DATA MINING LECTURE 5

Similarity and Distance Sketching, Locality Sensitive Hashing

SIMILARITY AND DISTANCE

Thanks to:

Tan, Steinbach, and Kumar, "Introduction to Data Mining" Rajaraman and Ullman, "Mining Massive Datasets"

Similarity and Distance

- For many different problems we need to quantify how close two objects are.
- Examples:
 - For an item bought by a customer, find other similar items
 - Group together the customers of site so that similar customers are shown the same ad.
 - Group together web documents so that you can separate the ones that talk about politics and the ones that talk about sports.
 - Find all the near-duplicate mirrored web documents.
 - Find credit card transactions that are very different from previous transactions.
- To solve these problems we need a definition of similarity, or distance.
 - The definition depends on the type of data that we have

Similarity

- Numerical measure of how alike two data objects are.
 - A function that maps pairs of objects to real values
 - Higher when objects are more alike.
- Often falls in the range [0,1], sometimes in [-1,1]
- Desirable properties for similarity
 - s(p, q) = 1 (or maximum similarity) only if p = q. (Identity)
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

Similarity between sets

Consider the following documents

apple	apple	new
releases	releases	apple pie
new ipod	new ipad	recipe

Which ones are more similar?

How would you quantify their similarity?

Similarity: Intersection

Number of words in common

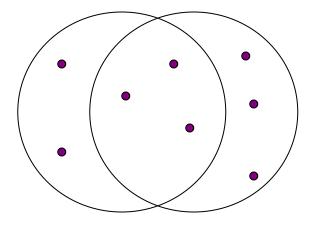
- Sim(D,D) = 3, Sim(D,D) = Sim(D,D) = 2
- What about this document?

Vefa rereases new book with apple pie recipes

• Sim(D,D) = Sim(D,D) = 3

Jaccard Similarity

- The Jaccard similarity (Jaccard coefficient) of two sets S₁, S₂ is the size of their intersection divided by the size of their union.
 - JSim (C₁, C₂) = $|C_1 \cap C_2| / |C_1 \cup C_2|$.

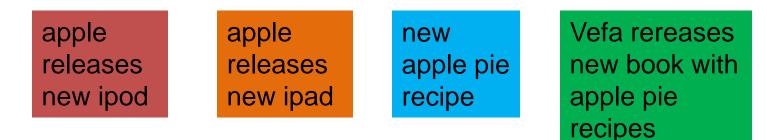


3 in intersection.
8 in union.
Jaccard similarity
= 3/8

- Extreme behavior:
 - Jsim(X,Y) = 1, iff X = Y
 - Jsim(X,Y) = 0 iff X,Y have not elements in common
- JSim is symmetric

Similarity: Intersection

Number of words in common



- JSim(D,D) = 3/5
- JSim(D,D) = JSim(D,D) = 2/6
- JSim(D,D) = JSim(D,D) = 3/9

Similarity between vectors

Documents (and sets in general) can also be represented as vectors

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D2	0	0	10	20

How do we measure the similarity of two vectors?

How well are the two vectors aligned?

Example

document	Apple	Microsoft	Obama	Election
D1	1/3	2/3	0	0
D2	1/3	2/3	0	0
D2	0	0	1/3	2/3

Documents D1, D2 are in the "same direction" Document D3 is orthogonal to these two

Cosine Similarity

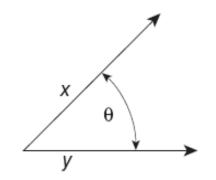


Figure 2.16. Geometric illustration of the cosine measure.

• Sim(X,Y) = cos(X,Y)

The cosine of the angle between X and Y

- If the vectors are aligned (correlated) angle is zero degrees and cos(X,Y)=1
- If the vectors are orthogonal (no common coordinates) angle is 90 degrees and cos(X,Y) = 0
- Cosine is commonly used for comparing documents, where we assume that the vectors are normalized by the document length.

Cosine Similarity - math

• If d_1 and d_2 are two vectors, then $\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$, where \bullet indicates vector dot product and || d || i

where \bullet indicates vector dot product and || d || is the length of vector d.

• Example:

 $d_1 = 3205000200$ $d_2 = 1000000102$

 $d_1 \bullet d_2 = 3^*1 + 2^*0 + 0^*0 + 5^*0 + 0^*0 + 0^*0 + 0^*0 + 2^*1 + 0^*0 + 0^*2 = 5$

 $||d_1|| = (3^{3}+2^{2}+0^{0}+5^{5}+0^{0}+0^{0}+0^{0}+0^{2}+0^{0}+0^{0}+0^{0})^{0.5} = (42)^{0.5} = 6.481$

 $||d_2|| = (1^{1}+0^{0}+0^{0}+0^{0}+0^{0}+0^{0}+0^{0}+0^{1}+1^{1}+0^{0}+2^{2})^{0.5} = (6)^{0.5} = 2.245$

 $\cos(d_1, d_2) = .3150$

Similarity between vectors

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D2	0	0	10	20

cos(D1,D2) = 1cos(D1,D3) = cos(D2,D3) = 0

Distance

- Numerical measure of how different two data objects are
 - A function that maps pairs of objects to real values
 - Lower when objects are more alike
- Minimum distance is 0, when comparing an object with itself.
- Upper limit varies

Distance Metric

- A distance function d is a distance metric if it is a function from pairs of objects to real numbers such that:
 - 1. $d(x,y) \ge 0$. (non-negativity)
 - 2. d(x,y) = 0 iff x = y. (identity)
 - 3. d(x,y) = d(y,x). (symmetry)
 - 4. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).

Triangle Inequality

- Triangle inequality guarantees that the distance function is well-behaved.
 - The direct connection is the shortest distance
- It is useful also for proving properties about the data
 - For example, suppose I want to find an object that minimizes the sum of distances to all points in my dataset
 - If I select the best point from my dataset, the sum of distances I get is at most twice that of the optimal point.

Distances for real vectors

• Vectors $x = (x_1, ..., x_d)$ and $y = (y_1, ..., y_d)$

- L_p norms or Minkowski distance: $L_p(x, y) = [|x_1 - y_1|^p + \dots + |x_d - y_d|^p]^{1/p}$
- L₂ norm: Euclidean distance: $L_2(x, y) = \sqrt{|x_1 - y_1|^2 + \dots + |x_d - y_d|^2}$
- L₁ norm: Manhattan distance:

$$L_1(x, y) = |x_1 - y_1| + \dots + |x_d - y_d|$$

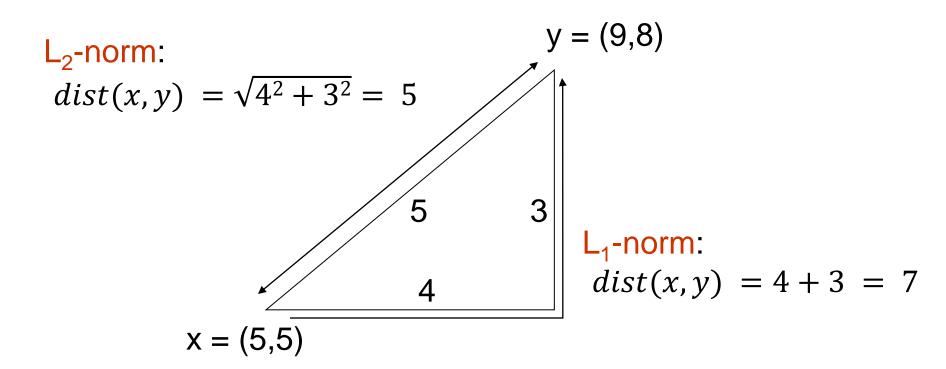
L_∞ norm:

L_p norms are known to be distance metrics

$$L_{\infty}(x, y) = \max\{|x_1 - y_1|, \dots, |x_d - y_d|\}$$

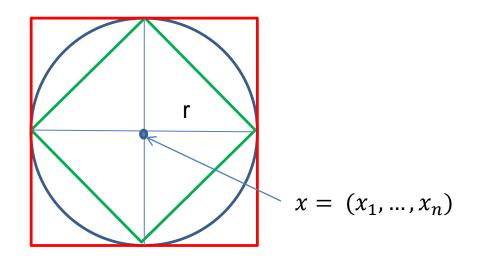
The limit of L_p as p goes to infinity.

Example of Distances



 L_{∞} -norm: $dist(x, y) = max\{3, 4\} = 4$

Example



Green: All points y at distance $L_1(x,y) = r$ from point x Blue: All points y at distance $L_2(x,y) = r$ from point x Red: All points y at distance $L_{\infty}(x,y) = r$ from point x

L_p distances for sets

- We can apply all the L_p distances to the cases of sets of attributes, with or without counts, if we represent the sets as vectors
 - E.g., a transaction is a 0/1 vector
 - E.g., a document is a vector of counts.

Similarities into distances

• Jaccard distance: JDist(X,Y) = 1 - JSim(X,Y)

- Jaccard Distance is a metric
- Cosine distance: Dist(X,Y) = 1 - cos(X,Y)
- Cosine distance is a metric

Why Jaccard Distance Is a Distance Metric

- JDist(x,x) = 0
 - since JSim(x,x) = 1
- JDist(x,y) = JDist(y,x)
 - by symmetry of intersection
- JDist(x,y) ≥ 0
 - since intersection of X,Y cannot be bigger than the union.
- Triangle inequality:
 - Follows from the fact that JSim(X,Y) is the probability of randomly selected element from the union of X and Y to belong to the intersection

Hamming Distance

- Hamming distance is the number of positions in which bit-vectors differ.
 - Example: $p_1 = 10101$ $p_2 = 10011$.
 - d(p₁, p₂) = 2 because the bit-vectors differ in the 3rd and 4th positions.
 - The L₁ norm for the binary vectors
- Hamming distance between two vectors of categorical attributes is the number of positions in which they differ.

Why Hamming Distance Is a Distance Metric

- d(x,x) = 0 since no positions differ.
- d(x,y) = d(y,x) by symmetry of "different from."
- d(x,y) > 0 since strings cannot differ in a negative number of positions.
- Triangle inequality: changing x to z and then to y is one way to change x to y.
- For binary vectors if follows from the fact that L₁ norm is a metric

Distance between strings

How do we define similarity between strings?

weirdwierdintelligentAthenaAthina

 Important for recognizing and correcting typing errors and analyzing DNA sequences.

Edit Distance for strings

- The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other.
- Example: x = abcde ; y = bcduve.
 - Turn x into y by deleting a, then inserting u and v after d.
 - Edit distance = 3.
- Minimum number of operations can be computed using dynamic programming
- Common distance measure for comparing DNA sequences

Why Edit Distance Is a Distance Metric

- d(x,x) = 0 because 0 edits suffice.
- d(x,y) = d(y,x) because insert/delete are inverses of each other.
- $d(x,y) \ge 0$: no notion of negative edits.
- Triangle inequality: changing x to z and then to y is one way to change x to y. The minimum is no more than that

Variant Edit Distances

- Allow insert, delete, and mutate.
 - Change one character into another.
- Minimum number of inserts, deletes, and mutates also forms a distance measure.
- Same for any set of operations on strings.
 - Example: substring reversal or block transposition OK for DNA sequences
 - Example: character transposition is used for spelling

Distances between distributions

• We can view a document as a distribution over the words

document	Apple	Microsoft	Obama	Election
D1	0.35	0.5	0.1	0.05
D2	0.4	0.4	0.1	0.1
D2	0.05	0.05	0.6	0.3

KL-divergence (Kullback-Leibler) for distributions P,Q

$$D_{KL}(P||Q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

- KL-divergence is asymmetric. We can make it symmetric by taking the average of both sides
- JS-divergence (Jensen-Shannon)

$$JS(P,Q) = \frac{1}{2}D_{KL}(P||Q) + \frac{1}{2}D_{KL}(Q||P)$$

SKETCHING AND LOCALITY SENSITIVE HASHING

Thanks to:

Rajaraman and Ullman, "Mining Massive Datasets" Evimaria Terzi, slides for Data Mining Course.

Why is similarity important?

- We saw many definitions of similarity and distance
- How do we make use of similarity in practice?
- What issues do we have to deal with?

An important problem

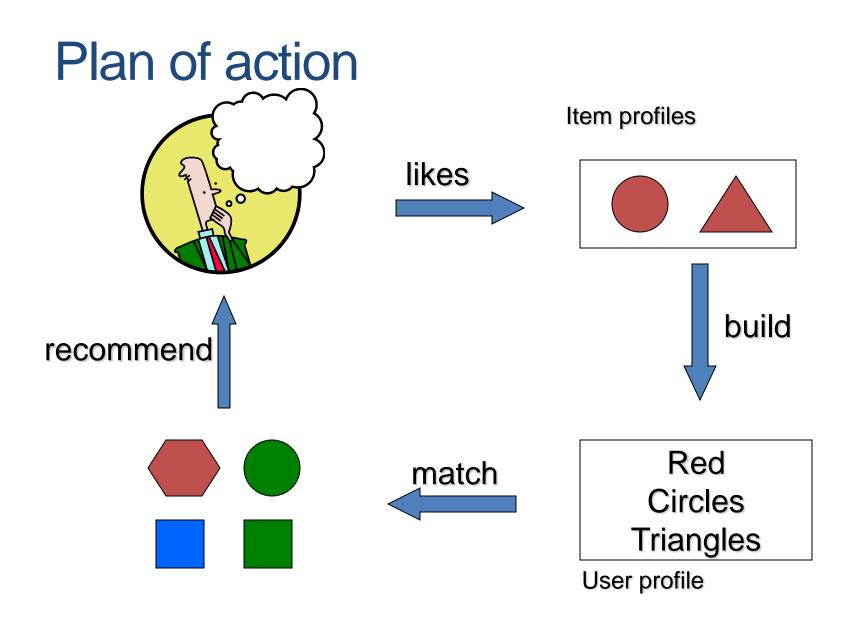
Recommendation systems

- When a user buys an item (initially books) we want to recommend other items that the user may like
- When a user rates a movie, we want to recommend movies that the user may like
- When a user likes a song, we want to recommend other songs that they may like
- A big success of data mining
- Exploits the long tail

Recommendation Systems

Content-based:

- Represent the items into a feature space and recommend items to customer C similar to previous items rated highly by C
 - Movie recommendations: recommend movies with same actor(s), director, genre, ...
 - Websites, blogs, news: recommend other sites with "similar" content



Limitations of content-based approach

- Finding the appropriate features
 - e.g., images, movies, music
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
- Recommendations for new users
 - How to build a profile?

Recommendation Systems (II)

- Collaborative Filtering (user –user)
 - Consider user c
 - Find set D of other users whose ratings are "similar" to c's ratings
 - Estimate user's ratings based on ratings of users in D

Recommendation Systems (III)

- Collaborative filtering (item-item)
 - For item s, find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model
- In practice, it has been observed that itemitem often works better than user-user

Pros and cons of collaborative filtering

- Works for any kind of item
 - No feature selection needed
- New user problem
- New item problem
- Sparsity of rating matrix
 - Cluster-based smoothing?

Another important problem

- Find duplicate and near-duplicate documents from a web crawl.
- Why is it important:
 - Identify mirrored web pages, and avoid indexing them, or serving them multiple times
 - Find replicated news stories and cluster them under a single story.
 - Identify plagiarism
- What if we wanted exact duplicates?

Finding similar items

- Both the problems we described have a common component
 - We need a quick way to find highly similar items to a query item
 - OR, we need a method for finding all pairs of items that are highly similar.
- Also known as the Nearest Neighbor problem, or the All Nearest Neighbors problem
- We will examine it for the case of near-duplicate web documents.

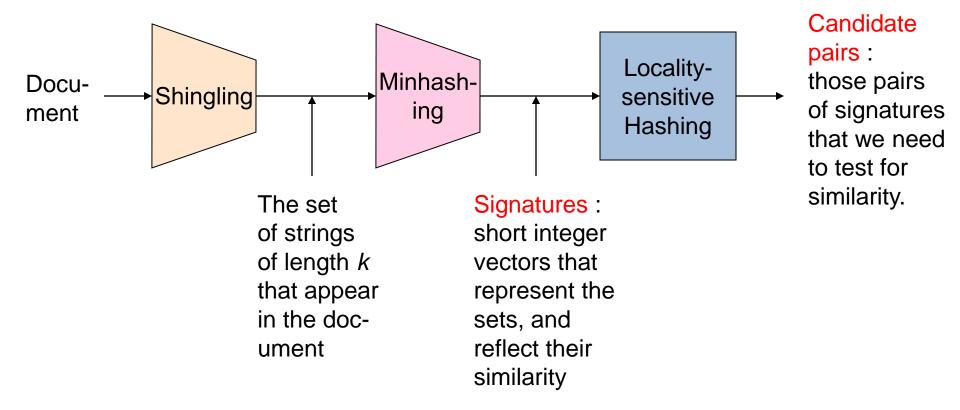
Main issues

- What is the right representation of the document when we check for similarity?
 - E.g., representing a document as a set of characters will not do (why?)
- When we have billions of documents, keeping the full text in memory is not an option.
 - We need to find a shorter representation
- How do we do pairwise comparisons of billions of documents?
 - If exact match was the issue it would be ok, can we replicate this idea?

Three Essential Techniques for Similar Documents

- 1. Shingling : convert documents, emails, etc., to sets.
- 2. Minhashing : convert large sets to short signatures, while preserving similarity.
- 3. Locality-Sensitive Hashing (LSH): focus on pairs of signatures likely to be similar.

The Big Picture



43

Shingles

- A k -shingle (or k -gram) for a document is a sequence of k characters that appears in the document.
- Example: document = abcab. k=2
 - Set of 2-shingles = {ab, bc, ca}.
 - Option: regard shingles as a bag, and count ab twice.
- Represent a document by its set of k-shingles.

Shingling

Shingle: a sequence of k contiguous characters

<u>a</u>	rose	is	a	rose	is	a	rose
<u>a</u>	rose	is	_				
_	rose	is	a				
	rose	is	a				
	ose	is	a	r			
	se	is	a	ro			
	e	is	a	ros			
		is	a	rose			
		is	a	rose			
		S	a	rose	i		
			a	rose			
			a	rose			

Working Assumption

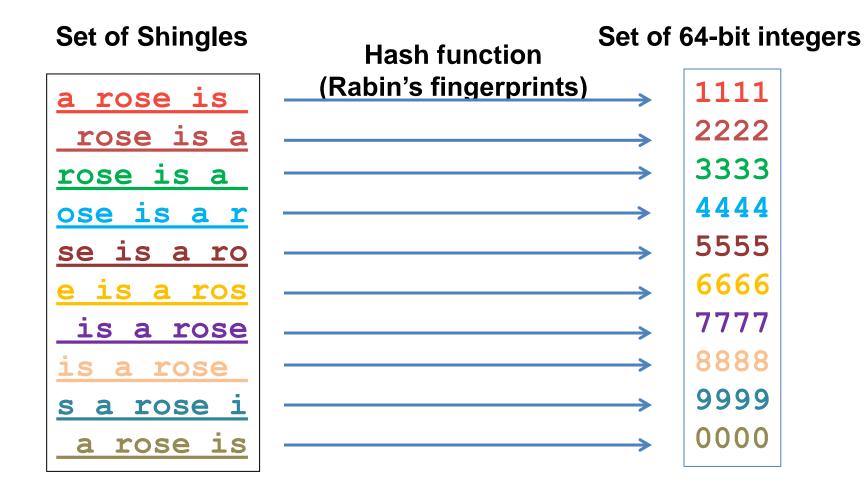
- Documents that have lots of shingles in common have similar text, even if the text appears in different order.
- Careful: you must pick k large enough, or most documents will have most shingles.
 - Extreme case k = 1: all documents are the same
 - k = 5 is OK for short documents; k = 10 is better for long documents.
- Alternative ways to define shingles:
 - Use words instead of characters
 - Anchor on stop words (to avoid templates)

Shingles: Compression Option

- To compress long shingles, we can hash them to (say) 4 bytes.
- Represent a doc by the set of hash values of its k-shingles.
- From now on we will assume that shingles are integers
 - Collisions are possible, but very rare

Fingerprinting

Hash shingles to 64-bit integers



Basic Data Model: Sets

- Document: A document is represented as a set shingles (more accurately, hashes of shingles)
- Document similarity: Jaccard similarity of the sets of shingles.
 - Common shingles over the union of shingles
 - Sim (C₁, C₂) = $|C_1 \cap C_2| / |C_1 \cup C_2|$.
- Although we use the documents as our driving example the techniques we will describe apply to any kind of sets.
 - E.g., similar customers or items.

Signatures

- Problem: shingle sets are too large to be kept in memory.
- Key idea: "hash" each set S to a small signature Sig (S), such that:
 - 1. Sig (S) is small enough that we can fit a signature in main memory for each set.
 - 2. Sim (S_1, S_2) is (almost) the same as the "similarity" of Sig (S_1) and Sig (S_2) . (signature preserves similarity).
- Warning: This method can produce false negatives, and false positives (if an additional check is not made).
 - False negatives: Similar items deemed as non-similar
 - False positives: Non-similar items deemed as similar

From Sets to Boolean Matrices

- Represent the data as a boolean matrix M
 - Rows = the universe of all possible set elements
 - In our case, shingle fingerprints take values in [0...2⁶⁴-1]
 - Columns = the sets
 - In our case, documents, sets of shingle fingerprints
 - M(r,S) = 1 in row r and column S if and only if r is a member of S.
- Typical matrix is sparse.
 - We do not really materialize the matrix

- Universe: U = {A,B,C,D,E,F,G}
- X = {A,B,F,G} • Y = {A,E,F,G}

• Sim(X,Y) =
$$\frac{3}{5}$$

	X	Y
Α	1	1
В	1	0
С	0	0
D	0	0
Е	0	1
F	1	1
G	1	1

• Universe: U = {A,B,C,D,E,F,G}

• X = {A,B,F,G} • Y = {A,E,F,G}

• Sim(X,Y) =
$$\frac{3}{5}$$

	X	Y
Α	1	1
В	1	0
С	0	0
D	0	0
Е	0	1
F	1	1
G	1	1

At least one of the columns has value 1

- Universe: U = {A,B,C,D,E,F,G}
- X = {A,B,F,G} • Y = {A,E,F,G}

• Sim(X,Y) =
$$\frac{3}{5}$$

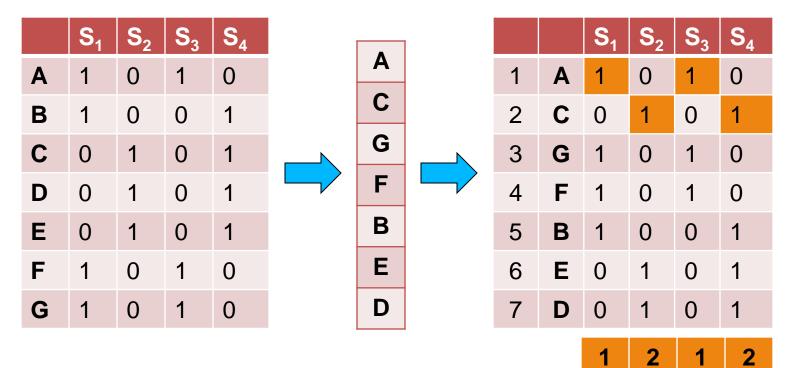
Both columns have value 1

	X	Y
Α	1	1
В	1	0
С	0	0
D	0	0
Е	0	1
F	1	1
G	1	1

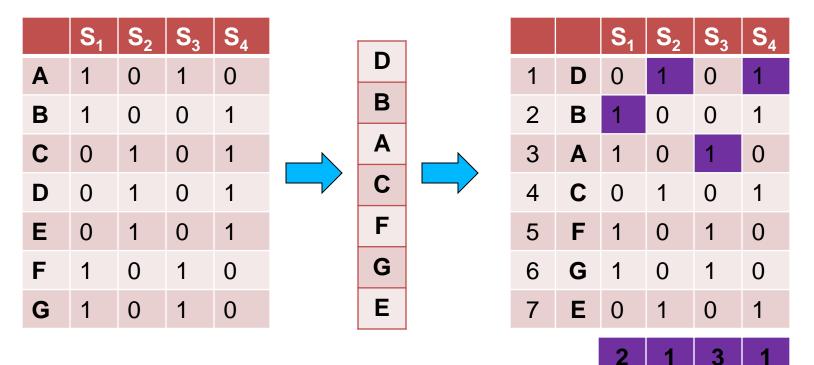
Minhashing

- Pick a random permutation of the rows (the universe U).
- Define "hash" function for set S
 - h(S) = the index of the first row (in the permuted order) in which column S has 1.
 - OR
 - h(S) = the index of the first element of S in the permuted order.
- Use k (e.g., k = 100) independent random permutations to create a signature.

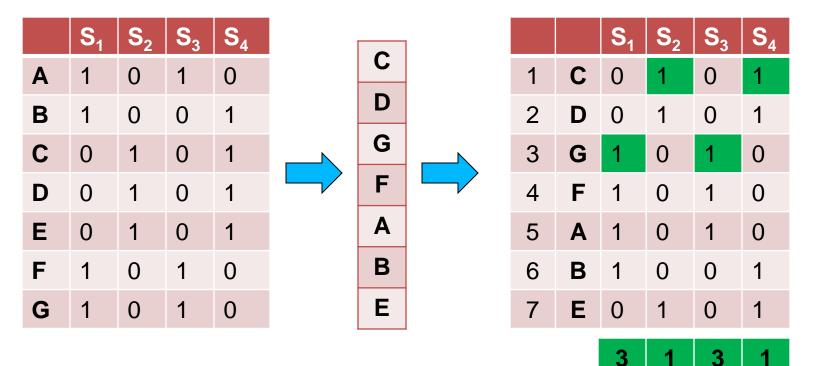
Input matrix



Input matrix



Input matrix



Input matrix



Signature matrix

	S ₁	S ₂	S ₃	S ₄
h ₁	1	2	1	2
h ₂	2	1	3	1
h ₃	3	1	3	1

- Sig(S) = vector of hash values
 - e.g., $Sig(S_2) = [2,1,1]$
- Sig(S,i) = value of the i-th hash function for set S
 - E.g., $Sig(S_2,3) = 1$

Hash function Property

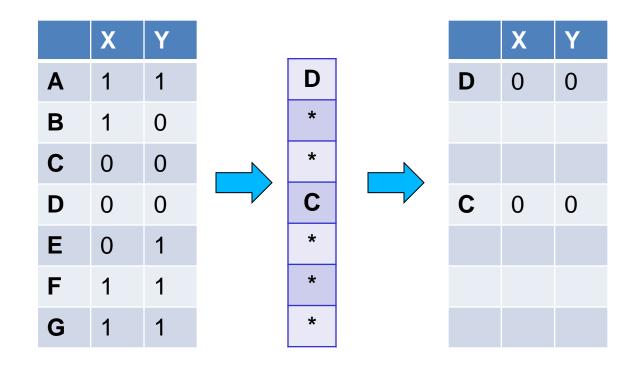
 $Pr(h(S_1) = h(S_2)) = Sim(S_1, S_2)$

- where the probability is over all choices of permutations.
- Why?
 - The first row where one of the two sets has value 1 belongs to the union.
 - Recall that union contains rows with at least one 1.
 - We have equality if both sets have value 1, and this row belongs to the intersection

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

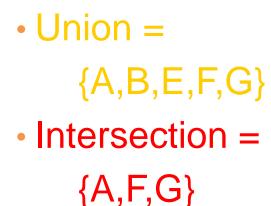
Rows C,D could be anywhere they do not affect the probability

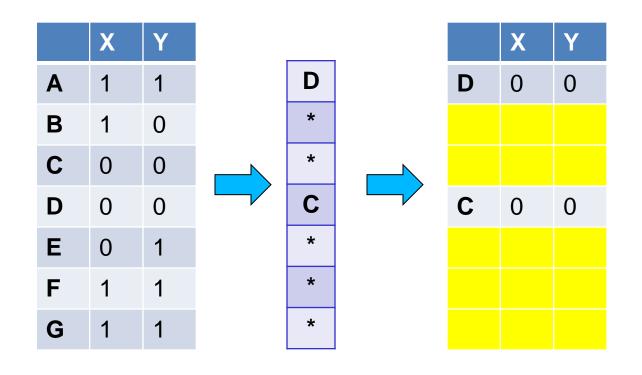
Union = {A,B,E,F,G}
Intersection = {A,F,G}



- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

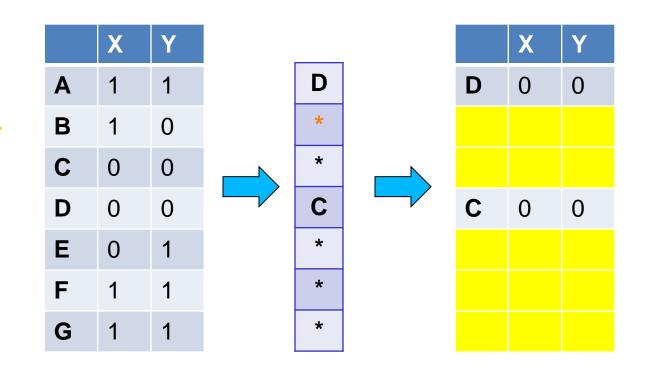
The * rows belong to the union





- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

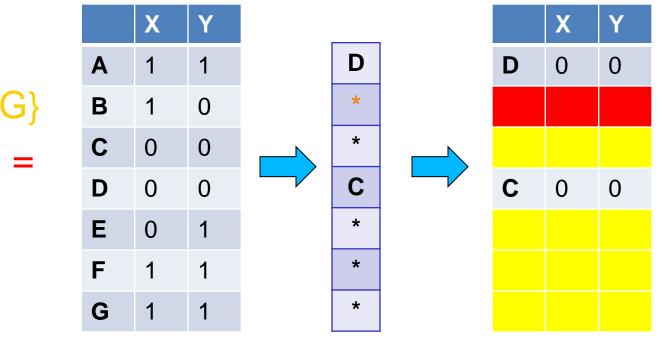
The question is what is the value of the first * element



Union = {A,B,E,F,G}
Intersection = {A,F,G}

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

If it belongs to the intersection then h(X) = h(Y)



Union = {A,B,E,F,G}
Intersection =

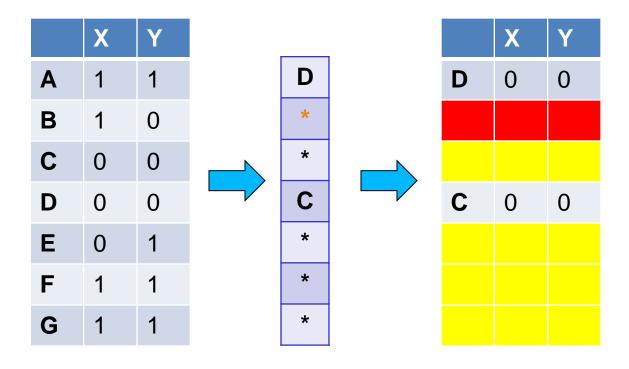
 $\{A,F,G\}$

- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

Every element of the union is equally likely to be the * element $Pr(h(X) = h(Y)) = \frac{|\{A,F,G\}|}{|\{A,B,E,F,G\}|} = \frac{3}{5} = Sim(X,Y)$

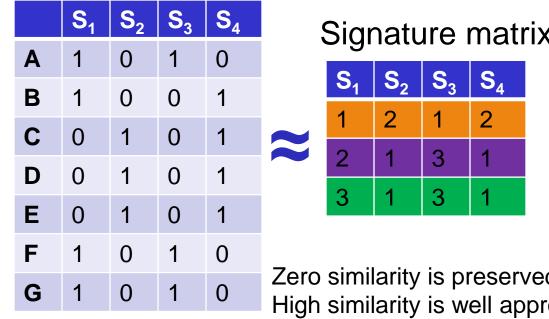
• Union = {A,B,E,F,G}

 Intersection = {A,F,G}



Similarity for Signatures

 The similarity of signatures is the fraction of the hash functions in which they agree.



<		Actual	Sig
	(S ₁ , S ₂)	0	0
	(S ₁ , S ₃)	3/5	2/3
	(S ₁ , S ₄)	1/7	0
	(S ₂ , S ₃)	0	0
	(S ₂ , S ₄)	3/4	1
d	(S ₃ , S ₄)	0	0

Zero similarity is preserved

 S_3

3

3

S₄

2

High similarity is well approximated

 With multiple signatures we get a good approximation

Is it now feasible?

Assume a billion rows

- Hard to pick a random permutation of 1...billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order?

Being more practical

Approximating row permutations: pick k=100 hash functions (h₁,...,h_k)

for each row r

for each hash function h_i compute h_i (r)

In practice this means selecting the function parameters

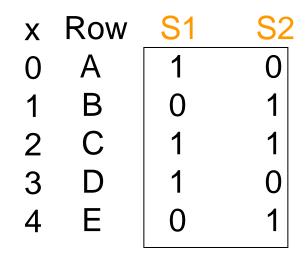
In practice only the rows (shingles) that appear in the data

h_i(**r**) = index of shingle **r** in permutation

for each column S that has 1 in row r S contains shingle r

if h_i (r) is a smaller value than Sig(S,i) then Find the shingle **r** with minimum index $Sig(S,i) = h_i(r);$

Sig(S,i) will become the smallest value of h_i(r) among all rows (shingles) for which column S has value 1 (shingle belongs in S); *i.e.*, **h**_i (**r**) gives the min index for the **i**-th permutation



$h(x) = x+1 \mod 5$ $g(x) = 2x+3 \mod 5$							
h(x)	Row	/ <mark>S1</mark>	S 2		Row	/ <mark>S1</mark>	S 2
1	E	0	1	3	В	0	1
2	А	1	0	0	Е	0	1
3	В	0	1	2	С	1	0
4	С	1	1	4	А	1	1
0	D	1	0	1	D	1	0

	Sig1	Sig2
h(0) = 1 g(0) = 3	1 3	-
h(1) = 2	1	2
g(1) = 0	3	0
h(2) = 3	1	2
g(2) = 2	2	0
h(3) = 4	1	2
g(3) = 4	2	0
h(4) = 0	1	0
g(4) = 1	2	0

Implementation -(4)

- Often, data is given by column, not row.
 - E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- And always compute h_i(r) only once for each row.