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ABSTRACT

Network algorithms play a critical role in various applications,
such as recommendations, diffusion maximization, and web search.
In this paper, we focus on the fairness of such algorithms and in
particular of PageRank. PageRank fairness refers to a fair allocation
of the PageRank weights among the nodes. We consider the effect of
the network structure on PageRank fairness. Concretely, we provide
analytical formulas for computing the effect of edge additions on
fairness and for the conditions that an edge must satisfy so that its
addition improves fairness. We also provide analytical formulas for
evaluating the role of existing edges in fairness. We use our findings
to propose efficient linear time link recommendation algorithms
for maximizing fairness, and we evaluate them on real datasets.
Our approach can be seen as an effort towards making the network
itself fairer as opposed to making fairer the network algorithms, or
their outputs.
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1 INTRODUCTION

Algorithmic systems that exploit large datasets are increasingly
being used in decision making, a fact that has raised important
concerns about the trustworthiness of these decisions. Algorithmic
fairness aims at addressing such concerns [11, 16, 32]. As graph
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algorithms play a critical role in a variety of applications, such
as in recommendations, diffusion maximization, and web search,
there has been recent research in algorithmic fairness for graphs
as well (see e.g., [24, 42] for tutorials), including ranking [28, 41],
embeddings [5, 8] and clustering [27].

In this paper, we address fairness with respect to the relative
importance of the nodes in a graph as this is measured by PageRank.
PageRank (pr) assigns a score to each node v that signifies the
importance of v in the network globally, whereas personalized
PageRank (ppr) rooted at a specific node u assigns a score to each
node v that captures the relative importance of v for u [6, 19].

We focus on group-based fairness, where nodes belong to groups
based on the value of some protected attribute. For example, in a
social, or, cooperation network where nodes correspond to individu-
als, the protected attribute may be age, gender, or religion. Previous
research has shown that under certain conditions the results of
both pr and ppr may be unfair in terms of the PageRank weights
assigned to each group [13, 41].

For handling PageRank unfairness recent research has proposed
to modify the PageRank algorithm [28, 41]. In this paper, we take
a different approach. We aim at modifying the network through
link recommendations so that the results of pr and ppr are fairer.
By doing so, the network itself becomes fairer with respect to the
relative importance of each group in the network. Our approach
is also different from pre-processing approaches where the input
of the algorithm is augmented for the duration of the algorithm
[37, 43]. Instead, we propose augmentations towards making the
data (the network in our case) fairer in the long run.

We provide analytical formulas for the effect of edge additions
on pr and ppr and we derive the conditions that the endpoints
of an edge must satisfy so that its addition improves fairness. We
also provide formulas for evaluating the contribution on fairness of
existing edges by measuring the impact that their removal has on
fairness. In simple terms, edges appropriate for increasing fairness
towards a group are edges that have sources of small degree and
high PageRank value, and point to a node located in a network area
where the group is less represented than in the area of the source.

Link recommendation algorithms play a central role in networks,
since they control how a network grows over time [29, 30]. In this
paper, we propose a link recommendation algorithm that suggests
links for improving fairness. We present an efficient linear-time
link recommendation algorithm that exploits absorbing random
walks. We also present a hybrid algorithm that considers both
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fairness and the probability that the link is accepted. We evaluate
the effectiveness of our algorithms in terms of accuracy and fairness
using real datasets.

In summary, in this paper, we make the following contributions:

• We provide analytical formulas for the effect of edge addi-
tions and deletions on pr and ppr fairness.

• We present an efficient link recommendation algorithm for
pr and ppr fairness that exploits absorbing random walks.

• We report experimental results using real graphs that evalu-
ate network edges and link recommendation algorithms in
terms of pr and ppr fairness.

The rest of this paper is structured as follows. We first present
related work in Section 2. In Section 3, we formally define fairness
and the research questions addressed in this paper. In Section 4,
we present our formulas for link fairness, and in Section 5 our link
recommendation algorithms. Our experimental results are reported
in Section 6, and conclusions in Section 7.

2 RELATEDWORK

Algorithmic fairness has attracted a lot of research interest (e.g., see
[17, 32, 35] for recent surveys). Lately, there has been also research
effort in graph algorithms (e.g., see [24, 42] for recent tutorials),
including group-based fairness for centrality measures [28, 41],
embeddings [5, 8], influence maximization [15, 40] and clustering
[27]. There are also individual fairness approaches based on the
premise that similar nodes should be treated similarly [23].

In this paper, we focus on centrality and in particular on PageR-
ankcentrality. To the best of our knowledge, this is the first approach
to link recommendations for PageRank fairness.
Network centrality fairness. Previous research has studied net-
work fairness in terms of degree centrality. It was shown that ho-
mophily, preferential attachment and discrepancies in the size of
the groups may lead to a glass ceiling effect, i.e., the underrepresen-
tation of the minority group in top degree positions [3]. It has also
been shown that this effect can be exacerbated by recommendation
algorithms [39] and that degree inequalities exist in real social net-
works [26]. Very recent research has also found inequities in the
PageRank distributions between groups [13, 41].

To address PageRank unfairness, previous research has proposed
modifying the inner-workings of the PageRank algorithm, so that
the resulting algorithm is fair, and its output is as close as possible
to the original PageRank[41]. The authors of [28] propose making
personalized versions of ranking fair with minimal changes from
the original ranks. In this paper, we do not modify pr or ppr, instead
we modify the network through link recommendations so that the
output of these algorithms on the modified network is fairer.
Fair link recommendations. Research on fairness in link rec-
ommendations looks at the presence of the minority group in the
recommendation lists. A commonly used objective is demographic
parity (termed disparate visibility in [14] and equality of represen-

tation in [36]) that asks that the percentage of the members of the
minority group in the recommendation lists is equal to their per-
centage in the overall population. The authors of [36] propose a
variation of the node2vec embedding [21] that uses a fair random
walk to achieve equality of representation. A similar concept called

dyadic-level protection is introduced in [31] to reduce homophily by
promoting links that connect nodes belonging to different groups.

There have been recommendations also for other network prop-
erties, including improving closeness centrality [34], fighting opin-
ion control [2] and reducing controversy and polarization [18, 22].
PageRank optimization. There has been some previous work in
the context of web on strategies for increasing the PageRank of
specific nodes. For example, it was shown that the optimal linking
strategy for a node is to have only one outgoing link pointing to a
node with the shortest mean first passage time back to it [4]. This
result was generalized to provide an optimal linking strategy for
increasing the PageRank of a given set of nodes [9]. The authors of
[7] consider the problem of maximizing the PageRank of a node by
selecting edges from a predefined set. Finally, the authors of [25]
formulate the PageRank auditing problem of locating the k graph
elements, e.g., edges, nodes, subgraphs, whose removal would result
in the largest modification of the PageRank vector. These works
aim at optimizing PageRank and do not address fairness.

3 DEFINITIONS

In this section, we introduce the main concepts necessary for our
work and we define the problems we consider in this paper.

3.1 The PageRank Algorithm

The PageRank (pr) algorithm [6] pioneered link analysis for weight-
ing and ranking the nodes of a graph. It was popularized by its
use in the Google search engine, but it has found a wide range of
applications in different settings [19]. The algorithm takes as input
a directed graph G = (V , E), and produces a scoring vector p, that
assigns a weight to each node v ∈ V . The scoring vector is the
stationary distribution of a random walk with restarts on G. The
transition matrix P of the random walk is defined as the normalized
adjacency matrix of graph G. The algorithm is parameterized by
the value γ , which is the restart probability, and the jump vector v,
which defines a distribution over the nodes in the graph, according
to which the restart node is selected. Typically, γ = 0.15, and the
jump vector is the uniform vector u. For nodes with no outgoing
edges, we adopt the convention that the random walk performs a
jump to a node chosen uniformly at random [19]. The Pagerank
vector p satisfies the equation:

pT = (1 − γ )pT P + γ vT (1)
A special case of the PageRank algorithm is the Personalized

PageRank (ppr) algorithm, where the restart vector is a unit vector
ei that puts all the probability mass on a single node i . We use pi
to denote the ppr vector for node i . We say that node i allocates
pagerank pi (u) to node u. Personalized PageRank provides a “view”
of the network with respect to a specific node.

The following lemma will be useful in our analysis.

Lemma 3.1. For the PageRank vector p, it holds pT = vTQ, where:

(1) Q = γ (I − (1 − γ )P)−1.
(2) The i-th column vector Qi corresponds to the personalized

PageRank vector of node i , that is: pi = Qi .

Proof. We obtain (1) directly from Equation 1. For (2), if we set
v = eTi , then p = Qi , the i-th row of matrix Q. □
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Given Lemma 3.1, we will use interchangeably pi and Qi to
denote the ppr vector for node i . The Qi j entry of the matrix Q is
the ppr weight pi (j) that node i allocates to node j.

3.2 PageRank Fairness

We assume two groups of nodes, R and B, of red and blue nodes,
defined based on some node attributes. Given a group S (either R
or B), we use ratio(S) = |S |

|V |
to denote the ratio of group S in the

overall population. Abusing the notation, we will use p(S) to denote
the PageRank mass allocated to group S , that is p(S) =

∑
i ∈S p(i).

We refer to p(S) as the pr ratio of group S .
Given a target group S , and a parameter ϕ, we say that the

network is pr-unfair to group S , if p(S) < ϕ. Parameter ϕ is input
to our definition. It can be specified so as to implement different
fairness policies.Wewill assume as default,ϕ = ratio(S). This means
that we ask that the ratio of the PageRank weights assigned to the
group S is at least equal to the ratio of the group in the overall
population, analogously to demographic parity [11].

Similarly, given a nodev , we use pv (S) to denote the personalized
PageRank mass allocated to group S by node v , that is pv (S) =∑
i ∈S pv (i). To define ppr-unfairness, as in [41], we exclude the

probability mass γ allocated to nodev through the random jump so
as to consider only the fraction of the organic ppr that is allocated to
group S . Specifically, for a nodev , we define pv (S) =

pv (S )−γ1(v ∈S )
1−γ ,

where 1(v ∈ S) is an indicator function that is 1 if v ∈ S . Given the
target group S and a parameter ϕ, we say that node v is ppr-unfair
to group S , if pv (S) < ϕ.

Note that for ϕ = ratio(S), if pv (S) ≥ ϕ for all v ∈ V , then
p(S) ≥ ϕ. That is, if all nodes are ppr-fair to S , then the network
is pr-fair to S . The opposite is not always true. The proof of this
property appears in the Appendix.

Given group S , we measure PageRank fairness (pr fairness) by
the pr ratio p(S). Similarly, for a node v , we measure personalized
PageRank fairness (ppr fairness) by the ppr ratio pv (S). Intuitively,
pr fairness provides a global, or network-level view of fairness,
while ppr fairness a local, or per-node view of fairness. In this work,
we consider the problem of increasing the pr and ppr fairness for a
group S by modifying the underlying structure of the graph G. We
address the following research questions in this direction.
What is the effect of edge additions on fairness? We derive
analytical formulas for estimating the change in the pr and ppr
ratios for the target group S , when adding a single edge (x,y), as
well as when adding a set of edges to a node x in the graph.
What is the contribution of an existing edge to fairness?We
derive analytical formulas for estimating the contribution of an
edge (x,y) ∈ G to the pr and ppr fairness for the target group S .
What edges should we recommend to a user to increase fair-

ness? We propose efficient algorithms for finding the best k edges
to recommend to a node x so as to maximize the increase in the pr,
or ppr ratio for the target group S .

4 THE ROLE OF LINKS IN FAIRNESS

In this section, we focus on the role that links play in fairness. We
provide a closed-form formula for the effect of edge additions on
fairness, and we prove a necessary and sufficient condition that an

edge must satisfy so that its addition results in increasing fairness.
Finally, we analyze the role of existing edges in fairness.

4.1 Fairness Gain by Adding Links

We will now compute the gain in fairness of adding a single edge
(x,y). Let G = (V , E) denote the underlying graph of the network,
and let (x,y) be an edge not in G . Let G ′ = (V , E ∪ {(x,y)}) denote
the network after the addition of the edge (x,y), and let p′ and p′u
denote the pr and ppr vectors on graphG ′. We define the fairness
gain for group S (either R or B) of the addition of the edge (x,y),
as f дain((x,y), S) = p′(S) − p(S), that is, the change in the pr ratio
of group S , when adding the edge (x,y). Similarly, for a node u we
define the personalized fairness gain for group S , pдainu ((x,y), S) =
p′u (S) − pu (S), that is the change in the ppr ratio. Note that the
value of f дain and pдain may be negative for some edges.

The following theorem estimates analytically the gains. For a
node x , we use dx to denote the out-degree of the node, and Nx to
denote the out-neighbors of the node.

Theorem 4.1. Let G = (V , E) be a graph, S the target group, and

(x,y) < E an edge not in G. Let

Λ((x,y), S) =



1−γ
γ

(
py (S )− 1

dx

∑
w∈Nx pw (S )

)
dx+1−

1−γ
γ

(
py (x )− 1

dx

∑
w∈Nx pw (x )

) , dx , 0

1−γ
γ

(
py (S )− 1

|V |

∑
w∈V pw (S )

)
1− 1−γ

γ

(
py (x )− 1

|V |

∑
w∈V pw (x )

) , dx = 0
(2)

(1) The fairness gain for group S of adding the edge (x,y) toG is:

f дain((x,y), S) = Λ((x,y), S) p(x) (3)

(2) The personalized fairness gain for node u for group S of adding

the edge (x,y) to G is:

pдainu ((x,y), S) = Λ((x,y), S) pu (x) (4)

Proof. Let P and P′ denote the transition matrices of the PageR-
ank random walk on the graphs G and G ′ before and after the
addition of the edge (x,y) respectively. To prove our theorem, we
first write the transition matrix P′ as the sum of the transition
matrix P and a rank-1, perturbation matrix D. For the following we
assume that dx , 0. Di denotes the i-th row of matrix D.

P′ = P + D, Di =

{
0, i , x

(− 1
dx+1 )Px +

1
dx+1e

T
y , i = x

where ey is the vector with 1 at position y and 0 everywhere else.
We want to estimate

Q′ = γ
(
I − (1 − γ )P′

)−1
= γ (I − (1 − γ )(P + D))−1 .

To do so, we exploit a fundamental lemma [33] that states that for
a non-singular matrixM and a rank-1 matrix H, such thatM +H is
nonsingular, we have:

(M + H)−1 = M−1 −
1

1 + д
M−1HM−1, д B tr (HM−1)
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Applying forM = (I − (1 − γ ) P) and H = −(1−γ ) D, and using the
fact that Q = γM−1:

Q′ = γ (M + H)−1

= γM−1 − γ
1

1 + д
M−1HM−1, д B tr (HM−1)

= γ
Q
γ

− γ
1

1 + h
Q
γ
(−(1 − γ ) · D)

Q
γ
, h B tr

(
−(1 − γ )D

1
γ
Q
)

= Q +
(1−γ )
γ

1 − (1−γ )
γ q

Q D Q, where q B tr (D Q) (5)

With mathematical manipulations, we get:

DQi j =

{
0, i , x

1
dx+1

(
Qy j −

1
dx

∑
w ∈Nx Qwj

)
, i = x

QDQi j =
1

dx + 1
Qix

©­«Qy j −
1
dx

∑
w ∈Nx

Qwj
ª®¬

Substituting in Equation 5, and using the fact that q = tr (D Q) =
DQxx we have:

Q′
i j = Qi j + Qix

(1−γ )
γ

(
Qy j −

1
dx

∑
w ∈Nx Qwj

)
dx + 1 −

(1−γ )
γ

(
Qyx − 1

dx
∑
w ∈Nx Qwx

) (6)

FromLemma 3.1, we have that pi (x) = Qix and p′i (S) =
∑
j ∈S Q′

i j .
Summing Equation 6 over j ∈ S :

p′i (S) =
∑
j ∈S

Qi j + Qix

(1−γ )
γ

(∑
j ∈S Qy j −

1
dx

∑
w ∈Nx

∑
j ∈S Qwj

)
dx + 1 −

(1−γ )
γ

(
Qyx − 1

dx
∑
w ∈Nx Qwx

)
= pi (S) + pi (x)

1−γ
γ

(
py (S) − 1

dx
∑
w ∈Nx pw (S)

)
dx + 1 −

1−γ
γ

(
py (x) − 1

dx
∑
w ∈Nx pw (x)

)
= pi (S) + pi (x)Λ((x,y), S) (7)

Applying Equation 7 for i = u, we obtain Equation 4 forpдain((x,y), S)
= p′i (S) − pi (S).

Using the fact that p′(S) = 1
n

∑n
i=1 p

′
i (S) and p(x) =

1
n

∑n
i=1 pi (x):

p′(S) = p(S) + p(x)Λ((x,y), S) (8)

Subtracting, we get Equation 3 for f дain((x,y), S) = p′(S) − p(S).
The formula for the case where dx = 0 follows from the fact that

the Px vector in the definition of matrix D is the uniform vector u
with transition probability 1/|V | to all nodes in the graph. □

Theorem 4.1 formulates the following intuitive observations.
Regarding the source node x of the edge to be added, the pr fairness
gain is proportional to its pr since the pr of x is the quantity to be
distributed to the nodes in S through the new edge. The higher this
quantity, the stronger the effect of the edge. Correspondingly, the
ppr gain for a nodeu is proportional to the ppr ofu that is allocated
to x , since again, this is the quantity to be distributed. Note that
adding an edge whose source node x is not reachable from u (i.e.,
pu (x) = 0) has no effect on the ppr fairness of u. The gain is also
inversely proportional to the out-degree of x , since the smaller the
degree, the largest the pr (ppr) portion of x that will go to y. Thus,

the source nodes that affect fairness the most are central nodes
with small out-degree.

Regarding the target node y, good target nodes are nodes whose
ppr-ratio py (S) is larger than the average ppr-ratio of the current
neighbors of x . Intuitively, py (S) is roughly the fraction of the pr
that reaches y that will end up to nodes in S . The higher this is, the
stronger the effect of the new edge. However, the new edge takes
away some pr from the existing neighbors of x . It pays off to add
the new edge only if it is better than the existing edges on average.
Intuitively, this means that we should prefer to connect with nodes
that favor S more that the current neighbors of the source node.

Lastly, the quantity in the denominator accounts for the difference
between the pr that the target node y gives to the source node x ,
and the average pr that the current neighbors of x give to x . We
can think of the ppr pw (x) for a neighbor w of x as the return
probability to x . The higher it is, the faster we close the loop to x .
Loops boost PageRank, and thus increase the overall gain. Since
again new links act competitively to existing ones, we want the
new edge to close the loop faster than the existing edges on average.
Ideally, we want to connect x to a node y that already points to x .

The following corollaries are direct implications of Theorem 4.1:
Corollary 4.2. An edge (x,y) whose addition increases the ppr

ratio pu (S) of a node u, increases the ppr ratio of all nodes v ∈ V in

the network, for which there is a path to node x .

Corollary 4.3. Given a node x ∈ G, an edge (x,y) maximizes

the fairness gain f дain((x,y), S) if and only if it maximizes the per-

sonalized fairness gain pдainu ((x,y), S), u ∈ V .

We also provide necessary and sufficient conditions for the gain
to be positive. We can show that an edge (x,y) increases both the pr
and ppr ratio for group S , if and only if, the ppr ratio of the target
node y is larger than the average ppr ratio of the current neighbors
of the source node x . The proof of the following Lemma appears
in the Appendix, and relies on the fact that we can prove that the
denominator in the formula for Λ((x,y), S) is always positive.

Lemma 4.4. Let G = (V , E) be a graph. Adding edge (x,y) to G
increases the pr ratio p(S) and the ppr ratios pu (S) for the target
group S , if and only if:

py (S) >
1
dx

∑
w ∈Nx

pw (S)

Adding a Set of Edges. Theorem 4.1 can be generalized for the
case of adding a set of k edges, k > 1, to a source node x . The proof
of the following Theorem appears in the Appendix.

Theorem 4.5. Let G = (V , E) be a graph, S the target group, x a

node in V , Ex = {(x,yi ) < E, i = 1, . . . ,k} a set of k edges not in G
with source x and Vy the set of the endpoints of these edges. Let

Λ(Ex , S) =



1−γ
γ

(
1
k

∑
y∈Vy py (S )− 1

dx

∑
w∈Nx pw (S )

)
dx +k
k −

1−γ
γ

(
1
k

∑
y∈Vy py (x )− 1

dx

∑
w∈Nx pw (x )

) , dx , 0

1−γ
γ

(
1
k

∑
y∈Vy py (S )− 1

|V |

∑
w∈V pw (S )

)
1− 1−γ

γ

(
1
k

∑
y∈Vy py (x )− 1

|V |

∑
w∈V pw (x )

) , dx = 0

(1) The fairness gain of adding the set of edges Ex to G for group

S is f дain(Ex , S) = Λ(Ex , S) p(x).
(2) The personalized fairness gain for node u for group S of adding

the set of edges Ex to G is pдainu (Ex , S) = Λ(Ex , S) pu (x).
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4.2 Fairness Importance of Existing Links

It is also interesting to understand the role that an existing edge
(x,y) plays in the fairness of a network. We do so by considering the
effect of removing the specific edge from the network on PageRank
fairness. Given a graphG = (V , E), and an edge (x,y) ∈ E, we define
G ′ = (V , E \{(x,y)}) to be the graph after the removal of edge (x,y),
and p′ and p′i the corresponding pr and ppr vectors. For group S ,
we use f value((x,y), S) = p(S) − p′(S) and pvalueu ((x,y), S) =
pu (S) − p′u (S), for measuring the contribution of the edge (x,y) to
the pr fairness of the network to group S , and the ppr fairness of a
specific node u to group S respectively. The proof of the following
Theorem appears in the Appendix.

Theorem 4.6. Let G = (V , E) be a directed graph, S the target

group, and (x,y) ∈ E a (directed) edge in G. Let

ΛD ((x,y), S) =



1−γ
γ

(
py (S )− 1

dx

∑
w∈Nx pw (S )

)
dx−1−

1−γ
γ

(
1
dx

∑
w∈Nx pw (x )−py (x )

) , dx > 1

1−γ
γ

(
py (S )− 1

|V |

∑
w∈V pw (S )

)
1− 1−γ

γ

(
1
|V |

∑
w∈V pw (x )−py (x )

) , dx = 1

(1) The fairness value of edge (x,y) for group S is f value((x,y), S) =
ΛD ((x,y), S) p(x).

(2) The personalized fairness value of edge (x,y) for node u ∈ V
for group S is pvalueu ((x,y), S) = ΛD ((x,y), S) pu (x).

5 LINK RECOMMENDATIONS FOR FAIRNESS

In this section, we present our link recommendation algorithms
that recommend edges so as to increase the pr or the ppr fairness
of the target group S .

5.1 Recommending a Single Edge

To recommend a single link to a given source node x , we use The-
orem 4.1 to compute the fairness gain (f дain, or pдain) for each
candidate edge, and then select the one with the highest gain. A
straightforward way to apply the theorem is to first compute the
ppr vectors for all nodes in the graph, and then use Equation 2 to
compute Λ((x,y), S) for each candidate edge (x,y). The edge with
the highest Λ value is the one with the highest gain. This requires
O(|V |) PageRank computations, resulting in overallO(|V |2+ |V | |E |)
time.

We present a more efficient algorithm for selecting the best edge
to recommend, the bfe algorithm, shown in Algorithm 1. The bfe
algorithm has two main steps: one for computing the ppr ratio
pv (S) for all nodes v (lines 1-3), and one for computing the ppr
values pv (x) for all nodes v (lines 4-6). We will show that these
steps can be implemented with just two PageRank-like iterative
computations, resulting in overall complexity O(|V | + |E |).

The efficient computation of the bfe algorithm relies on the
use of absorbing random walks [10, 20]. In an absorbing random
walk, we have two types of nodes: transient nodes, from which
we transition as in a regular random walk, and absorbing or sink
nodes, out of which we cannot transition, and thus the walk is
absorbed. For an absorbing random walk with τ transient nodes
and α absorbing nodes, the transition matrix N of the random walk

Algorithm 1 Best Fair Edge (bfe) Algorithm
Require: Graph G(V , E), source node x ∈ V , group S
1: for each v ∈ V do

2: Compute pv (S )
3: end for

4: for each v ∈ V do

5: Compute pv (x )
6: end for

7: return argmaxv дain(x , v)

is in the form:

N =
[

T R
0α×τ Iα

]
Matrix T is the τ × τ transition matrix between transient nodes,
while matrix R is the τ × α transition matrix from the transient to
the absorbing nodes. There are no transitions from absorbing nodes
to transient nodes and each absorbing node loops back to itself.

A useful matrix in absorbing random walks is the τ ×α matrix B
with the absorption probabilities:Bi j is the probability that a random
walk that starts from transient node i will be absorbed at absorbing
node j. We can compute B using the fundamental matrix F of the
absorbing random walk. The fundamental matrix F is a τ ×τ matrix,
where Fi j is the expected number of times that a random walk that
starts from transient node i is in transient node j after an infinite
number of steps. It holds that F = (I − T)−1, and B = FR [20].

For an absorbing node a, the computation of Bia can be done
through an iterative algorithm. Node a has absorption probability
1 of being absorbed at itself, while the other absorbing nodes have
probability 0 of being absorbed at a. Initially, all transient nodes
have probability 0 of being absorbed at node a. At each iteration,
each transient node updates its absorption probability as the aver-
age of the absorption probabilities of its neighbors [10]. The process
is repeated until convergence. The computation is very similar to
that of PageRank and it can be done in time O(|V | + |E |).
Computing the pv (x) vector: We first show how to use absorbing
random walks to perform the computation in lines 4-6. We define
an absorbing random walk X as follows. Given the graphG , we add
two adsorbing nodes ax and ao , and we connect node x to node ax
and all other nodes to node ao , all with probability γ . The transition
matrix N of X is:

N =
[
(1 − γ )P R
02xn I2

]
, R ∈ Rnx2,

where P is the transition matrix of the PageRank random walk, and

Ri j =

{
γ , i = x, j = ax , and i , x, j = ao

0, otherwise

We can now see the connection between the absorbing random
walk X and PageRank. Let F denote the fundamental matrix of X.
It holds that F = (I − (1 − γ )P)−1 and thus, F = Q

γ . Let B be the
absorption probability matrix of X. We prove the following:

Lemma 5.1. The personalized PageRank of node i to node x is equal

to the absorption probability of node i to node ax : pi (x) = Biax .
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Proof. We have that B = FR = 1
γ QR. Therefore,

Biax =
1
γ

∑
k ∈V

QikRkax =
1
γ
Qixγ = Qix

□
Given the efficient computation of the Biax probabilities, we can

compute the ppr values of all nodes for node x in time O(|V | + |E |).
Computing the ppr ratio pi (S): We now show how to use absorbing
random walks for the computation in lines 1-3. We define an ab-
sorbing random walk X̃ as follows. Given the graph G , we add two
absorbing nodes ar and ab , representing the red and the blue group
respectively. We add an edge from each red node to node ar with
probability γ , and an edge from each blue node to node ab with
probability γ . Let B̃iar , B̃iab denote the absorption probabilities for
node i to ar and ab respectively. The proof of the following Lemma
is similar to that of Lemma 5.1.

Lemma 5.2. The ppr ratio of node i for groups R and B is equal to

the absorption probability of node i to node ar and ab respectively:

pi (R) = B̃iar , and pi (B) = B̃iab .

Working with X̃ as before we can compute the ppr ratio of all
nodes for the target group S in time O(|V | + |E |).

Putting it all together, the bfe algorithm requires only two
PageRank-like computations to compute the gain for all candidate
edges, resulting in O(|V | + |E |) complexity.

5.2 Recommending More than one Link

We now consider the case where we recommend multiple links
to a source node. We adopt a greedy algorithm for the problem
that constructs the set k of edges to recommend iteratively, each
time adding the edge that incurs the maximum fairness gain when
added to the set. Specifically, at each iteration, given the set L of
the edges selected so far, for a candidate edge (x,y), the algorithm
estimates the incremental fairness gain f delta(L, (x,y)) = дain(L∪
{(x,y)}, S) − дain(L, S) of adding edge (x,y) to the graph, and adds
the edge with the maximum f delta to the set. The дain may be
either the pr fairness gain (f дain), or the ppr fairness gain (pдain).

A naive implementation of the greedy algorithm would create
the graph GL = (V , E ∪ L) at each iteration, and estimate the gain
for each candidate edge (x,y) on GL using the bfe algorithm. This
requiresO(k(|V | + |E |)) time. We improve the efficiency of the algo-
rithm by exploiting Theorem 4.5. Note that for a graph G and a set
of edges L, the computation of Λ(L, S) utilizes the pi (x), and pi (S)
values computed on the original graph G. We can thus compute
these values once and use them to estimate f delta(L, (x,y)) in con-
stant time. Using absorbing random walks, we can compute these
quantities in timeO (|V | + |E |) and therefore, the complexity of the
greedy algorithm is O (k |V | + |E |). The outline of the algorithm is
shown in the Appendix.

Given this generic Greedy algorithm, we define two algorithms:
• The frec algorithm which, given a node x and the group S ,

looks for the set of edges L = {(x,y) : y < G} that maximizes the
pr fairness gain f дain(L, S) for the group S .

• The prec algorithm which, given a node x and the group S ,
looks for the set of edges L = {(x,y) : y < G} that maximizes the
ppr fairness gain pдainx (L, S) for the group S .

Table 1: Dataset characteristics.

Dataset #nodes #edges ratio(R) red pr h Protected attr. (R)

books 92 748 0.467 0.474 0.065 political (left)
blogs 1,222 16,717 0.485 0.332 0.169 political (left)
dblp-gen 16,501 66,613 0.257 0.249 0.898 gender (women)
dblp-pub 16,501 66,613 0.080 0.061 0.723 pub-year (≥ 2016)
twitter 18,470 48,365 0.614 0.575 0.048 political (left)

6 EXPERIMENTS

In this section, we study the pr and ppr fairness of a number of real
networks, the effect of link recommendation algorithms in fairness
and the edge characteristics that contribute to fairness the most.
Our code and data are publicly available1.
Graphs and their pr and ppr fairness: We use the following
graphs:

(1) books: A network of books about US politics where edges
between books represented co-purchasing2.

(2) blogs: A directed network of hyperlinks between weblogs
on US politics [1].

(3) dblp-gen: An author collaboration network constructed
from DBLP with a subset of data mining and database con-
ferences from 2011 to 2020 with gender as the protected
attribute. The value of gender is inferred using the Python
gender guesser package3.

(4) dblp-pub: The same network as dblp-gender but with the
protected group being the set of authors whose first publica-
tion appears in 2016, or later, i.e., the newcomers.

(5) twitter: A political retweet graph from [38].
The characteristics of the graphs are summarized in Table 1. We

treat all graphs as directed. We define as red, the group whose pr
ratio is smaller than its ratio in the overall population, that is the
group to which the network is pr-unfair. This is the target group
whose pr fairness we want to increase. For example, for the dblp-
gen dataset, the red group is women. As seen, pr fairness varies
among the graphs, some (e.g., books) are almost pr-fair (pr(R) ≈
ratio(R)), while others (e.g., blogs) are pr-unfair. We also report
the homophily (h) of each graph that is the tendency of nodes to
connect with nodes similar to them. For measuring homophily,
we use h =

|cross−edдes |/ |E |
2 ratio(R) ratio(B) , where cross-edges are the edges

connecting nodes belonging to different groups [12]. The closer h
is to 0, the higher the homophily.

In Figure 1, we plot the distribution of the red ppr ratio for the
red and blue nodes. In most datasets, blue nodes allocate most of
their ppr to blue nodes, and red nodes to red nodes. In all datasets,
there are nodes that are ppr-unfair, that is, the ppr they allocate to
some group is smaller that the ratio of the group in the population.
Most often, blue nodes are ppr-unfair to the red nodes, while red
nodes are ppr-unfair to blue nodes. This is due to homophily.
pr fairness and link recommendation algorithms. We now
study the effect on pr fairness of link recommendation algorithms.
To this end, we select 10% of the nodes randomly. Then, we add to

1https://github.com/ksemer/fairPRrec
2http://www-personal.umich.edu/ mejn/netdata/
3https://pypi.org/project/gender-guesser/
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Figure 1: Distribution of the red ppr ratio for the blue and red nodes.
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Figure 2: pr fairness (red pr ratio) for known link recommendation algorithms.

these nodes the 10 best edges as suggested by each of the recom-
mendation algorithms. We add the edges in rounds, one edge at a
time, and report the pr fairness towards the red group after each of
the 10 rounds.

We start by studying a number of classic link recommenda-
tion algorithms. Specifically, we consider: (1) unsupervised recom-
mendations based on scores, in particular, preferential attachment
(pa), Jaccard Coefficient (jc), and Adamic-Adar (ada) [29], (2) an
embedding-based method node2vec (n2v) [21], and (3) FairWalk,
an extension of node2vec that replaces random walks with fair
random walks [36]. For computing the recommendations for the
last two algorithms, we train a logistic regression classifier with
the embeddings as features. For each node, in the case of unsuper-
vised recommendation, we recommend the links with the highest
score and for the last two algorithms, the links with the highest
probabilities as estimated by the classifier. For comparison, we also
consider random recommendations (rnd).

As shown in Figure 2, overall, the difference between the red pr
of the original network and the network after the recommendations
is small. Recommendations based on local criteria (i.e., jc, ada) do
not affect the fairness of the network at all. Instead, we notice small
fluctuations in the case of recommenders that favor central nodes
(ie., pa, n2v) depending on the color that these central nodes have
in each dataset.

Let us now turn to our algorithms, namely frec and prec. First,
note that both recommend links to a node x based solely on the pr
and ppr fairness gain respectively. That is, they ignore the prob-
ability pA(x,y) that x will accept the recommendation of edge
(x,y). To address this, we introduce two variations (a) the expected
fair recommendation (e_frec) algorithm that selects edges based
on the expected gain of the link, that is, pA(x,y) f дain(x,y), and
(b) the expected personalized fair recommendation (e_prec) algo-
rithm that select edges based on the expected personalized gain,
pA(x,y) pдainx (x,y). Since the acceptance probability pA(x,y) of

(x,y) is not known, we use as pA(x,y) the probability that the n2v
classifier predicts for (x,y).

As shown in Figure 3, both the frec and the e_frec algorithms
improve the pr-fairness. e_frec achieves slightly smaller red pr
values, since it also considers acceptance probabilities. In Table
2, we report the average acceptance probability of the edges rec-
ommended by each of the algorithms as these are estimated by
node2vec. e_frec increases fairness but also keeps the acceptance
probabilities of the recommended edges high, achieving a good
trade-off between fairness and accuracy.

Table 2: Average acceptance probability of recommended

links (as estimated by n2v).

books blogs dblp-gen dblp-pub twitter
rnd 0.4297 0.3529 0.4131 0.4186 0.3655
n2v 0.5298 0.7827 0.8819 0.8213 0.7422
FairWalk 0.4360 0.3394 0.4238 0.4284 0.5268
frec 0.4715 0.2996 0.4277 0.4285 0.5378
e_frec 0.4930 0.6839 0.6746 0.5319 0.5688
prec 0.4786 0.3048 0.4326 0.4463 0.6856
e_prec 0.5047 0.7108 0.7205 0.5987 0.7982

Link recommendations for ppr fairness. We now study ppr
fairness. For each node i , we increase the ppr that i allocates to
the group S towards which i is ppr-unfair, that is, the group S for
which pi (S) < ratio(S). In most cases, this is the opposite group of
the group that node i belongs to (see, also Figure 1). By making the
ppr of individual nodes fair, we expect that the percentage of pi (S)
allocated to each group S becomes less dependent on the color of i
and comes closer to ratio(S). In Figure 4, we plot the Wasserstein
distance between the distribution of the percentage of pi (R) (red
ppr for short) for the blue nodes and for the red nodes. As shown,
our algorithms prec and e_prec reduce the distance between these
two distributions. Although e_prec takes into account acceptance
probabilities, it performs very similarly to prec.
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Figure 3: pr fairness (red pr ratio) of our algorithms.
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Figure 4: Wasserstein distances per round between the red ppr ratio of the blue nodes and the red ppr ratio of the red nodes.

In Figure 3, we also plot the pr-fairness achieved by the prec and
e_prec algorithms. Despite the fact that prec and e_prec have a
different objective, red pr is increased, when the red group is small
(more evident for dblp_gen and dblp_pub). The reason is that due
to homophily, the majority of the selected source nodes belong to
the blue group and their ppr is unfair towards the red group and
the algorithms increase the fairness to this group.
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Figure 5: Correlation of edge characteristics and pr-fairness.

What makes an edge fairness-important? To see which char-
acteristics of an edge are more relevant to pr-fairness, we compute
the fairness value, f value , of all existing edges in the network
and report in Figure 5 the correlation of this value with various
characteristics of the source and target nodes of the edge.

A first observation is that the most important factor is the dif-
ference between the red ppr of the source and the red ppr of the
target node (red_ppr_diff). This means that the most important
edges in terms of fairness are the edges that connect nodes whose
neighborhoods are of a “different color”. Intuitively, this mean that
the edges that connect heterogeneous (in term of color) parts of the
graph are the most important ones for fairness.

A second observation is that in general the characteristics of the
target node (suffix _tgt) of an edge have a stronger correlation with
fairness than the characteristics of its source node (suffix _src).
Among these characteristics, the most relevant are the group (i.e.,
color) and the red ppr of the target node. Edges pointing to nodes
belonging to the red group are clearly important to fairness.

Finally, we see no important correlation for the pr and the de-
grees of both the source and the target nodes. Centrality of the edge
endpoints is not in general strongly correlated with fairness, be-
cause only the central nodes for which the red_ppr_diff is positive
increase fairness.

7 CONCLUSIONS

In this paper, we considered PageRank fairness. We derived analyt-
ical formulas to quantify the effect of existing and new edges on
PageRank and personalized PageRank fairness. To improve fairness,
we advocated an approach that aims at improving the fairness of
the network itself. To achieve this, we proposed efficient liner-time
link recommendation algorithms that suggest links that increase
fairness. Our experimental results on real datasets have shown the
effectiveness of our algorithms in creating fairer networks.
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A PAGERANK AND PERSONALIZED

PAGERANK FAIRNESS

We prove the following Lemma.

Lemma A.1. For a graph G = (V , E), a group S , and the value

ϕ = |S |
|V |

, it holds that if pi (S) ≥ ϕ for all i ∈ V , then p(S) ≥ ϕ.

Proof. From the definition of pi (S), we have that:

pi (S) =

{ pi (S )−γ
1−γ , i ∈ S

pi (S )
1−γ , i < S

For p(S) we have:

p(S) =
1
n

∑
i ∈V

pi (S)

=
1
n

∑
i ∈S

pi (S) +
1
n

∑
i<S

pi (S)

=
1
n

∑
i ∈S

((1 − γ )pi (S) + γ ) +
1
n

∑
i<S

(1 − γ )pi (S)

=
1
n
(1 − γ )

∑
i ∈V

pi (S) + γ
|S |

n

≥ (1 − γ )ϕ + γϕ

= ϕ

The inequality follows from the fact that pi (S) ≥ ϕ for all i ∈ V ,
and ϕ = |S |

n . □

Lemma A.1 says that if all nodes are ppr-fair to the group S ,
then PageRank is overall fair. The opposite is not necessarily true,
PageRank may be fair, but there are individual nodes that are unfair.

B PROOF OF LEMMA 4.4

The proof of Lemma 4.4 relies on the absorbing random walks X
we defined in Section 5.

We first prove the following Lemmas.

Lemma B.1. For every pair of nodes i , j ∈ V , i , j, it holds:
pj (i) < pi (i).

Proof. Let f
(k )
ji be the probability to reach transient node i

starting from transient node j for the first time at step k and f ∗ji =∑∞
k=1 f

(k )
ji . Let Vi be the number of visits to node i . It holds:

P[Vi =m | X 0 = i] = f ∗ii
m−1

(1 − f ∗ii )

P[Vi =m | X 0 = j] =

{
1 − f ∗ji , m = 0
f ∗ji f

∗
ii
m−1(1 − f ∗ii )

Thus Vi follows a geometric distribution with success probability
(1 − f ∗ii ) and so:

E[Vi | X 0 = i] =
1

1 − f ∗ii

E[Vi | X 0 = j] = f ∗ji E[Vi | X 0 = i]

Since there is a nonzero probability to reach i , i.e., f ∗ji , 0:

E[Vi | X 0 = j] < E[Vi | X 0 = i]

From E[Vi | X 0 = j] = Fji =
Qji
γ and E[Vi | X 0 = i] = Fii =

Qii
γ ,

we get pj (i) < pi (i). □

Lemma B.2. For the personalized PageRank that node i gives to
itself, it holds:

pi (i) = γ + (1 − γ )
1
di

∑
w ∈Ni

pw (i)

Proof. The proof follows directly from the fact that

pTi = γei + (1 − γ )pTi P

□

For the proof of Lemma 4.4 it suffices to show that the denomi-
nator of Λ((x,y), S) in Theorem 4.1 is always positive. From Lemma
B.2:

dx + 1 −
(1 − γ )

γ

©­«py (x) − 1
dy

∑
w ∈Nx

pw (y)
ª®¬ =

dx −
1
γ

(
(1 − γ )py (x) − px (x)

)
This quantity is always positive since from Lemma B.1, py (x) <

px (x) and 1 − γ < 1.

C PROOF OF THEOREM 4.5

The proof follows closely that of Theorem 4.1. Similar to before
we express the addition of the edges in Ex as a perturbation of the
transition probability matrix P of PageRank with a rank-1 matrix
D:

P′ = P + D, Di =

{
0, i , x

− k
dx+k

Px + 1
dx+k

eTEx , i = x

where eEx is the vector with 1 at the positions of the added edges,
and zero everywhere else.

The updated matrix Q′ can be computed using Equation 5. With
mathematical manipulations, we get:

DQi j =

{
0, i , x
k

dx+k
( 1
k

∑
y∈Vy Qy j −

1
dx

∑
w ∈Nx Qwj

)
, i = x

QDQi j =
k

dx + k
Qix

©­« 1k
∑
y∈Vy

Qmatrixy j −
1
dx

∑
w ∈Nx

Qwj
ª®¬

Substituting in (5), and summing over j ∈ S , we obtain Theorem
4.5(2). Summing over i ∈ V we obtain Theorem 4.5(1).

D PROOF OF THEOREM 4.6

Proof. For the case that dx > 1, the proof proceeds similarly
with the proof of Theorem 4.1. We first write the transition matrix
P of G ′ as a sum of the transition matrix P of G and a rank one,
perturbation matrix D. This is:

P′ = P + D, Di =

{
0, i , x

1
dx−1Px − 1

dx−1ey , i = x

As in Theorem 4.1, we get Equation 5 by using the fundamental
theorem for the inverse of the sum of matrices and the formula for
Q from Lemma 3.1.
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Algorithm 2 Greedy Algorithm
Require: GraphG(V , E), source node x ∈ V , under-represented group R ,

value k
1: Compute PageRank vector p on G
2: for each v ∈ V do

3: Compute pv (R) on graph G
4: end for

5: for each v ∈ V do

6: Compute pv (x ) on graph G
7: end for

8: S = ∅

9: for i = 1...k : do
10: for each v ∈ V : (x , v) < E ∪ S do

11: Compute f delta(S , (x , v)) = f дain(S ∪ {(x , v)}) −

f дain(S )
12: end for

13: (x , y) = argmax(x ,v ) f delta(S , (x , v))
14: S = S ∪ {(x , y)}
15: end for

16: return S

With mathematical manipulations, we get:

DQi j =

{
0, i , x

1
dx−1

(
1
dx

∑
w ∈Nx Qwj − Qy j

)
, i = x

QDQi j =
1

dx − 1
Qix

©­« 1
dx

∑
w ∈Nx

Qwj − Qy j
ª®¬

and substituting in Equation 5:

Q′
i j = Qi j + Qix

(1−γ )
γ

( 1
dx

∑
w ∈Nx Qwj − Qy j

)
dx − 1 − (1−γ )

γ
( 1
dx

∑
w ∈Nx Qwx − Qyx

)

Now, using Lemma 3.1 as in Theorem 4.1, we get the formula in
Theorem 4.6.

Special care is required in defining the perturbation matrix D for
the case that dx = 1. In this case, when removing the single edge
out of node x , the entry Px in the transition matrix becomes the
uniform matrix. Therefore, we have:

Di =

{
0, i , x

u − ey , i = x

where u is the uniform vector with 1/|V | in all entries.
With mathematical manipulations, we get:

DQi j =

{
0, i , x
1
|V |

∑
w ∈V Qwj − Qy j , i = x

QDQi j = Qix

(
1
|V |

∑
w ∈V

Qwj − Qy j

)
and substituting in Equation 5:

Q′
i j = Qi j + Qix

1−γ
γ

( 1
|V |

∑
w ∈V Qwj − Qy j

)
1 − 1−γ

γ

(
1
|V |

∑
w ∈V Qwx − Qyx

)
Now, using Lemma 3.1 as in Theorem 4.1, we get the formula in

Theorem 4.6. □

E OUTLINE OF THE GREEDY ALGORITHM

The outline of the Greedy algorithm described in Section 5.2 is
shown in Algorithm 2. In lines 2-7 we compute the quantities pv (R)
and pv (x) using two PageRank-like computations as described in
bfe. In lines 9-15, we construct the set of edges S . Line 11 can be
computed in constant time as explained. Therefore, the complexity
of the algorithm is O (k |V | + |E |).
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