
DATA MINING

LECTURE 13
Absorbing Random walks

Coverage

ABSORBING RANDOM

WALKS

Random walk with absorbing nodes

• What happens if we do a random walk on this
graph? What is the stationary distribution?

• All the probability mass on the red sink node:
• The red node is an absorbing node

Random walk with absorbing nodes

• What happens if we do a random walk on this graph?
What is the stationary distribution?

• There are two absorbing nodes: the red and the blue.

• The probability mass will be divided between the two

Absorption probability

• If there are more than one absorbing nodes in the

graph a random walk that starts from a non-

absorbing node will be absorbed in one of them

with some probability

• The probability of absorption gives an estimate of how

close the node is to red or blue

Absorption probability

• Computing the probability of being absorbed:
• The absorbing nodes have probability 1 of being absorbed in

themselves and zero of being absorbed in another node.

• For the non-absorbing nodes, take the (weighted) average of
the absorption probabilities of your neighbors

• if one of the neighbors is the absorbing node, it has probability 1

• Repeat until convergence (= very small change in probs)

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
2

3

2

2

1

1

1
2

1

Absorption probability

• Computing the probability of being absorbed:
• The absorbing nodes have probability 1 of being absorbed in

themselves and zero of being absorbed in another node.

• For the non-absorbing nodes, take the (weighted) average of
the absorption probabilities of your neighbors

• if one of the neighbors is the absorbing node, it has probability 1

• Repeat until convergence (= very small change in probs)

𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝐵𝑙𝑢𝑒|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

2

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

3

2

2

1

1

1
2

1

Why do we care?

• Why do we care to compute the absorption
probability to sink nodes?

• Given a graph (directed or undirected) we can
choose to make some nodes absorbing.
• Simply direct all edges incident on the chosen nodes towards

them and remove outgoing edges.

• The absorbing random walk provides a measure of
proximity of non-absorbing nodes to the chosen
nodes.
• Useful for understanding proximity in graphs

• Useful for propagation in the graph

• E.g, some nodes have positive opinions for an issue, some have
negative, to which opinion is a non-absorbing node closer?

Example

• In this undirected graph we want to learn the

proximity of nodes to the red and blue nodes

2

2

1

1

1
2

1

Example

• Make the nodes absorbing

2

2

1

1

1
2

1

Absorption probability

• Compute the absorbtion probabilities for red and

blue

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

3

0.52

0.48

0.42

0.58

0.57

0.43 2

2

1

1

1
2

1
𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 = 1 − 𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 = 1 − 𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 = 1 − 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤

Penalizing long paths

• The orange node has the same probability of

reaching red and blue as the yellow one

• Intuitively though it is further away
0.52

0.48

0.42

0.58

0.57

0.43 2

2

1

1

1
2

1
𝑃 𝐵𝑙𝑢𝑒 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 1

𝑃 𝑅𝑒𝑑 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤

0.57

0.43

Penalizing long paths

• Add an universal absorbing node to which each

node gets absorbed with probability α.

1-α
α

α

α α

1-α
1-α

1-α

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 = (1 − 𝛼)
1

5
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

5
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

5

With probability α the random walk dies

With probability (1-α) the random walk

continues as before

The longer the path from a node to an

absorbing node the more likely the random

walk dies along the way, the lower the

absorbtion probability

e.g.

Random walk with restarts

• Adding a jump with probability α to a universal absorbing node
seems similar to Pagerank

• Random walk with restart:
• Start a random walk from node u

• At every step with probability α, jump back to u

• The probability of being at node v after large number of steps defines again a
similarity between u,v

• The Random Walk With Restarts (RWS) and Absorbing Random
Walk (ARW) are similar but not the same
• RWS computes the probability of paths from the starting node u to a node v,

while AWR the probability of paths from a node v, to the absorbing node u.

• RWS defines a distribution over all nodes, while AWR defines a probability for
each node

• An absorbing node blocks the random walk, while restarts simply bias towards
starting nodes

• Makes a difference when having multiple (and possibly competing) absorbing nodes

Propagating values

• Assume that Red has a positive value and Blue a
negative value
• Positive/Negative class, Positive/Negative opinion

• We can compute a value for all the other nodes by
repeatedly averaging the values of the neighbors
• The value of node u is the expected value at the point of absorption

for a random walk that starts from u

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6

+1

-1

0.05 -0.16

0.16 2

2

1

1

1
2

1

Electrical networks and random walks

• Our graph corresponds to an electrical network

• There is a positive voltage of +1 at the Red node, and a
negative voltage -1 at the Blue node

• There are resistances on the edges inversely proportional to
the weights (or conductance proportional to the weights)

• The computed values are the voltages at the nodes

+1

𝑉(𝑃𝑖𝑛𝑘) =
2

3
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

3
𝑉(𝐺𝑟𝑒𝑒𝑛)

𝑉 𝐺𝑟𝑒𝑒𝑛 =
1

5
𝑉(𝑌𝑒𝑙𝑙𝑜𝑤) +

1

5
𝑉(𝑃𝑖𝑛𝑘) +

1

5
 −
2

5

𝑉 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

6
𝑉 𝐺𝑟𝑒𝑒𝑛 +

1

3
𝑉(𝑃𝑖𝑛𝑘) +

1

3
 −
1

6

+1

-1
2

2

1

1

1
2

1

0.05 -0.16

0.16

Opinion formation

• The value propagation can be used as a model of opinion formation.

• Model:
• Opinions are values in [-1,1]

• Every user 𝑢 has an internal opinion 𝑠𝑢, and expressed opinion 𝑧𝑢.
• The expressed opinion minimizes the personal cost of user 𝑢:

𝑐 𝑧𝑢 = 𝑠𝑢 − 𝑧𝑢
2 + 𝑤𝑢 𝑧𝑢 − 𝑧𝑣

2

𝑣:𝑣 is a friend of 𝑢

• Minimize deviation from your beliefs and conflicts with the society

• If every user tries independently (selfishly) to minimize their personal
cost then the best thing to do is to set 𝑧𝑢to the average of all opinions:

𝑧𝑢 =
𝑠𝑢 + 𝑤𝑢𝑧𝑢𝑣:𝑣 is a friend of 𝑢

1 + 𝑤𝑢𝑣:𝑣 is a friend of 𝑢

• This is the same as the value propagation we described before!

Example

• Social network with internal opinions

2

2

1

1

1
2

1

s = +0.5

s = -0.3

s = -0.1 s = +0.2

s = +0.8

Example

2

2

1

1

1
2

1

1

1

1 1

1

s = +0.5

s = -0.3

s = -0.1 s = -0.5

s = +0.8

The external opinion for each node is

computed using the value propagation

we described before

• Repeated averaging

Intuitive model: my opinion is a

combination of what I believe and

what my social network believes.

One absorbing node per user with

value the internal opinion of the user

One non-absorbing node per user

that links to the corresponding

absorbing node

z = +0.22 z = +0.17

z = -0.03
z = 0.04

z = -0.01

Hitting time

• A related quantity: Hitting time H(u,v)

• The expected number of steps for a random walk

starting from node u to end up in v for the first time

• Make node v absorbing and compute the expected number of

steps to reach v

• Assumes that the graph is strongly connected, and there are no

other absorbing nodes.

• Commute time H(u,v) + H(v,u): often used as a

distance metric

• Proportional to the total resistance between nodes u,

and v

Transductive learning

• If we have a graph of relationships and some labels on some
nodes we can propagate them to the remaining nodes
• Make the labeled nodes to be absorbing and compute the probability

for the rest of the graph

• E.g., a social network where some people are tagged as spammers

• E.g., the movie-actor graph where some movies are tagged as action
or comedy.

• This is a form of semi-supervised learning
• We make use of the unlabeled data, and the relationships

• It is also called transductive learning because it does not
produce a model, but just labels the unlabeled data that is at
hand.
• Contrast to inductive learning that learns a model and can label any

new example

Implementation details

• Implementation is in many ways similar to the

PageRank implementation

• For an edge (𝑢, 𝑣)instead of updating the value of v we

update the value of u.

• The value of a node is the average of its neighbors

• We need to check for the case that a node u is

absorbing, in which case the value of the node is not

updated.

• Repeat the updates until the change in values is very

small.

COVERAGE

Example

• Promotion campaign on a social network
• We have a social network as a graph.

• People are more likely to buy a product if they have a friend who
has the product.

• We want to offer the product for free to some people such that
every person in the graph is covered: they have a friend who has
the product.

• We want the number of free products to be as small as possible

Example

One possible selection

• Promotion campaign on a social network
• We have a social network as a graph.

• People are more likely to buy a product if they have a friend who
has the product.

• We want to offer the product for free to some people such that
every person in the graph is covered: they have a friend who has
the product.

• We want the number of free products to be as small as possible

Example

A better selection

• Promotion campaign on a social network
• We have a social network as a graph.

• People are more likely to buy a product if they have a friend who
has the product.

• We want to offer the product for free to some people such that
every person in the graph is covered: they have a friend who has
the product.

• We want the number of free products to be as small as possible

Dominating set

• Our problem is an instance of the dominating set

problem

• Dominating Set: Given a graph 𝐺 = (𝑉, 𝐸), a set

of vertices 𝐷 ⊆ 𝑉 is a dominating set if for each

node u in V, either u is in D, or u has a neighbor

in D.

• The Dominating Set Problem: Given a graph

𝐺 = (𝑉, 𝐸) find a dominating set of minimum size.

Set Cover

• The dominating set problem is a special case of

the Set Cover problem

• The Set Cover problem:

• We have a universe of elements 𝑈 = 𝑥1, … , 𝑥𝑁

• We have a collection of subsets of U, 𝑺 = {𝑆1, … , 𝑆𝑛},
such that 𝑆𝑖𝑖 = 𝑈

• We want to find the smallest sub-collection 𝑪 ⊆ 𝑺 of 𝑺,
such that 𝑆𝑖 = 𝑈𝑆𝑖∈𝑪

• The sets in 𝑪 cover the elements of U

Applications

• Dominating Set (or Promotion Campaign) as Set
Cover:
• The universe U is the set of nodes V

• Each node 𝑢 defines a set 𝑆𝑢 consisting of the node 𝑢 and all
of its neighbors

• We want the minimum number of sets 𝑆𝑢 (nodes) that cover
all the nodes in the graph.

• Another example: Document summarization
• A document consists of a set of terms T (the universe U of

elements), and a set of sentences S, where each sentence is
a set of terms.

• Find the smallest set of sentences C, that cover all the terms
in the document.

• Many more…

Best selection variant

• Suppose that we have a budget K of how big our

set cover can be

• We only have K products to give out for free.

• We want to cover as many customers as possible.

• Maximum-Coverage Problem: Given a universe

of elements U, a collection of S of subsets of U,

and a budget K, find a sub-collection 𝑪 ⊆ 𝑺 of

size K, such that the number of covered elemets

 𝑆𝑖𝑆𝑖∈𝑪
 is maximized.

Complexity

• Both the Set Cover and the Maximum Coverage

problems are NP-complete

• What does this mean?

• Why do we care?

• There is no algorithm that can guarantee to find

the best solution in polynomial time

• Can we find an algorithm that can guarantee to find a

solution that is close to the optimal?

• Approximation Algorithms.

Approximation Algorithms

• For an (combinatorial) optimization problem, where:
• X is an instance of the problem,

• OPT(X) is the value of the optimal solution for X,

• ALG(X) is the value of the solution of an algorithm ALG for X

ALG is a good approximation algorithm if the ratio of OPT(X) and
ALG(X) is bounded for all input instances X

• Minimum set cover: X = G is the input graph, OPT(G) is the
size of minimum set cover, ALG(G) is the size of the set cover
found by an algorithm ALG.

• Maximum coverage: X = (G,k) is the input instance, OPT(G,k)
is the coverage of the optimal algorithm, ALG(G,k) is the
coverage of the set found by an algorithm ALG.

Approximation Algorithms

• For a minimization problem, the algorithm ALG is
an 𝛼-approximation algorithm, for 𝛼 > 1, if for all
input instances X,

𝐴𝐿𝐺 𝑋 ≤ 𝛼𝑂𝑃𝑇 𝑋

• 𝛼 is the approximation ratio of the algorithm – we
want 𝛼 to be as close to 1 as possible

• Best case: 𝛼 = 1 + 𝜖 and 𝜖 → 0, as 𝑛 → ∞ (e.g., 𝜖 =
1

𝑛
)

• Good case: 𝛼 = 𝑂(1) is a constant

• OK case: 𝛼 = O(log 𝑛)

• Bad case 𝛼 = O(𝑛𝜖)

Approximation Algorithms

• For a maximization problem, the algorithm ALG is an
𝛼-approximation algorithm, for 𝛼 < 1, if for all input
instances X,

𝐴𝐿𝐺 𝑋 ≥ 𝛼𝑂𝑃𝑇 𝑋

• 𝛼 is the approximation ratio of the algorithm – we
want 𝛼 to be as close to 1 as possible

• Best case: 𝛼 = 1 − 𝜖 and 𝜖 → 0, as 𝑛 → ∞(e.g., 𝜖 =
1

𝑛
)

• Good case: 𝛼 = 𝑂(1) is a constant

• OK case: 𝛼 = 𝑂(
1

log 𝑛
)

• Bad case 𝛼 = O(𝑛−𝜖)

A simple approximation ratio for set cover

• Any algorithm for set cover has approximation

ratio = |Smax|, where Smax is the set in S with the

largest cardinality

• Proof:

• OPT(X)≥N/|Smax| N ≤ |Smax|OPT(X)

• ALG(X) ≤ N ≤ |Smax|OPT(X)

• This is true for any algorithm.

• Not a good bound since it can be that |Smax|=O(N)

An algorithm for Set Cover

• What is the most natural algorithm for Set Cover?

• Greedy: each time add to the collection C the set

Si from S that covers the most of the remaining

elements.

The GREEDY algorithm

GREEDY(U,S)

X= U

C = {}

while X is not empty do

For all 𝑆𝑖 ∈ 𝑺 let gain(𝑆𝑖) = |𝑆𝑖 ∩ 𝑋|

Let 𝑆∗be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximum

C = C U {S*}

X = X\ S*

S = S\ S*

Approximation ratio of GREEDY

• Good news: GREEDY has approximation ratio:

𝛼 = 𝐻 𝑆max = 1 + ln 𝑆max , 𝐻 𝑛 =
1

𝑘

𝑛

𝑘=1

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≤ 1 + ln 𝑆max 𝑂𝑃𝑇 𝑋 , for all X

• The approximation ratio is tight up to a constant
• Tight means that we can find a counter example with this ratio

OPT(X) = 2

GREEDY(X) = logN

=½logN

Maximum Coverage

• What is a reasonable algorithm?

GREEDY(U,S,K)

X = U

C = {}

while |C| < K

For all 𝑆𝑖 ∈ 𝑺 let gain(𝑆𝑖) = |𝑆𝑖 ∩ 𝑋|

Let 𝑆∗ be such that 𝑔𝑎𝑖𝑛(𝑆∗) is maximum

C = C U {S*}

X = X\ S*

S= S\ S*

Approximation Ratio for Max-K Coverage

• Better news! The GREEDY algorithm has

approximation ratio 𝛼 = 1 −
1

𝑒

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 𝑋 , for all X

• The coverage of the Greedy solution is at least

63% that of the optimal

Proof of approximation ratio

• For a collection C, let 𝐹 𝐶 = 𝑆𝑖𝑆𝑖∈𝑪
 be the number of

elements that are covered.

• The function F has two properties:

• F is monotone:

𝐹 𝐴 ≤ 𝐹 𝐵 𝑖𝑓 𝐴 ⊆ 𝐵

• F is submodular:

𝐹 𝐴 ∪ 𝑆 − 𝐹 𝐴 ≥ 𝐹 𝐵 ∪ 𝑆 − 𝐹 𝐵 𝑖𝑓 𝐴 ⊆ 𝐵

• The addition of set 𝑆 to a set of nodes has greater effect
(more new covered items) for a smaller set.
• The diminishing returns property

Optimizing submodular functions

• Theorem: A greedy algorithm that optimizes a

monotone and submodular function F, each time

adding to the solution C, the set S that maximizes

the gain 𝐹 𝐶 ∪ 𝑆 − 𝐹(𝐶) has approximation

ratio 𝛼 = 1 −
1

𝑒

Other variants of Set Cover

• Hitting Set: select a set of elements so that you
hit all the sets (the same as the set cover,
reversing the roles)

• Vertex Cover: Select a subset of vertices such
that you cover all edges (an endpoint of each
edge is in the set)
• There is a 2-approximation algorithm

• Edge Cover: Select a set of edges that cover all
vertices (there is one edge that has endpoint the
vertex)
• There is a polynomial algorithm

Parting thoughts

• In this class you saw a set of tools for analyzing data
• Association Rules

• Sketching

• Clustering

• Minimum Description Length

• Signular Value Decomposition

• Classification

• Random Walks

• Coverage

• All these are useful when trying to make sense of the
data. A lot more tools exist.

• I hope that you found this interesting, useful and fun.

