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Abstract

The small world phenomenon is a desirable property of
social networks, since it guarantees short paths between
the nodes of the social graph and thus efficient informa-
tion spread on the network. It is thus in the benefit of
both network users and network owners to enforce and
maintain this property. In this work, we study the prob-
lem of finding a subset of k edges from a set of candidate
edges whose addition to a network leads to the great-
est reduction in its average shortest path length. We
formulate the problem as a combinatorial optimization
problem, and show that it is NP-hard and that known
approximation techniques are not applicable. We de-
scribe an efficient method for computing the exact effect
of a single edge insertion on the average shortest path
length, as well as several heuristics for efficiently esti-
mating this effect. We perform experiments on real data
to study the performance of our algorithms in practice.

1 Introduction

In the past decade there has been an explosive growth
of data in the form of networks. An important property
of such networked data is the small world phenomenon:
even in networks of large size, the average shortest path
length between two nodes is small. This is a highly
desirable property since it facilitates and amplifies dy-
namic processes in the network, such as information dis-
semination, or viral marketing. A well connected net-
work is of value to both the users and the owners of the
networked data, and thus it is in their best interest to
enforce and maintain this property.

Motivated by such considerations, in this paper, we
consider the following novel network analysis problem.
Given a graph G representing a network, and a set of
candidate edges C not present in the graph, we look
for a small subset of edges in C that have the greatest
impact on G, i.e., if added to G, they would cause the
largest decrease in the average shortest path length,
thus making G a smaller world. We call such edges
shortcut edges and the problem of identifying the best
set of k such edges the shortcutSelection problem.
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The shortcutSelection problem has several ap-
plications. Take for example a graph G that evolves
over time. This can be a social network, where new
friendships are constantly created, or a criminal net-
work where new associations are formed between known
criminals. The candidate set C is the set of new edges
added between two successive network snapshots, and
the shortcut set consists of the subset of new edges that
have the greatest effect in bringing the nodes of the
graph G closer together. These edges convey impor-
tant information about the graph evolution, since they
provide a summary of the important changes that hap-
pened in the graph. For a social network, these are the
connections that the network owner would like to pro-
actively nurture and maintain. For a terrorist network,
these are the links that need to be investigated.

Furthermore, the shortcutSelection problem
has applications in physical networks, such as trans-
portation networks, or communication networks. In
such networks, creating new connections between nodes
(building new roads, laying cables) is limited by physi-
cal constraints, and the selection of the new connections
requires careful consideration. In all such cases we want
to select a few connections that will maximize the over-
all benefit by making the network a smaller word.

Finally, shortcutSelection may also be seen as
an amendment to link recommendations. Let C be a
set of candidate link recommendations computed using
any of the many related algorithms [1, 8]. So far,
link recommendations are selected based solely on their
prediction accuracy, that is, C consists of the links
with highest prediction “score”. Selecting from C a
subset S of link recommendations that improve the
overall “quality” of the network (by making it a smaller
world) introduces a new dimension to the link prediction
problem, where the benefit of the network owner is also
taken into account.

In this paper, we formalize the shortcutSelec-
tion as a combinatorial optimization problem. We
show it is NP-hard, and we demonstrate why known
approximation techniques are not applicable. We study
in detail the case of a single edge addition, and we pro-
pose an algorithm for computing the exact reduction of
the average shortest path. The algorithm provides a
characterization of the structure of the affected nodes.



Using this characterization, we propose a heuristic that
computes an estimate of the effect of a single edge, and
it is able to scale for graphs of large size. We evaluate
our algorithms in terms of both effectiveness and effi-
ciency on a variety of real datasets, and we compare
with simple baselines, as well as competing approaches.

The remainder of the paper is structured as follows.
In Section 2 we survey some of the related work in
the literature. In Section 3, we define the problem,
and study it theoretically. In Section 4, we consider
the single edge addition, while in Section 5 we propose
algorithms for our problem. In Section 6, we present an
experimental evaluation on real graphs of the proposed
methods. Finally, Section 7 concludes the paper.

2 Related work

The work most closely related to ours is that of Papage-
lis et al., [12], which considers the problem of selecting k
edges among all possible edges not present in the graph,
such that the sum of all-pairs shortest path distances is
minimized. The main difference with our work is in the
set of candidate edges that we consider. Although this
difference may seem superficial, it is of critical impor-
tance to the design of algorithms for the problem. The
candidate set in [12] is of size quadratic in the size of the
graph, while we assume a manageable set of candidate
edges (sub-linear in the size of the graph). Considering
all missing edges as candidates is highly restrictive. No
algorithm that performs some computation per candi-
date edge can scale for real graphs of large size. This
restriction guides the approach in [12]. As we will show
in Section 6, even after refinements that we make, their
algorithm is not as efficient or effective when applied to
the shortcutSelection problem.

The average shortest path length is related to the
average closeness centrality of nodes in the graph. In [4]
they consider the problem of finding the k edges whose
addition to the graph maximizes the centrality of a
specific target node. In [13] an incremental algorithm
is proposed to efficiently update the closeness centrality
values under changes in network topology. In [9] the
problem is to find the k edges, incident to a specific
node, whose addition leads to the greatest reduction in
all-pairs shortest paths distances. In [15] they seek the
k edges whose addition will best enable the propagation
of information in the network under the SIS model.
In [5] they identify the set of top-k pairs of nodes whose
distances are reduced the most as the result of edge
additions.

The idea of combining shortcut selection with link
recommendations is explored in [7], where the authors
re-rank link recommendations in order to promote in-
formation diffusion in a social network. Also, in [3] the

authors take as input a set of recommended links and
compute k edges per node that boost content spread in
the network.

3 Problem Definition and Hardness

Let G = (V,E) be a connected unweighted undirected
graph representing a network. For a pair of nodes
x, y ∈ V let d(x, y) denote the shortest path distance
between the nodes, that is, the length of the shortest
path between x and y in the graph. We define the
average shortest path length in the graph G as

L(G) =
1(
n
2

) ∑
x,y∈V

d(x, y)

where n denotes the size (number of nodes) of the graph.
The value of L(G) is a commonly used measure for the
small world property in a network.

Now, let C ⊆ V × V denote a set of edges not in
the graph G, i.e., C ∩ E = ∅. These are the candidate
edges to be added to the graph. The addition of any
edge to the graph G can only reduce the value of the
average shortest path length. We are interested in
finding a subset S ⊆ C of k edges whose addition to
a graph G leads to the greatest reduction in L(G).
Abusing the notation, let G′ = G ∪ S denote the graph
G after the addition of a set of edges S. We define
RG(S) = L(G) − L(G ∪ S) to be the reduction in the
average shortest path length caused by the addition of
the edge set S in the graph G. We want the set S of
size k that maximizes RG(S). Abusing the notation we
will sometimes use RG(S) to denote the reduction in
the sum of shortest path lengths. This has no effect in
our problem definition.

We define our problem formally as follows.

Problem 1. (shortcutSelection) Given a con-
nected, unweighted, undirected graph G = (V,E), a set
C ⊆ (V × V ) \ E of candidate edges, and an integer
value k, find a subset of candidate edges S ⊆ C of size
|S| = k that maximizes the reduction RG(S) in the
average shortest path length.

We will now show that shortcutSelection is
NP-hard. For the proof we will show a reduction
from the maxCoverage problem, which is known to
be NP-hard. The maxCoverage problem is defined
as follows. We are given as input a universe U =
{u1, u2, ..., un} of n elements, and a collection S =
{S1, S2, ..., Sm} of subsets of the elements of U , such
that ∪mi=1Si = U . We say that a set Si ∈ S covers
an element u if u ∈ Si. We define the coverage of a
sub-collection V ⊆ S, as c(V) = | ∪Si∈V Si|. Given a
budget value k, the maxCoverage problem asks for a
collection V of size k that maximizes the coverage c(V).
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Figure 1: The maxCoverage instance and the corre-
sponding shortcutSelection instance.

Theorem 3.1. The shortcutSelection problem is
NP-hard.

Proof. [Sketch] Given an instance of the maxCover-
age problem, we will construct an instance of the
shortcutSelection problem. Let (U,S) be the
input to the maxCoverage problem, where U =
{u1, u2, ..., un} is the universe of elements, and S =
{S1, S2, ..., Sm} a collection of subsets. We construct
the input (G,C) to the shortcutSelection problem
as follows. The node set V of the graph G consists of
n+m+ 2 nodes: (i) A node ui for each element ui ∈ U ;
(ii) A node si for each set Si ∈ S; (iii) Two additional
nodes F and M . The set of edges E consists of the
following edges: (i) An edge (si, uj) for every uj ∈ Si;
(ii) An edge (si, sj) for every pair of nodes si, sj ; (iii)
Edges (M, si) for every node si; (iv) The edge (F,M).
Finally, the set of the candidate edges C consists of all
edges (F, si), for all nodes si. An example of the con-
struction is shown in Figure 1.

Note that in the original graph (before any candi-
date edges are added) node M acts as an intermedi-
ate between F and the nodes si. Therefore, for all si,
d(F, si) = 2, and for all ui, d(F, ui) = 3. Consider now
the addition of an edge (F, si) to the original graph.
This has the effect of reducing by one the length of
the shortest path between F and si, and between F
and all the nodes up connected to si. These correspond
to elements up that are covered by the set Si. There-
fore, when adding an edge (F, si), every pair of the type
(F, up) whose distance is decreased by one corresponds
to an element covered by the set Si. The total reduc-
tion in the shortest paths by adding a set of k edges
Ek = {(F, si1), ..., (F, sik)} is equal to the coverage of
the sub-collection V = {Si1 , ..., Sik} plus k. Maximizing
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Figure 2: The counter-example for the non-
submodularity and non-supermodularity of RG(S). The
dashed edges are the candidate edges.

RG(Ek) results in maximizing coverage c(V).

Since our problem is NP-hard, we look for ap-
proximation algorithms with provable guarantees. A
common approach to handling similar problems, e.g.,
the maxCoverage problem, is by showing that the
function to be maximized is submodular. Let Ω be
a set, and let 2Ω denote the power set of Ω. The
set function f : 2Ω → R is submodular, if for every
X,Y ⊆ Ω with X ⊆ Y and every x ∈ Ω it holds that
f(X ∪ {x}) − f(X) ≥ f(Y ∪ {x})− f(Y ). It is well
known that when maximizing submodular set functions
under cardinality constraints a simple greedy algorithm
gives a constant factor approximation [11]. Unfortu-
nately, as we show below, the reduction function RG(S)
is not submodular. In fact, we show that the reduc-
tion function is also not supermodular. A function f
is supermodular if for every X ⊆ Y ⊆ Ω, and x ∈ Ω,
f(X ∪ {x})− f(X) ≤ f(Y ∪ {x})− f(Y ).

Lemma 3.1. The reduction function RG(S) is neither
submodular nor supermodular.

Proof. For the proof it suffices to give a counter-example
for each case, where the property does not hold. We
begin with the proof for non-submodularity. Consider
the graph shown in Figure 2, consisting of the solid edges
that form a cycle of eleven nodes. The dashed edges are
the candidate edges. Consider now the effect of the
addition of edges, (v2, v4) and (v4, v6). Going through
all pairs, one can see that the addition of either edge by
itself causes the length of the shortest paths between ten
different pairs to decrease by one. However, if the edge
(v4, v6) has already been added, the addition of (v2, v4)
causes the distance of thirteen pairs to be reduced by
one.

To understand the intuition behind this counter-
example, consider the pair (v1, v7). When no candidate
edges have been added, the shortest path between the
pair (v1, v7) follows the top part of the cycle, and it has
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Figure 3: An example of the sets Ax and Ay for the
insertion of the edge (x, y). Nodes in Ay are colored
light gray, and nodes in Ax are colored dark gray. White
nodes belong to neither set. The number outside the
bracket denotes the length of the previous shortest path,
while the number in the bracket is the length of the new
shortest path after the insertion of (x, y).

length 5. The addition of the edge (v4, v6) creates a new
shortest path of length 5 that follows the bottom part
of the cycle. The distance between v1 and v7 remains
unchanged. However, if we also add the edge (v2, v4),
the lower shortest path has now length 4, reducing the
distance between v1 and v7 by one. This reduction is
achieved by the synergy of the two edges; the existence
of the one in the graph amplifies the effect of the other.
This effect is what makes the function non-submodular.

For the proof of non-supermodularity, we consider
the candidate edges (v10, v4) and (v9, v4) in Figure 2.
Adding the edge (v10, v4) to G results in a reduction
of 23 in the sum of all-pairs shortest paths. From the
symmetry in the graph, adding the edge (v9, v4) results
in the same reduction. However, the insertion of (v9, v4)
to the graph G∪{(v10, v4)} results in reduction equal to
7, smaller than that of adding (v9, v4) to G. To obtain
some intuition, it is instructive to consider the pair
(v9, v4). The addition of (v10, v4) has already cut the
distance between v9 and v4 significantly. The addition
of (v9, v4) supplements the effect of (v10, v4) rather than
amplifying it, reducing the path by just one hop.

4 Computing the effect of a single edge

In this section, we describe a method for calculating
the effect of a single edge addition on the all-pairs
shortest paths. This algorithm is a modification of an
incremental computation of shortest path distances in
directed graphs, presented in [2]. The method consists
of two phases. In the first phase, we identify affected
pairs of nodes whose distance (shortest path length) is
potentially reduced by the addition of the new edge.

Algorithm 1 EdgeEffect Algorithm

Require: Graph G, edge e = (x, y)
Ensure: Edge effect RG(e)

1: Compute BFS trees T (x) and T (y)
2: Ax ← {u ∈ T (y) : dold(u, y) + 1 < dold(u, x)}
3: Ay ← {v ∈ T (x) : dold(v, x) + 1 < dold(v, y)}
4: RG(e) = 0
5: for u ∈ Ax do
6: Compute BFS tree T (u)
7: for v ∈ T (u) do
8: dnew(u, v) = dold(v, x) + dold(u, y) + 1
9: if dnew(u, v) < dold(u, v) then

10: RG(e)+ = dold(u, v)− dnew(u, v)
11: end if
12: end for
13: end for
14: return RG(e)

In the second phase, we determine for which of the
potentially affected pairs the distances were actually
reduced, and we calculate this reduction.

Let e = (x, y) be the edge to be added, and let
dold(u, v) be the distance between two nodes u, v before
the insertion of e. We define two sets of affected
nodes, namely sets Ax and Ay, such that Ax = {u ∈
V : dold(u, y) + 1 < dold(u, x)}, and Ay = {v ∈
V : dold(v, x) + 1 < dold(v, y)}. For a node v ∈ Ay

the addition of edge (x, y) creates a path from v to
y that goes through the edge (x, y) and has length
dold(v, x) + 1 which is shorter than the length dold(v, y)
of the previous path from v to y. Similarly for a node
u ∈ Ax with respect to x. Therefore, the sets Ax and Ay

are the sets of nodes for which the addition of the edge
(x, y) causes their distance to x and y, respectively, to
be reduced. For example in Figure 3, Ax = {y, v8, v9}
and Ay = {x, v1, v2, v3, v4, v5, v11}.

We can show that if the distance between a pair
of nodes (u, v) has been reduced then u and v must
belong to sets Ax and Ay, respectively. The proof of the
following lemma is omitted due to space constraints.

Lemma 4.1. The insertion of edge (x, y) affects the
distance of two nodes u and v, only if, either u ∈ Ay

and v ∈ Ax, or v ∈ Ay and u ∈ Ax.

Following Lemma 4.1 the potentially affected pairs
are the ones in the cross-product Ax × Ay. To find the
truly affected pairs, and the effect of the edge (x, y),
we need to check for which pairs their distance actually
decreased.

Algorithm 1 shows the outline of the full algorithm
for computing the reduction RG(e) caused by the addi-
tion of edge e = (x, y). The algorithm first computes



the sets Ax and Ay. This can be done by performing
two BFS traversals from x and y. We store the result-
ing BFS trees T (x) and T (y). To compute Ax (resp.
Ay) we traverse the tree T (y) (resp. T (x)) and keep
the nodes u for which dold(u, y) + 1 < dold(x, u) (resp.
dold(u, x) + 1 < dold(y, u)).

For a pair (u, v) ∈ Ax × Ay, let dxy(u, v) =
dold(u, y) + dold(v, x) + 1 be the length of the path
between u, v that goes through the edge (x, y). Assume
without loss of generality that |Ax| < |Ay| (as in Figure
3). In the second phase, we perform a BFS traversal for
all the nodes u ∈ Ax. For every node v that we visit
in the BFS tree of u, if dxy(u, v) < dold(u, v), then we
conclude that the distance between (u, v) was reduced,
and we update the reduction RG(e) appropriately.

The time complexity of the proposed method is
O(mn), since in the worst case Ax and Ay have size
O(n), and the BFS traversal in step 6 takes O(m).
However, in practice the algorithm is significantly faster.
Note that in the traversals of the BFS trees (lines 2, 3, 8)
we can stop the exploration of a node if the condition
we are interested in is not satisfied. This results in a
significant speed-up of the algorithm.

5 Algorithms

In this section, we describe algorithms for the short-
cutSelection problem. The main goal is to com-
pute efficiently an estimate of the exact solution even
for large-scale graphs. To be practical, our algorithms
should aim for linear time and space complexity. With
the exception of the greedy algorithm we describe below,
the main idea behind all of our methods is to compute
a score for each candidate edge in C and select the k
edges with the highest scores. The difference between
the various methods is in the score computation. The
space complexity of all algorithms is O(m+ n).

We now describe our algorithms in detail.

Greedy: The greedy algorithm selects each time the
edge that causes the largest reduction. The algorithm
maintains a set of edges S ⊆ C selected so far, initialized
to the empty set. It then proceeds iteratively, where at
each iteration, it computes the exact effect RG∪S(e) for
each candidate edge e ∈ C \ S using the EdgeEffect
algorithm from Section 4. It selects the edge with the
greatest gain and inserts it to S. The algorithm stops
when k edges have been selected. The worst-case time
complexity of the greedy method is O(mnrk), where n
and m is the number of nodes and edges respectively,
and r = |C|. The factor mn comes from the worst-case
complexity of EdgeEffect.

EdgeEffect: In this method we use the EdgeEffect
algorithm to compute the exact reduction RG(e) for

each edge e ∈ C in the candidate set, and we select
the k edges with the greatest gain RG(e). The time
complexity of the algorithm is O(mnr), where r = |C|.
EffectEstimation: This algorithm computes for each
candidate edge e ∈ C a score R̃G(e) which acts as an
estimate of the exact reduction RG(e). The algorithm
makes use of the following lemma, which we state here
without proof due to space constraints. In the following,
dnew(u, v) denotes the distance between nodes u and v
in the graph G after the insertion of the edge e.

Lemma 5.1. Let (x, y) be a newly inserted edge and let
u ∈ Ax be a node which reduced its distance from x by
i, and v ∈ Ay be a node which reduced its distance from
y by j. Then dold(u, v)− dnew(u, v) ≤ min{i, j}.

To compute the estimated effect R̃G(e), the algo-
rithm makes use of the sets Ax, Ay described in Section
4, containing the set of nodes whose distance from x
and y, respectively, was reduced. Given Ax and Ay,
the algorithm computes the sets Ax[i] and Ay[j] for
1 ≤ i, j < dold(x, y), containing all the nodes in Ax and
Ay whose distance from x and y was reduced by ex-
actly i and j respectively. From Lemma 5.1, for all
u ∈ Ax[i],v ∈ Ay[j], we have dold(u, v) − dnew(u, v) ≤
min{i, j}.

Following the above discussion, one way to estimate
the effect of the edge (x, y) would be to add to R̃G(e)
the edge effect |Ax[i]| · |Ay[j]| · min{i, j}, for all 1 ≤
i, j < dold(x, y). The problem is that this approximation
is over-optimistic, and it does not take into account the
alternative paths that exist between nodes in Ax and
Ay, which in many cases are shorter than the new paths.

Consider a node u ∈ Ax[i]. The node u has an
alternative path to x that does not pass through (y, x),
that is, the shortest path to x before the insertion of
(x, y). Since the new path to x goes through (y, x)
we have dnew(u, x) = dold(u, y) + 1. Since the new
path is shorter that the old one by i, it follows that
dold(u, x) = dold(u, y) + 1 + i. However, in approaching
node x the old path must go through nodes in Ay. When
i is small, for the nodes v ∈ Ay that appear in the
alternative path from u to x, the distance dold(u, v) will
most likely not be reduced. That is, for smaller i, fewer
nodes v ∈ Ay reduce their distance from u. Things are
completely symmetric when examining a node v ∈ Ay[j]
and its paths to nodes in Ax. Combining the above, for
pairs of nodes (u, v), u ∈ Ax[i],v ∈ Ay[j], where i, j are
both small, it is unlikely to have a reduction in their
distance. In our algorithm, we assume that the distance
of the pair is affected when (i + j) is sufficiently large.
As a result, we estimate the effect of the edge by adding
|Ax[i]| · |Ay[j]| · min{i, j}, for all 1 ≤ i, j < dold(x, y),
such that (i+ j) > dold(x, y).



Algorithm 2 EffectEstimation Algorithm

Require: Graph G, edge e = (x, y)
Ensure: Estimated edge effect R̃G(e)

1: R̃G(e) = 0
2: Compute dold(x, y), Ax[i], Ay[i], 1 ≤ i < dold(x, y)
3: if dold(x, y) > 2 then
4: for 1 ≤ i < dold(x, y) do
5: for dold(x, y)− i < j < dold(x, y) do
6: R̃G(e)+ = |Ax[i]| · |Ay[j]| ·min{i, j}
7: end for
8: end for
9: end if

10: if dold(x, y) = 2 then
11: R̃G(e) = |Nx ∩Ay| · |Ny ∩Ax|
12: end if
13: return R̃G(e)

Note that for the edges (x, y), where dold(x, y) = 2,
we have i, j ≤ 1, and therefore no score is computed.
This is a special case that we need to take care of,
since such edges may reduce distances (by one) between
a large number of pairs and lead to a greater overall
reduction than long-haul edges that reduce distances
by a large number but affect only few pairs. To deal
with this issue we assign a score to such edges equal to
the product of the affected neighbors of x and y, that
is, |Nx ∩ Ay| · |Ny ∩Ax|, where Nv consists of v and
the neighbors of v. The full outline of our algorithm is
shown in Algorithm 2.

We can compute the sets Ax[i], Ay[j], 1 ≤ i, j <
dold(x, y) during the computation of the sets Ax, Ay de-
scribed in section 4. The complexity of the EffectEsti-
mation algorithm is O(rm), where r = |C|.

PBG algorithm: This is the algorithm proposed by
Papagelis, Bonchi and Gionis [12]. The PBG algorithm
also approximates the effect of an edge, using the
following idea: An edge (x, y) affects a shortest path
between two nodes u and v only if it appears as a
shortcut in their previous shortest path.

The algorithm in [12] was designed for scoring all
missing edges in the graph and it works as follows.
First, it computes and maintains the all-pairs shortest
paths. Next, for each shortest path p = 〈u, ..., v〉, and
for each non-adjacent pair of nodes x, y that appear in
p, it adds to the estimated effect of (x, y) the quantity
dold(x, y)− 1. The implementation in [12] needs O(n2)
space and O(n3) time. Since in the problem they
consider the number of candidates is quadratic, this is
a cost they can afford to pay.

We provide a more efficient implementation of the
PBG algorithm for the shortcutSelection problem

which works as follows. For a node v in the input
graph G we construct the BFS tree T (v). We then
go through the set C of candidate edges and for each
edge e = (x, y) ∈ C we perform an ancestor-descendant
test to determine if x is an ancestor of y in T (v), or
y is an ancestor of x in T (v). This can be done in
constant time [14]. If x is an ancestor of y in T (v)
(symmetrically for y), then we add to the score of e the
quantity (dold(x, y) − 1) · desc(y), where desc(y) is the
number of the descendants of y (including y) in T (v).
This process takes time O(m+ r) for each node v ∈ G,
where r = |C|, resulting in overall time complexity
O(mn+ nr).

Distance: For this algorithm the score of each candi-
date edge (x, y) is the distance dold(x, y) in the original
graph. The algorithm has time complexity O(mr).

Degree: For this algorithm the score of each candidate
edge (x, y) is the product of the degrees deg(x) · deg(y).
The complexity of the algorithm is O(r).

6 Experimental evaluation

In this section, we study experimentally the perfor-
mance of the algorithms described in Section 5 in terms
of both efficiency and effectiveness, using real graphs of
different types and sizes.

6.1 Datasets. We use three different datasets in our
experiments that correspond to three different types of
networks. All three graphs contain information about
the time when each edge appeared.

• The Facebook dataset [16], consists of a social graph
from the Facebook New Orleans network. Nodes
represent users, and edges user friendships. The
dataset contains the activity of the network from
September 2006 until February 2009.

• The DBLP dataset1 [6] consists of a collaboration
graph of authors of computer science papers where
an edge between two authors represents a common
publication. The DBLP graph contains the authors
and co-authorships between 1970 and 2013.

• The Internet graph [10] consists of a graph defined
over Internet AS and the connections between
them. The Internet graph maps the connections
that were established in years 2004, 2005 and 2006.

For our experiments we consider the scenario we
described in Section 1, where we have consecutive
snapshots of an evolving graph, and the candidate edges
are the edges added between the two snapshots. For

1KONECT, http://konect.uni-koblenz.de/



Dataset nodes edges candidates diameter
Internet 17,474 31,579 5,250 12
DBLP 31,422 69,428 2,444 26
Facebook 41,212 342,584 12,921 19

Table 1: Characteristics of the three graph instances.

each dataset, we produce a series of input instances
{Gi, Ci} to our problem, where Gi = (Vi, Ei) is the
graph up to time ti, and the set of candidate edges Ci is
the set of edges added between snapshots Gi and Gi+1.
More specifically, let LCC(Gi) be the largest connected
component of graph Gi. Then Ci = {(u, v) ∈ Ei+1 :
(u, v) /∈ Ei, u, v ∈ LCC(Gi)}. The number of snapshots
per dataset is selected such that the candidate set Ci is
sufficiently large compared to the size of the graph Gi.
For the Internet and DBLP datasets we took yearly
snapshots, while for Facebook monthly. We obtained 3
input instances for Internet, 42 for DBLP, and 29 for
the Facebook dataset.

We apply our algorithms to all input instances. In
order to study the effectiveness of the algorithms in
depth, we use for each dataset the “middle” instance,
which we view as representative. For the Internet
dataset this corresponds to the instance between years
2005 and 2006, for DBLP the instance between the years
1990 and 1991, and for Facebook the instance between
November and December of 2007. For the rest of this
Section any reference to graphs DBLP, Facebook and
Internet will mean those three instances, unless we state
explicitly that we refer to the full instance sequence.
The characteristics of these three input instances are
shown in Table 1.

6.2 Effectiveness. We first study the effectiveness
of the methods. To measure effectiveness we compute
RG(C), that is, the reduction we can obtain by adding
the full set of candidate edges to the graph G. Then,
given a selected set of candidate edges S ⊆ C, we
compute the reduction percentage RG(S)/RG(C), which
we use as our effectiveness measure. Using this measure,
we can compare the different algorithms, but also
evaluate them independently. To avoid calibrating the
value of k for each different dataset, we set the size of the
selected set to be a fraction |S| = γ|C| of the candidate
edges, for γ = 1%, 2%, 3%, 4%, 5%.

Figure 4 presents the reduction percentage of our al-
gorithms for the three datasets as a function of the size
of the selected set. We also include a Random selection
as a lower bound, where the set S is chosen randomly.
The Greedy algorithm performs the best, and defines an
upper bound for the effectiveness of our methods. The
EdgeEffect algorithm follows closely, consistently in all

Method Internet Facebook DBLP
APSP recomputation 33,190 381,429 129,226
EdgeEffect 14 1,314 496

Table 2: Average running time (measured in millisec-
onds) for computing the effect of a single edge insertion.

three datasets. Of the remaining heuristics, the algo-
rithm that performs best is EffectEstimation. Notably,
for the DBLP and Facebook graphs, there is a sizeable
gap between the effectiveness of EffectEstimation and
the next best one. There is no clear winner among the
remaining heuristics. The PBG method performs bet-
ter on the Internet graph, but it is outperformed by the
Distance method on the Facebook and DBLP graphs.
Similarly Distance performs better than Degree on the
Facebook and DBLP graphs, but it is outperformed by
Degree on the Internet graph. All our heuristics per-
form better that the Random method, with the excep-
tion of Degree on the Facebook graph.

In Figure 5, we show the effectiveness of the meth-
ods EdgeEffect, EffectEstimation, PBG and Distance
as a function of the size of the graph, for selected set
size fixed to 5% of the candidate edges. We observe
that the performance of our algorithms, both individu-
ally and comparatively, remains relatively stable as the
size of the dataset changes.

Finally, it is interesting to evaluate the reduction
percentage in absolute terms. We observe that with the
insertion of a small fraction of the candidate edges it is
possible to achieve a significant fraction (around 50%)
of the total reduction achieved by the full candidate set
C. This observation is consistent for all datasets.

6.3 Efficiency. We implemented all our algorithms
in C++, using g++v.4.6.4 to compile the code. We
report the running times on a GNU/Linux machine,
with Ubuntu (SMP): a Intel(R) Xeon(R) CPU server
64-bit NUMA machine with four processors and 16GB
of RAM memory. Each processor has 4 cores sharing
a 8MB L3 cache, and each core has a 256KB private
L2 cache and 2.40GHz speed. All times are reported in
milliseconds.

First, we consider the performance of the EdgeEf-
fect algorithm from Section 4, and we compare it with
computing the all-pairs shortest paths (APSP) from
scratch. Table 2 shows the average (over all candi-
date edges) running time for the Internet, Facebook and
DBLP instances. Although both algorithms have worst-
case complexity O(nm), EdgeEffect is many orders of
magnitude faster in practice. This observation is con-
sistent for different network sizes.

In Figure 6, we present the running times of our
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Figure 4: Effectiveness of the algorithms in Section 5 as a function of selection size.
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Figure 5: Effectiveness of EdgeEffect, EffectEstimation, PBG, and Distance as a function of network size.

algorithms for the three datasets as a function of the
network size. To make our observations independent of
the candidate set C, we normalize the running times
with the size of C, and report the average running
time per edge. We omit the Greedy method, since it
is evidently slower than the rest (essentially k times
the running time of EdgeEffect), and Degree since it
has constant running time. The Distance algorithm
defines a baseline for all methods, since it performs a
single BFS traversal. The EdgeEffect method is the
most inefficient method overall. The EffectEstimation
is an order of magnitude faster than EdgeEffect on the
Internet dataset, and two orders of magnitude faster on
Facebook and DBLP. It is also faster than PBG on most
instances. Its running time grows at the same rate as
Distance. The behavior of PBG is erratic. This is due
to the fact that it has complexity O(mn + n|C|)), so
the running time per edge is sensitive to the size of C.
PBG is more efficient for large candidate sets, and less
for candidate sets that are small relative to the graph
size. For example, this is the case in the last snapshot
of the Facebook graph (Figure 6(b)).

6.4 Link prediction application. Finally, we con-
sider the link recommendation application scenario we
described in Section 1. We use a link prediction al-
gorithm to obtain a set C with the top recommended
edges. We then apply our algorithms to select a set

Method RPR AA
Top 9.07 % 17.85 %
Greedy 35.03 % 64.63 %
EdgeEffect 33.19 % 64.51 %
EffectEstimation 29.68 % 59.05 %
PBG 18.11 % 61.40 %

Table 3: Effectiveness of shortcut selection for the link
recommendation application.

S ⊆ C of k edges that reduce RG(S) the most. We
use the Facebook graph for this experiment, since link
prediction has a natural application on social networks.

In our experiment we used the link prediction algo-
rithms RootedPageRank (RPR) [8], and AdamicAdar
(AA) [1]. We use the top-1000 links with the highest
prediction score as our candidate edges, and we ask for
k = 100 shortcuts. Table 3 reports the effectiveness
of our algorithms (we omit the baselines Distance and
Degree) in terms of the reduction percentage. We also
report the results for the set of the top-100 edges with
the highest link-prediction score (denoted as Top).

The relative performance of our algorithms is con-
sistent with our previous experiments. An interesting
observation is that the PBG algorithm seems to be af-
fected by the number of shortcuts at distance 2: in the
case of RPR only 25% of the candidate edges are at dis-
tance 2, while in case of the AA all candidate edges are
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Figure 6: Algorithm Efficiency: Running time per candidate edge as a function of the network size.

at distance 2. We also note that our algorithms achieve
reduction ratio more than three times that of the top-
100 links. It is clear that the existing link prediction
algorithms do not take the benefit of the network into
account in their recommendations. It is an interesting
problem for further study to understand the trade-off
between prediction accuracy and network benefit.

7 Conclusion

In this paper we defined the shortcutSelection
problem, and studied it theoretically and experimen-
tally. We described the EdgeEffect algorithm for com-
puting efficiently the effect of a single edge insertion on
the average shortest path length. The algorithm pro-
vides a characterization of the affected nodes, which
we utilize to construct a novel heuristic algorithm, Ef-
fectEstimation. Our experiments demonstrate our al-
gorithms to be both efficient and effective. In the fu-
ture, we are interested in better understanding the ap-
proximability of our problem, and explore the accuracy-
benefit tradeoff for the link prediction application.
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