,
 Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,
 Sun-DOWN | Technology1-DOWN |
| | Technology2-DOWN |
| | Financial-DOWN |

- Summarization

- Reduce the size of large data sets

Clustering precipitation in Australia

Early applications of cluster analysis

- John Snow, London 1854

Figure 1.1: Plotting cholera cases on a map of London

Notion of a Cluster can be Ambiguous

How many clusters?

Two Clusters

Six Clusters

Four Clusters

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
- A division data objects into subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
- A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Other types of clustering

- Exclusive (or non-overlapping) versus nonexclusive (or overlapping)
- In non-exclusive clusterings, points may belong to multiple clusters.
- Points that belong to multiple classes, or 'border' points
- Fuzzy (or soft) versus non-fuzzy (or hard)
- In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
- Weights usually must sum to 1 (often interpreted as probabilities)
- Partial versus complete
- In some cases, we only want to cluster some of the data

Types of Clusters: Well-Separated

- Well-Separated Clusters:
- A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

Types of Clusters: Center-Based

- Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the minimizer of distances from all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
- A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

- Density-based
- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters
- Finds clusters that share some common property or represent a particular concept.

2 Overlapping Circles

Types of Clusters: Objective Function

- Clustering as an optimization problem
- Finds clusters that minimize or maximize an objective function.
- Enumerate all possible ways of dividing the points into clusters and evaluate the 'goodness' of each potential set of clusters by using the given objective function. (NP Hard)
- Can have global or local objectives.
- Hierarchical clustering algorithms typically have local objectives
- Partitional algorithms typically have global objectives
- A variation of the global objective function approach is to fit the data to a parameterized model.
- The parameters for the model are determined from the data, and they determine the clustering
- E.g., Mixture models assume that the data is a 'mixture' of a number of statistical distributions.

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- DBSCAN

K-MEANS

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The objective is to minimize the sum of distances of the points to their respective centroid

K-means Clustering

- Problem: Given a set X of n points in a ddimensional space and an integer K group the points into K clusters $C=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ such that

$$
\operatorname{Cost}(C)=\sum_{i=1}^{k} \sum_{x \in C_{i}} \operatorname{dist}(x, c)
$$

is minimized, where c_{i} is the centroid of the points in cluster C_{i}

K-means Clustering

- Most common definition is with euclidean distance, minimizing the Sum of Squares Error (SSE) function
- Sometimes K-means is defined like that
- Problem: Given a set X of n points in a ddimensional space and an integer K group the points into K clusters $\mathrm{C}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}\right\}$ such that

$$
\operatorname{Cost}(C)=\sum_{i=1}^{k} \sum_{x \in C_{i}}\left(x-c_{i}\right)^{2}
$$

is minimized, where c_{i} is the mean of the points in cluster C_{i}

Complexity of the k-means problem

- NP-hard if the dimensionality of the data is at least 2 (d>=2)
- Finding the best solution in polynomial time is infeasible
- For $\mathrm{d}=1$ the problem is solvable in polynomial time (how?)
- A simple iterative algorithm works quite well in practice

K-means Algorithm

- Also known as Lloyd's algorithm.
- K-means is sometimes synonymous with this algorithm

1: Select K points as the initial centroids.
2: repeat
3: \quad Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don't change

K-means Algorithm - Initialization

- Initial centroids are often chosen randomly.
- Clusters produced vary from one run to another.

Two different K-means Clusterings

Optimal Clustering

Sub-optimal Clustering

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids

Iteration 5

Importance of Choosing Initial Centroids

Iteration 3

Iteration 4

Iteration 5

Dealing with Initialization

- Do multiple runs and select the clustering with the smallest error
- Select original set of points by methods other than random . E.g., pick the most distant (from each other) points as cluster centers (K-means++ algorithm)

K-means Algorithm - Centroids

- The centroid depends on the distance function
- The minimizer for the distance function
- 'Closeness' is measured by Euclidean distance (SSE), cosine similarity, correlation, etc.
- Centroid:
- The mean of the points in the cluster for SSE, and cosine similarity
- The median for Manhattan distance.
- Finding the centroid is not always easy
- It can be an NP-hard problem for some distance functions
- E.g., median form multiple dimensions

K-means Algorithm - Convergence

- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
- Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is $\mathrm{O}(\mathrm{n}$ *K * 1 *)
- $\mathrm{n}=$ number of points, $\mathrm{K}=$ number of clusters, $\mathrm{I}=$ number of iterations, $\mathrm{d}=$ dimensionality
- In general a fast and efficient algorithm

Limitations of K-means

- K-means has problems when clusters are of different
- Sizes
- Densities
- Non-globular shapes
- K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

Original Points
K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points
K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points
K-means (2 Clusters)

Overcoming K-means Limitations

Original Points
K-means Clusters
One solution is to use many clusters.
Find parts of clusters, but need to put together.

Overcoming K-means Limitations

K-means Clusters

Overcoming K-means Limitations

Original Points

K-means Clusters

Variations

- K-medoids: Similar problem definition as in Kmeans, but the centroid of the cluster is defined to be one of the points in the cluster (the medoid).
- K-centers: Similar problem definition as in Kmeans, but the goal now is to minimize the maximum diameter of the clusters (diameter of a cluster is maximum distance between any two points in the cluster).

