DATA MINING LECTURE 5

Similarity and Distance
Sketching, Locality Sensitive Hashing

SIMILARITY AND DISTANCE

Thanks to:
Tan, Steinbach, and Kumar, "Introduction to Data Mining" Rajaraman and Ullman, "Mining Massive Datasets"

Similarity and Distance

- For many different problems we need to quantify how close two objects are.
- Examples:
- For an item bought by a customer, find other similar items
- Group together the customers of site so that similar customers are shown the same ad.
- Group together web documents so that you can separate the ones that talk about politics and the ones that talk about sports.
- Find all the near-duplicate mirrored web documents.
- Find credit card transactions that are very different from previous transactions.
- To solve these problems we need a definition of similarity, or distance.
- The definition depends on the type of data that we have

Similarity

- Numerical measure of how alike two data objects are.
- A function that maps pairs of objects to real values
- Higher when objects are more alike.
- Often falls in the range $[0,1]$, sometimes in $[-1,1]$
- Desirable properties for similarity

1. $s(p, q)=1$ (or maximum similarity) only if $p=q$. (Identity)
2. $\mathrm{s}(\mathrm{p}, \mathrm{q})=\mathrm{s}(\mathrm{q}, \mathrm{p})$ for all p and q . (Symmetry)

Similarity between sets

- Consider the following documents
apple
releases
new ipod
apple
releases
new ipad

new
apple pie
recipe

-Which ones are more similar?

- How would you quantify their similarity?

Similarity: Intersection

- Number of words in common
apple
releases
new ipod
apple
releases
new ipad
new
apple pie recipe
- $\operatorname{Sim}(D, D)=3, \operatorname{Sim}(D, D)=\operatorname{Sim}(D, D)=2$
- What about this document?

Vefa rereases new book with apple pie recipes

- $\operatorname{Sim}(D, D)=\operatorname{Sim}(D, D)=3$

Jaccard Similarity

- The Jaccard similarity (Jaccard coefficient) of two sets S_{1}, S_{2} is the size of their intersection divided by the size of their union.
- $\operatorname{JSim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|$.

$$
\begin{aligned}
& 3 \text { in intersection. } \\
& 8 \text { in union. } \\
& \text { Jaccard similarity } \\
& \quad=3 / 8
\end{aligned}
$$

- Extreme behavior:
- $\operatorname{Jsim}(X, Y)=1$, iff $X=Y$
- $\operatorname{Jsim}(X, Y)=0$ iff X, Y have not elements in common
- JSim is symmetric

Similarity: Intersection

- Number of words in common
apple
releases
new ipod
apple
releases
new ipad

new
apple pie
recipe

Vefa rereases
new book with
apple pie
recipes

- $\operatorname{JSim}(D, D)=3 / 5$
- JSim (D, D) $=\operatorname{JSim}(\mathrm{D}, \mathrm{D})=2 / 6$
- $\operatorname{JSim}(\mathrm{D}, \mathrm{D})=\mathrm{JSim}(\mathrm{D}, \mathrm{D})=3 / 9$

Similarity between vectors

Documents (and sets in general) can also be represented as vectors

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D2	0	0	10	20

How do we measure the similarity of two vectors?

How well are the two vectors aligned?

Example

document	Apple	Microsoft	Obama	Election
D1	$1 / 3$	$2 / 3$	0	0
D2	$1 / 3$	$2 / 3$	0	0
D2	0	0	$1 / 3$	$2 / 3$

Documents D1, D2 are in the "same direction" Document D3 is orthogonal to these two

Cosine Similarity

Figure 2.16. Geometric illustration of the cosine measure.

- $\operatorname{Sim}(X, Y)=\cos (X, Y)$
- The cosine of the angle between X and Y
- If the vectors are aligned (correlated) angle is zero degrees and $\cos (\mathrm{X}, \mathrm{Y})=1$
- If the vectors are orthogonal (no common coordinates) angle is 90 degrees and $\cos (X, Y)=0$
- Cosine is commonly used for comparing documents, where we assume that the vectors are normalized by the document length.

Cosine Similarity - math

- If d_{1} and d_{2} are two vectors, then

$$
\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \bullet d_{2}\right) /\left\|d_{1}\right\|\left\|d_{2}\right\|,
$$

where \bullet indicates vector dot product and $\|d\|$ is the length of vector d.

- Example:

$$
\begin{aligned}
& d_{1}=3205000200 \\
& d_{2}=1000000102 \\
& d_{1} \cdot d_{2}=3^{*} 1+2^{*} 0+0^{*} 0+5^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+2^{*} 1+0^{*} 0+0^{*} 2=5 \\
& \left\|d_{1}\right\|=\left(3^{*} 3+2^{*} 2+0^{*} 0+5^{*} 5+0^{*} 0+0^{*} 0+0^{*} 0+2^{*} 2+0^{*} 0+0^{*} 0\right)^{0.5}=(42)^{0.5}=6.481 \\
& \left\|d_{2}\right\|=\left(1^{*} 1+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+1^{*} 1+0^{*} 0+2^{*} 2\right)^{0.5}=(6)^{0.5}=2.245 \\
& \cos \left(d_{1}, d_{2}\right)=.3150
\end{aligned}
$$

Similarity between vectors

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D2	0	0	10	20

$\cos (\mathrm{D} 1, \mathrm{D} 2)=1$
$\cos (\mathrm{D} 1, \mathrm{D} 3)=\cos (\mathrm{D} 2, \mathrm{D} 3)=0$

Distance

- Numerical measure of how different two data objects are
- A function that maps pairs of objects to real values
- Lower when objects are more alike
- Minimum distance is 0 , when comparing an object with itself.
- Upper limit varies

Distance Metric

- A distance function d is a distance metric if it is a function from pairs of objects to real numbers such that:

1. $d(x, y) \geq 0$. (non-negativity)
2. $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ iff $\mathrm{x}=\mathrm{y}$. (identity)
3. $d(x, y)=d(y, x)$. (symmetry)
4. $d(x, y) \leq d(x, z)+d(z, y)$ (triangle inequality).

Triangle Inequality

- Triangle inequality guarantees that the distance function is well-behaved.
- The direct connection is the shortest distance
- It is useful also for proving properties about the data
- For example, suppose I want to find an object that minimizes the sum of distances to all points in my dataset
- If I select the best point from my dataset, the sum of distances I get is at most twice that of the optimal point.

Distances for real vectors

- Vectors $x=\left(x_{1}, \ldots, x_{d}\right)$ and $y=\left(y_{1}, \ldots, y_{d}\right)$
- L_{p} norms or Minkowski distance:

$$
L_{p}(x, y)=\left[\left|x_{1}-y_{1}\right|^{p}+\cdots+\left|x_{d}-y_{d}\right|^{p}\right]^{1 / p}
$$

- L_{2} norm: Euclidean distance:

$$
L_{2}(x, y)=\sqrt{\left|x_{1}-y_{1}\right|^{2}+\cdots+\left|x_{d}-y_{d}\right|^{2}}
$$

- L_{1} norm: Manhattan distance:

$$
L_{1}(x, y)=\left|x_{1}-y_{1}\right|+\cdots+\left|x_{d}-y_{d}\right|
$$

- \mathbf{L}_{∞} norm:

$$
L_{\infty}(x, y)=\max \left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{d}-y_{d}\right|\right\}
$$

- The limit of L_{p} as p goes to infinity.

Example of Distances

$$
\begin{aligned}
& \text { L2-norm: } \quad y=(9,8) \\
& \operatorname{dist}(x, y)=\sqrt{4^{2}+3^{2}}=5 \\
& \operatorname{dist}(x, y)=4+3=7 \\
& x=(5,5) \\
& \mathrm{L}_{\infty} \text {-norm: } \\
& \operatorname{dist}(x, y)=\max \{3,4\}=4
\end{aligned}
$$

Example

Green: All points y at distance $L_{1}(x, y)=r$ from point x
Blue: All points y at distance $L_{2}(x, y)=r$ from point x
Red: All points y at distance $L_{\infty}(x, y)=r$ from point x

L_{p} distances for sets

- We can apply all the L_{p} distances to the cases of sets of attributes, with or without counts, if we represent the sets as vectors
- E.g., a transaction is a $0 / 1$ vector
- E.g., a document is a vector of counts.

Similarities into distances

- Jaccard distance:

$$
\operatorname{JDist}(X, Y)=1-\operatorname{JSim}(X, Y)
$$

- Jaccard Distance is a metric
- Cosine distance:

$$
\operatorname{Dist}(X, Y)=1-\cos (X, Y)
$$

- Cosine distance is a metric

Why Jaccard Distance Is a Distance

 Metric- JDist $(x, x)=0$
- since $\operatorname{JSim}(x, x)=1$
- JDist $(x, y)=\operatorname{JDist}(y, x)$
- by symmetry of intersection
- JDist(x, y) ≥ 0
- since intersection of X, Y cannot be bigger than the union.
- Triangle inequality:
- Follows from the fact that $J \operatorname{Sim}(X, Y)$ is the probability of randomly selected element from the union of X and Y to belong to the intersection

Hamming Distance

- Hamming distance is the number of positions in which bit-vectors differ.
- Example: $p_{1}=10101$

$$
\mathrm{p}_{2}=10011
$$

- $d\left(p_{1}, p_{2}\right)=2$ because the bit-vectors differ in the $3^{\text {rd }}$ and $4^{\text {th }}$ positions.
- The L_{1} norm for the binary vectors
- Hamming distance between two vectors of categorical attributes is the number of positions in which they differ.
- Example: $x=$ (married, low income, cheat),

$$
y=(\text { single }, \quad \text { low income, not cheat })
$$

- $d(x, y)=2$

Why Hamming Distance Is a Distance

 Metric- $d(x, x)=0$ since no positions differ.
- $d(x, y)=d(y, x)$ by symmetry of "different from."
- $d(x, y) \geq 0$ since strings cannot differ in a negative number of positions.
- Triangle inequality: changing x to z and then to y is one way to change x to y.
- For binary vectors if follows from the fact that L_{1} norm is a metric

Distance between strings

- How do we define similarity between strings?

weird wierd
intelligent unintelligent
Athena Athina

- Important for recognizing and correcting typing errors and analyzing DNA sequences.

Edit Distance for strings

- The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other.
- Example: $x=$ abcde $; y=$ bcduve.
- Turn x into y by deleting a, then inserting u and v after d.
- Edit distance $=3$.
- Minimum number of operations can be computed using dynamic programming
- Common distance measure for comparing DNA sequences

Why Edit Distance Is a Distance Metric

- $d(x, x)=0$ because 0 edits suffice.
- $d(x, y)=d(y, x)$ because insert/delete are inverses of each other.
- $d(x, y) \geq 0$: no notion of negative edits.
- Triangle inequality: changing x to z and then to y is one way to change x to y. The minimum is no more than that

Variant Edit Distances

- Allow insert, delete, and mutate.
- Change one character into another.
- Minimum number of inserts, deletes, and mutates also forms a distance measure.
- Same for any set of operations on strings.
- Example: substring reversal or block transposition OK for DNA sequences
- Example: character transposition is used for spelling

Distances between distributions

- We can view a document as a distribution over the words

document	Apple	Microsoft	Obama	Election
D1	0.35	0.5	0.1	0.05
D2	0.4	0.4	0.1	0.1
D2	0.05	0.05	0.6	0.3

- KL-divergence (Kullback-Leibler) for distributions P,Q

$$
D_{K L}(P \| Q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}
$$

- KL-divergence is asymmetric. We can make it symmetric by taking the average of both sides
- JS-divergence (Jensen-Shannon)

$$
J S(P, Q)=\frac{1}{2} D_{K L}(P \| Q)+\frac{1}{2} D_{K L}(Q \| P)
$$

SKETCHING AND LOCALITY SENSITIVE HASHING

Thanks to:
Rajaraman and Ullman, "Mining Massive Datasets"
Evimaria Terzi, slides for Data Mining Course.

Why is similarity important?

- We saw many definitions of similarity and distance
- How do we make use of similarity in practice?
-What issues do we have to deal with?

An important problem

- Recommendation systems
- When a user buys an item (initially books) we want to recommend other items that the user may like
- When a user rates a movie, we want to recommend movies that the user may like
- When a user likes a song, we want to recommend other songs that they may like
- A big success of data mining
- Exploits the long tail

Recommendation Systems

- Content-based:
- Represent the items into a feature space and recommend items to customer C similar to previous items rated highly by C
- Movie recommendations: recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news: recommend other sites with "similar" content

Plan of action

Limitations of content-based approach

- Finding the appropriate features
- e.g., images, movies, music
- Overspecialization
- Never recommends items outside user's content profile
- People might have multiple interests
- Recommendations for new users
- How to build a profile?

Recommendation Systems (II)

- Collaborative Filtering (user -user)
- Consider user c
- Find set D of other users whose ratings are "similar" to c's ratings
- Estimate user's ratings based on ratings of users in D

Recommendation Systems (III)

- Collaborative filtering (item-item)
- For item s, find other similar items
- Estimate rating for item based on ratings for similar items
- Can use same similarity metrics and prediction functions as in user-user model
- In practice, it has been observed that itemitem often works better than user-user

Pros and cons of collaborative filtering

- Works for any kind of item
- No feature selection needed
- New user problem
- New item problem
- Sparsity of rating matrix
- Cluster-based smoothing?

Another important problem

- Find duplicate and near-duplicate documents from a web crawl.
- Why is it important:
- Identify mirrored web pages, and avoid indexing them, or serving them multiple times
- Find replicated news stories and cluster them under a single story.
- Identify plagiarism
-What if we wanted exact duplicates?

Finding similar items

- Both the problems we described have a common component
- We need a quick way to find highly similar items to a query item
- OR, we need a method for finding all pairs of items that are highly similar.
- Also known as the Nearest Neighbor problem, or the All Nearest Neighbors problem
- We will examine it for the case of near-duplicate web documents.

Main issues

- What is the right representation of the document when we check for similarity?
- E.g., representing a document as a set of characters will not do (why?)
- When we have billions of documents, keeping the full text in memory is not an option.
- We need to find a shorter representation
- How do we do pairwise comparisons of billions of documents?
- If exact match was the issue it would be ok, can we replicate this idea?

Three Essential Techniques for Similar Documents

1. Shingling : convert documents, emails, etc., to sets.
2. Minhashing : convert large sets to short signatures, while preserving similarity.
3. Locality-Sensitive Hashing (LSH): focus on pairs of signatures likely to be similar.

The Big Picture

Shingles

- A k-shingle (or k-gram) for a document is a sequence of k characters that appears in the document.
- Example: document = abcab. $\mathrm{k}=2$
- Set of 2-shingles = \{ab, bc, ca\}.
- Option: regard shingles as a bag, and count ab twice.
- Represent a document by its set of k-shingles.

Shingling

- Shingle: a sequence of k contiguous characters

```
a rose is a rose is a rose
a rose is
rose is a
    rose is a
ose is a r
se is a ro
e is a ros
is a rose
    is a rose
s a rose i
a rose is
a rose is
```


Working Assumption

Documents that have lots of shingles in common have similar text, even if the text appears in different order.

- Careful: you must pick k large enough, or most documents will have most shingles.
- Extreme case $k=1$: all documents are the same
- $k=5$ is OK for short documents; $k=10$ is better for long documents.
- Alternative ways to define shingles:
- Use words instead of characters
- Anchor on stop words (to avoid templates)

Shingles: Compression Option

- To compress long shingles, we can hash them to (say) 4 bytes.
- Represent a doc by the set of hash values of its k-shingles.
- From now on we will assume that shingles are integers
- Collisions are possible, but very rare

Fingerprinting

- Hash shingles to 64-bit integers

Set of Shingles

Hash function
Set of 64-bit integers

a rose is
rose is a
rose is a
ose is a r
se is a ro
e is a ros
is a rose
is a rose
s a rose i
a rose is

(Rabin's fingerprints)	1111
	2222
	3333
	4444
	5555
	6666
	7777
	8888
	9999
	0000

Basic Data Model: Sets

- Document: A document is represented as a set shingles (more accurately, hashes of shingles)
- Document similarity: Jaccard similarity of the sets of shingles.
- Common shingles over the union of shingles
- $\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|$.
- Although we use the documents as our driving example the techniques we will describe apply to any kind of sets.
- E.g., similar customers or items.

Signatures

- Problem: shingle sets are too large to be kept in memory.
- Key idea: "hash" each set S to a small signature Sig (S), such that:

1. $\operatorname{Sig}(\mathrm{S})$ is small enough that we can fit a signature in main memory for each set.
2. $\operatorname{Sim}\left(S_{1}, S_{2}\right)$ is (almost) the same as the "similarity" of $\operatorname{Sig}\left(S_{1}\right)$ and $\mathrm{Sig}\left(\mathrm{S}_{2}\right)$. (signature preserves similarity).

- Warning: This method can produce false negatives, and false positives (if an additional check is not made).
- False negatives: Similar items deemed as non-similar
- False positives: Non-similar items deemed as similar

From Sets to Boolean Matrices

- Represent the data as a boolean matrix M
- Rows = the universe of all possible set elements
- In our case, shingle fingerprints take values in [0...264-1]
- Columns = the sets
- In our case, documents, sets of shingle fingerprints
- $M(r, S)=1$ in row r and column S if and only if r is a member of S.
- Typical matrix is sparse.
- We do not really materialize the matrix

Example

- Universe: $\mathrm{U}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$

- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$
- $\operatorname{Sim}(X, Y)=\frac{3}{5}$

	\mathbf{X}	\mathbf{Y}
A	1	1
B	1	0
C	0	0
D	0	0
E	0	1
F	1	1
\mathbf{G}	1	1

Example

- Universe: $\mathrm{U}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$

- $X=\{A, B, F, G\}$
- $\mathrm{Y}=\{\mathrm{A}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$

	\mathbf{X}	\mathbf{Y}
\mathbf{A}	1	1
B	1	0
C	0	0
D	0	0
E	0	1
F	1	1
\mathbf{G}	1	1

At least one of the columns has value 1

Example

- Universe: $\mathrm{U}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$

- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

	\mathbf{X}	\mathbf{Y}
A	1	1
B	1	0
C	0	0
D	0	0
E	0	1
F	1	1
\mathbf{G}	1	1

Both columns have value 1

Minhashing

- Pick a random permutation of the rows (the universe U).
- Define "hash" function for set S
- $\mathrm{h}(\mathrm{S})=$ the index of the first row (in the permuted order) in which column S has 1 .
- OR
- $h(S)=$ the index of the first element of S in the permuted order.
- Use k (e.g., $k=100$) independent random permutations to create a signature.

Example of minhash signatures

- Input matrix

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

Example of minhash signatures

- Input matrix

		S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
1	D	0	1	0	1
2	B	1	0	0	1
3	A	1	0	1	0
4	C	0	1	0	1
5	F	1	0	1	0
6	G	1	0	1	0
7	E	0	1	0	1
		$\mathbf{2}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$

Example of minhash signatures

- Input matrix

		S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
1	C	0	1	0	1
2	D	0	1	0	1
3	G	1	0	1	0
4	F	1	0	1	0
5	A	1	0	1	0
6	B	1	0	0	1
7	E	0	1	0	1
		$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$

Example of minhash signatures

- Input matrix

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

Signature matrix

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	2	1	2
\mathbf{h}_{2}	2	1	3	1
\mathbf{h}_{3}	3	1	3	1

- $\operatorname{Sig}(S)=$ vector of hash values
- e.g., $\operatorname{Sig}\left(\mathrm{S}_{2}\right)=[2,1,1]$
- $\operatorname{Sig}(\mathrm{S}, \mathrm{i})=$ value of the i-th hash function for set S
- E.g., $\operatorname{Sig}\left(\mathrm{S}_{2}, 3\right)=1$

Hash function Property

$$
\operatorname{Pr}\left(\mathrm{h}\left(\mathrm{~S}_{1}\right)=\mathrm{h}\left(\mathrm{~S}_{2}\right)\right)=\operatorname{Sim}\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)
$$

- where the probability is over all choices of permutations.
-Why?
- The first row where one of the two sets has value 1 belongs to the union.
- Recall that union contains rows with at least one 1.
- We have equality if both sets have value 1, and this row belongs to the intersection

Example

- Universe: $U=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

Rows C,D could be anywhere they do not affect the probability

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0	*			
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: $\mathbb{U}=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$
- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0				
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: $U=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

The question is what is the value of the first * element

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1		D	0	0
B	1	0				
C	0	0				
D	0	0		C	0	0
E	0	1				
F	1	1				
G	1	1				

Example

- Universe: $U=\{A, B, C, D, E, F, G\}$
- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

If it belongs to the intersection then $h(X)=h(Y)$

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0				
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Example

- Universe: $\mathbb{U}=\{A, B, C, D, E, F, G\}$

- $X=\{A, B, F, G\}$
- $Y=\{A, E, F, G\}$

Every element of the union is equally likely to be the * element

$$
\operatorname{Pr}(h(X)=h(Y))=\frac{|\{A, F, G\}|}{|\{A, B, E, F, G\}|}=\frac{3}{5}=\operatorname{Sim}(X, Y)
$$

- Union =

$$
\{A, B, E, F, G\}
$$

- Intersection = \{A,F,G\}

	X	Y			X	Y
A	1	1	D	D	0	0
B	1	0	*			
C	0	0	*			
D	0	0	C	C	0	0
E	0	1	*			
F	1	1	*			
G	1	1	*			

Similarity for Signatures

- The similarity of signatures is the fraction of the hash functions in which they agree.

	S_{1}	S_{2}	S_{3}	S_{4}
A	1	0	1	0
B	1	0	0	1
C	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

- With multiple signatures we get a good approximation

Is it now feasible?

- Assume a billion rows
- Hard to pick a random permutation of $1 .$. .billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order?
- ©

Being more practical

Approximating row permutations: pick k=100 hash functions ($\mathrm{h}_{1, \ldots, \ldots} \mathrm{~h}_{\mathrm{k}}$)
for each row r
for each hash function h_{i}

In practice this means selecting the function parameters

In practice only the rows (shingles) that appear in the data
$h_{i}(r)=$ index of shingle r in permutation
for each column S that has 1 in row $r \quad s$ contains shingle r if $h_{i}(r)$ is a smaller value than $\operatorname{Sig}(S, i)$ then

$$
\operatorname{Sig}(\mathbf{S}, \mathbf{i})=h_{i}(\mathbf{r}) ;
$$

Find the shingle r with minimum index
Sig(S, i) will become the smallest value of $h_{i}(r)$ among all rows (shingles) for which column S has value 1 (shingle belongs in S); i.e., $h_{i}(r)$ gives the min index for the i-th permutation

Example

$h(x)=x+1 \bmod 5$
$g(x)=2 x+3 \bmod 5$

$\mathrm{h}(\mathrm{x})$	Row S 1	S 2	
1	E	0	1
2	A	1	0
3	B	0	1
4	C	1	1
0	D	1	0

$\mathrm{g}(\mathrm{x})$	Row S 1	S 2	
3	B	0	1
0	E	0	1
2	C	1	0
4	A	1	1
1	D	1	0

$$
\begin{aligned}
& h(0)=1 \\
& g(0)=3
\end{aligned}
$$

$$
h(1)=2
$$

$$
g(1)=0
$$

$$
h(2)=3
$$

$$
g(2)=2
$$

$$
h(3)=4
$$

$$
g(3)=4
$$

$$
h(4)=0
$$

1

$$
g(4)=1
$$

2

$$
\begin{aligned}
& 2 \\
& 0
\end{aligned}
$$

Implementation - (4)

- Often, data is given by column, not row.
- E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- And always compute $h_{i}(r)$ only once for each row.

