DATA MINING LECTURE 12

Link Analysis Ranking
Random walks

GRAPHS AND LINK ANALYSIS RANKING

Link Analysis Ranking

- Use the graph structure in order to determine the relative importance of the nodes
- Applications: Ranking on graphs (Web, Twitter, FB, etc)
- Intuition: An edge from node p to node q denotes endorsement
- Node p endorses/recommends/confirms the authority/centrality/importance of node q
- Use the graph of recommendations to assign an authority value to every node

Rank by Popularity

- Rank pages according to the number of incoming edges (in-degree, degree centrality)

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page

Popularity

- It is not important only how many link to you, but how important are the people that link to you.
- Good authorities are pointed by good authorities
- Recursive definition of importance

PageRank

- Good authorities should be pointed by good authorities
- The value of a node is the value of the nodes that point to it.
- How do we implement that?
- Assume that we have a unit of authority to distribute to all nodes.
- Each node distributes the authority value they have to their neighbors
- The authority value of each node is the sum of the authority fractions it collects from its neighbors.
- Solving the system of equations we get the authority values for the nodes
- $w=1 / 2, w=1 / 4, w=1 / 4$

$w+w+w=1$
$w=w+w$
$\mathrm{w}=1 / 2 \mathrm{w}$
$w=1 / 2 w$

A more complex example

$$
\begin{aligned}
& \mathrm{w}_{1}=1 / 3 \mathrm{w}_{4}+1 / 2 \mathrm{w}_{5} \\
& \mathrm{w}_{2}=1 / 2 \mathrm{w}_{1}+\mathrm{w}_{3}+1 / 3 \mathrm{w}_{4} \\
& \mathrm{w}_{3}=1 / 2 \mathrm{w}_{1}+1 / 3 \mathrm{w}_{4} \\
& \mathrm{w}_{4}=1 / 2 \mathrm{w}_{5} \\
& \mathrm{w}_{5}=\mathrm{w}_{2}
\end{aligned}
$$

$$
w_{v}=\sum_{u \rightarrow v} \frac{1}{d_{o u t}(u)} w_{u}
$$

Random Walks on Graphs

- What we described is equivalent to a random walk on the graph
- Random walk:
- Start from a node uniformly at random
- Pick one of the outgoing edges uniformly at random
- Move to the destination of the edge
- Repeat.

Example

- Step 0

Example

- Step 0

Example

- Step 1

Example

- Step 1

Example

- Step 2

Example

- Step 2

Example

- Step 3

Example

- Step 3

Example

- Step 4...

Memorylessness

- Question: what is the probability p_{i}^{t} of being at node i after t steps?

$$
\begin{aligned}
& p_{1}^{t}=\frac{1}{3} p_{4}^{t-1}+\frac{1}{2} p_{5}^{t-1} \\
& p_{2}^{t}=\frac{1}{2} p_{1}^{t-1}+p_{3}^{t-1}+\frac{1}{3} p_{4}^{t-1} \\
& p_{3}^{t}=\frac{1}{2} p_{1}^{t-1}+\frac{1}{3} p_{4}^{t-1} \\
& p_{4}^{t}=\frac{1}{2} p_{5}^{t-1} \\
& p_{5}^{t}=p_{2}^{t-1}
\end{aligned}
$$

- Memorylessness property: The next node on the walk depends only at the current node and not on the past of the process

Transition probability matrix

- Since the random walk process is memoryless we can describe it with the transition probability matrix
- Transition probability matrix: A matrix P, where $P[i, j]$ is the probability of transitioning from node i to node j

$$
P[i, j]=1 / \operatorname{deg}_{\text {out }}(i)
$$

- Matrix P has the property that the entries of all rows sum to 1

$$
\sum_{j} P[i, j]=1
$$

- A matrix with this property is called stochastic

An example

Node Probability vector

- The vector $p^{t}=\left(p_{i}^{t}, p_{2}^{t}, \ldots, p_{n}^{t}\right)$ that stores the probability of being at node v_{i} at step t
- $p_{i}^{0}=$ the probability of starting from state i (usually set to uniform)
- We can compute the vector p^{t} at step t using a vector-matrix multiplication

$$
p^{t}=p^{t-1} P
$$

An example

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right] \\
& p_{1}^{t}=\frac{1}{3} p_{4}^{t-1}+\frac{1}{2} p_{5}^{t-1} \\
& p_{2}^{t}=\frac{1}{2} p_{1}^{t-1}+p_{3}^{t-1}+\frac{1}{3} p_{4}^{t-1} \\
& p_{3}^{t}=\frac{1}{2} p_{1}^{t-1}+\frac{1}{3} p_{4}^{t-1} \\
& p_{4}^{t}=\frac{1}{2} p_{5}^{t-1} \\
& p_{5}^{t}=p_{2}^{t-1}
\end{aligned}
$$

Stationary distribution

- The stationary distribution of a random walk with transition matrix P, is a probability distribution π, such that $\pi=\pi P$
- The stationary distribution is an eigenvector of matrix P
- the principal left eigenvector of P - stochastic matrices have maximum eigenvalue 1
- The probability π_{i} is the fraction of times that we visited state i as $t \rightarrow \infty$

Computing the stationary distribution

- The Power Method
- Initialize to some distribution q^{0}
- Iteratively compute $q^{t}=q^{t-1} \mathrm{P}$
- After many iterations $q^{\dagger} \approx \pi$ regardless of the initial vector q^{0}
- Power method because it computes $q^{t}=q^{0} P^{t}$
- Rate of convergence
- determined by the second eigenvalue $\lambda_{2}{ }^{t}$

The stationary distribution

- What is the meaning of the stationary distribution π of a random walk?
- $\pi(i)$: the probability of being at node i after very large (infinite) number of steps
- $\pi=p_{0} P^{\infty}$, where P is the transition matrix, p_{0} the original vector
- $P(i, j)$: probability of going from i to j in one step
- $P^{2}(i, j)$: probability of going from ito j in two steps (probability of all paths of length 2)
- $P^{\infty}(i, j)=\pi(j)$: probability of going from ito j in infinite steps - starting point does not matter.

The PageRank random walk

- Vanilla random walk
- make the adjacency matrix stochastic and run a random walk

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

The PageRank random walk

-What about sink nodes?

- what happens when the random walk moves to a node without any outgoing inks?

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

The PageRank random walk

- Replace these row vectors with a vector v
- typically, the uniform vector

$$
\mathrm{P}^{\prime}=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
\hline 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

$P^{\prime}=P+d v^{\top} \quad d= \begin{cases}1 & \text { if } i \text { is sink } \\ 0 & \text { otherwise }\end{cases}$

The PageRank random walk

-What about loops?

- Spider traps

The PageRank random walk

- Add a random jump to vector v with prob 1-a
- typically, to a uniform vector
- Restarts after 1/(1-a) steps in expectation
- Guarantees irreducibility, convergence

$$
\mathrm{P}^{\prime \prime}=\alpha\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 1 / 2
\end{array}\right]+(1-\alpha)\left[\begin{array}{ccccc}
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5
\end{array}\right]
$$

$P^{\prime \prime}=\alpha P^{\prime}+(1-\alpha) u v^{\top}$, where u is the vector of all $1 s$

PageRank algorithm [BP98]

- The Random Surfer model
- pick a page at random
- with probability 1- α jump to a random page
- with probability a follow a random outgoing link
- Rank according to the stationary distribution

$$
\begin{aligned}
& P R(p)=\alpha \sum_{q \rightarrow p} \frac{P R(q)}{|O u t(q)|}+(1-\alpha) \frac{1}{n} \\
& \alpha=0.85 \text { in most cases }
\end{aligned}
$$

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page

Stationary distribution with random jump

- If v is the jump vector

$$
\begin{gathered}
p^{0}=v \\
p^{1}=\alpha p^{0} P+(1-\alpha) v=\alpha v P+(1-\alpha) v \\
p^{2}=\alpha p^{1} P+(1-\alpha) v=\alpha^{2} v P^{2}+(1-\alpha) v \alpha P+(1-\alpha) v \\
\vdots \\
p^{\infty}=(1-\alpha) v+(1-\alpha) v \alpha P+(1-\alpha) v \alpha^{2} P^{2}+\cdots \\
=(1-\alpha)(I-\alpha P)^{-1}
\end{gathered}
$$

- With the random jump the shorter paths are more important, since the weight decreases exponentially
- makes sense when thought of as a restart
- If v is not uniform, we can bias the random walk towards the nodes that are close to v
- Personalized and Topic-Specific Pagerank.

Effects of random jump

- Guarantees convergence to unique distribution
- Motivated by the concept of random surfer
- Offers additional flexibility
- personalization
- anti-spam
- Controls the rate of convergence
- the second eigenvalue of matrix $P^{\prime \prime}$ is a

Random walks on undirected graphs

- For undirected graphs, the stationary distribution is proportional to the degrees of the nodes
- Thus in this case a random walk is the same as degree popularity
- This is not longer true if we do random jumps
- Now the short paths play a greater role, and the previous distribution does not hold.

Pagerank implementation

- Store the graph in adjacency list, or list of edges
- Keep current pagerank values and new pagerank values
- Go through edges and update the values of the destination nodes.
- Repeat until the difference (L_{1} or L_{∞} difference) is below some small value ε.

A (Matlab-friendly) PageRank algorithm

- Performing vanilla power method is now too expensive - the matrix is not sparse

$$
\begin{aligned}
& q^{0}=v \\
& t=1 \\
& \text { repeat } \\
& q^{t}=\left(P^{\prime}\right)^{\top} \mathrm{T}^{\mathrm{t}-1}- \\
& \delta=\left\|q^{t}-q^{t-1}\right\| \\
& t=t+1
\end{aligned}
$$

until $\delta<\varepsilon$

Pagerank history

- Huge advantage for Google in the early days
- It gave a way to get an idea for the value of a page, which was useful in many different ways
- Put an order to the web.
- After a while it became clear that the anchor text was probably more important for ranking
- Also, link spam became a new (dark) art
- Flood of research
- Numerical analysis got rejuvenated
- Huge number of variations
- Efficiency became a great issue.
- Huge number of applications in different fields
- Random walk is often referred to as PageRank.

THE HITS ALGORITHM

The HITS algorithm

- Another algorithm proposed around the same time as Pagerank for using the hyperlinks to rank pages
- Kleinberg: then an intern at IBM Almaden
- IBM never made anything out of it

Query dependent input

Root set obtained from a text-only search engine

Query dependent input

Query dependent input

Query dependent input

Hubs and Authorities [K98]

- Authority is not necessarily transferred directly between authorities
- Pages have double identity
- hub identity
- authority identity
- Good hubs point to good authorities
- Good authorities are pointed by good hubs

Hubs and Authorities

- Two kind of weights:
- Hub weight
- Authority weight
- The hub weight is the sum of the authority weights of the authorities pointed to by the hub
- The authority weight is the sum of the hub weights that point to this authority.

HITS Algorithm

- Initialize all weights to 1.

Repeat until convergence

- O operation : hubs collect the weight of the authorities

$$
h_{i}=\sum_{j: i \rightarrow j} a_{j}
$$

- I operation: authorities collect the weight of the hubs

$$
a_{i}=\sum_{j: j \rightarrow i} h_{j}
$$

- Normalize weights under some norm

HITS and eigenvectors

- The HITS algorithm is a power-method eigenvector computation
- in vector terms $a^{t}=A^{T} h^{t-1}$ and $h^{t}=A a^{t-1}$
- so $a^{t}=A^{T} A a^{t-1}$ and $h^{t}=A A^{T} h^{t-1}$
- The authority weight vector a is the eigenvector of $A^{T} A$ and the hub weight vector h is the eigenvector of $A A^{T}$
- The vectors a and h are singular vectors of the matrix A

Example

Initialize

Example

Step 1: O operation

Example

Step 1: I operation

Example

Step 1: Normalization (Max norm)

Example

Step 2: O step

Example

Step 2: I step

Example

Step 2: Normalization

Example

Convergence

OTHER ALGORITHMS

The SALSA algorithm [LMO0]

- Perform a random walk alternating between hubs and authorities
- What does this random walk converge to?

- The graph is essentially undirected, so it will be proportional to the degree.

Social network analysis

- Evaluate the centrality of individuals in social networks
- degree centrality
- the (weighted) degree of a node
- distance centrality
- the average (weighted) distance of a node to the rest in the graph

$$
D_{c}(v)=\frac{1}{\sum_{u \neq v} d(v, u)}
$$

- betweenness centrality
- the average number of (weighted) shortest paths that use node v

$$
\mathrm{B}_{\mathrm{c}}(\mathrm{v})=\sum_{\mathrm{s} \neq \mathrm{v} \neq t} \frac{\sigma_{\mathrm{st}}(\mathrm{v})}{\sigma_{\mathrm{st}}}
$$

Counting paths - Katz 53

- The importance of a node is measured by the weighted sum of paths that lead to this node
- $A^{m}[i, j]=$ number of paths of length m from i to j
- Compute

$$
P=b A+b^{2} A^{2}+\cdots+b^{m} A^{m}+\cdots=(I-b A)^{-1}-I
$$

- converges when $b<\lambda_{1}(A)$
- Rank nodes according to the column sums of the matrix P

Bibliometrics

- Impact factor (E. Garfield 72)
- counts the number of citations received for papers of the journal in the previous two years
- Pinsky-Narin 76
- perform a random walk on the set of journals
- $\mathrm{P}_{\mathrm{ij}}=$ the fraction of citations from journal i that are directed to journal j

