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Abstract Location-based social networks (LBSNs), exemplified by Foursquare,
are fast gaining popularity. One important feature of LBSNs is micro-review. Upon
check-in at a particular venue, a user may leave a short review (up to 200 charac-
ters long), also known as a tip. These tips are an important source of information
for others to know more about various aspects of an entity (e.g., restaurant), such
as food, waiting time, or service. However, a user is often interested not in one
particular entity, but rather in several entities collectively, for instance within a
neighborhood or a category. In this paper, we address the problem of summarizing
the tips of multiple entities in a collection, by way of synthesizing new micro-
reviews that pertain to the collection, rather than to the individual entities per
se. We formulate this problem in terms of first finding a representation of the
collection, by identifying a number of “aspects” that link common threads across
two or more entities within the collection. We express these aspects as dense sub-
graphs in a graph of sentences derived from the multi-entity corpora. This leads
to a formulation of maximal multi-entity quasi-cliques, as well as a heuristic algo-
rithm to find K such quasi-cliques maximizing the coverage over the multi-entity
corpora. To synthesize a summary tip for each aspect, we select a small number
of sentences from the corresponding quasi-clique, balancing conciseness and repre-
sentativeness in terms of a facility location problem. Our approach performs well
on collections of Foursquare entities based on localities and categories, producing
more representative and diverse summaries than the baselines.
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1 Introduction

Location-based social networks (LBSNs), e.g., Foursquare, Yelp Check-ins, are
currently undergoing tremendous growth. Particularly, we are interested in the
reviewing feature of LBSNs. The reviews generated in LBSNs, which we term
micro-reviews, are characteristically different from regular reviews, such as found
in Yelp or TripAdvisor. One fundamental difference is length. Micro-reviews are
shorter by design, e.g., Foursquare imposes a limit of 200 characters to each tip1.
Hence, they are much more concise and to-the-point than reviews. Another differ-
ence is because leaving tips is usually done on-site upon check-in, they capture the
user’s reaction in the moment, as opposed to well after the fact. These material
differences signify micro-reviews as an important content in their own right2.

Micro-reviews are written by users for an individual venue. Let us take for
an example Ippudo3 in New York. On Foursquare, users have left hundreds of
tips about various aspects, about signature dishes, e.g., “Get the pork buns (it’s
true; better than Momofoku) and Akamaru Modern. You will leave a very happy
person.”, waiting time, e.g., “Go in the afternoon to avoid having to wait. Sat
afternoon = 15 min wait.”, or reservation, e.g., “No advanced reservations, do take
same day but must walk in to make it”. These bite-sized morsels of information
collectively provide an overall picture to users interested in this particular venue.

LBSNs are increasingly popular as a travel tool to get a glimpse of what is
available in a new unfamiliar locality [10,43,44]. Hence, there is a need to provide
micro-review-like information, not just about a specific individual venue, but also
for a collection of venues. For instance, a tourist may find herself in a particular
neighborhood, such as the Lower Eastside of New York City, and wish to know
about what is available in the neighborhood. Alternatively, she may have certain
dietary restrictions, e.g., halal, kosher, vegan, and wish to know about venues that
serve such foods. In these scenarios, the scope is not an individual venue or entity,
but rather a collection of entities defined by some concept (e.g., locality, category).

Problem. In this paper, we propose to generate or synthesize micro-reviews
for a collection of entities, by summarizing the micro-reviews of the underying
entities within the collection. Let us take for example the ZIP code NY 10003,
which covers the Lower Eastside / East Village neighborhood in New York City.
There are more than twenty restaurants in this area, each described by its own
set of micro-reviews. Upon “check-in” at this ZIP code, we would like to present
a user with a list of micro-reviews pertaining to the ZIP code as a whole.

To illustrate this, Table 1 shows several examples of such micro-reviews (which
we call summary tips) generated by our proposed method. From the first one t1, we
see that several restaurants serve ramen, including Ippudo, Republic, and Yakitory
Taisho. Another big thing in this locality are pork dishes, with different specialties
(buns, belly, pulled, etc.) available in various venues (shown in italics). In turn, t3
and t4 talk about pizza and chocolate respectively. Each summary tip encapsulates
some pertinent aspect about two or more entities in this ZIP code. Taken together,
they provide a rounder picture of what one could find in this neighborhood.

1 Here, we use “micro-review” and “tip” interchangeably as we are mostly using Foursquare
in our running examples.

2 http://www.fastcompany.com/3015168/foursquares-tips-growing-faster-than-yelps-reviews
3 https://foursquare.com/v/ippudo/4a5403b8f964a520f3b21fe3
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Table 1 Example Summary Tips for ZIP code NY 10003

ID Micro-Review (and the corresponding relevant entities)
t1 Amazing pork buns and ramen. Try Akamaru Modern Ramen! Best ramen ever. The

miso ramen is tops.
(Ippudo, Republic, Yakitori Taisho)

t2 Get the pork belly sandwich. Try the pulled-pork. Try the pork buns. Love steamed
Pork buns. Pork buns are great.
(Ippudo, Wafels & Dinges, Num Pang, Momofuku Ssam Bar, (and 7 more))

t3 Best pizza in NYC. Best artichoke pizza.
(ABC Kitchen, Otto Enoteca Pizzeria, Max Brenner, (and 3 more))

t4 Mexican Hot Chocolate - do it! Italian thick hot chocolate. Delicious hot chocolate!
Must try the Chocolate Marshmallow Pizza!
(ABC Kitchen, Otto Enoteca Pizzeria, Max Brenner, (and 7 more))

Given a collection of entities, and the set of input tips for each entity, we would
like to derive a summary for this collection, in the form of a specified number K of
“synthesized” micro-reviews or summary tips. The given collection of entities may
arise due to various application scenarios. In one scenario, a user in a specified
area or neighborhood (e.g., a ZIP code) may wish to summarize nearby entities.
In another scenario, a user may be looking for a specified category or dietary
preference (e.g., Asian restaurant, Kosher or Halal food). Alternatively, a user
may also wish to summarize a collection of entities that are relevant to a certain
query. In the output summary, each summary tip captures some aspect that applies
to multiple entities. Collectively, the K summary tips should represent as much
information about the collection as possible.

Approaches. One possible approach is to pool together the tips from all
entities in the collection, and to employ traditional summarization techniques.
However, this approach suffers from drawbacks. For one, the summary tips may
be individualistic, capturing an aspect specific to one entity. For another, there
may be a lack of diversity, and the summary tips may be repetitive. The results
also may be skewed towards “larger” entities with many more tips than others.

We advocate a collectivist approach, whereby the summary tips would empha-
size the common threads across entities in the set. That motivates our three-step
methodology, outlined in Section 3. In the first step, we transform tip sentences
into a multi-entity graph, modeling sentences in tips as vertices and content simi-
larity as edges. In the second step, in Section 4, we find K quasi-cliques that “tie”
entities together. This is advantageous, because aspects just like subgraphs may
overlap in content, and the graph representation allows us to specify connectivity
constraints that take into account the multi-entity structure. For the third step,
in Section 5, we then synthesize a summary tip from each subgraph of highly
connected sentences capturing a coherent aspect, by selecting sentences from the
subgraph so as to balance representativeness and conciseness.

Contributions. We make the following contributions. First, we introduce the
problem of generating micro-reviews for a collection of entities from the micro-
reviews of the underlying entities within the collection. We formulate this as find-
ing K maximal quasi-cliques in a graph of tip sentences so as to maximize cov-
erage over the multi-entity corpora, followed by synthesizing a new micro-review
via sentence selection within each quasi-clique that is modeled as facility location
problem. Second, we formulate the notion of “multi-entity quasi-clique”, with dual
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density thresholds, for enforcing connectivity constraints within each entity as well
as across each pair of entities. Third, we show that the problem is computationally
intractable, and develop a heuristic algorithm for finding a number of maximal
multi-entity quasi-cliques based on the framework of greedy randomized adaptive
search procedure. We demonstrate the efficacy of our approach against compara-
tive baselines on a Foursquare dataset consisting of 102 restaurants in New York
City (Section 6), involving different collections based on locality and category. Be-
cause we do not rely on specific features that are present only in Foursquare or
in New York City, the proposed technique would generalize to other sources of
micro-reviews for various cities as well.

2 Related Work

In this section, we discuss the related literature, which we broadly categorize into
text mining, graph mining, and review mining.

Text mining. Condensing a body of text (a single document or multiple doc-
uments) into a more compact form is known as summarization. There are several
main methodologies. One is extractive, which selects existing sentences. Two of the
most well-known methods are MEAD [32] and TextRank [24]. MEAD selects text
snippets in an incremental manner, according to a scoring function that takes into
account a snippet’s similarity to the centroid, its position in a document, as well as
the overlap with previously selected snippets. TextRank conducts random walks
on a graph of text snippets, and selects the snippets with the highest stationary
probabilities. [41] is similar, but simultaneously considers both the rankings of
words and sentences. Another methodology is abstractive, exemplified by [12,11],
which generates new sentences from an abstract representation. They construct
a graph of words, incorporating word frequencies, POS tags, and word sequence
within sentences. A summary is generated by selecting paths from this graph. In
experiments (Section 6), we compare to these methodologies as baselines.

In working with multiple text corpora (in our case, one per entity), we fall un-
der multi-corpora text analysis. Previous works are not meant for summarization.
Some are based on topic modeling. [46] models topics with a common component
across the corpora, and a unique component within each corpus. [36] models top-
ics of different granularities: local topics that discriminate between parts within a
document versus global topics that discriminate among documents. Yet others are
focusing on finding contrastive viewpoints [30]. The objective is to align sentences
across documents, either based on similarity [34] or contradiction [16].

Graph mining. Our multi-entity quasi-clique formulation is related to the
problem of finding dense subgraphs in a large graph [38]. There are different ap-
plications of dense subgraph mining, for example, joint mining of protein-protein
interaction data to find frequent cliques of proteins to detect the proteins that
are likely to be functionally related [14], or mining important groups in a network
[4], etc. There are various definitions of dense subgraphs, including based on av-
erage degree or edge density. We adopt the definition of quasi-clique. Given the
generality of quasi-clique, there are various algorithms proposed in the literature,
including local search [5], branch and bound [28], pruning [45,21], mixed integer
programming [29], etc. Our objective is not to enumerate all dense subgraphs in
a graph [39], but rather finding a set of top K dense subgraphs.
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Generally, with regards to multi-entity summarization, there are two limita-
tions of the current graph mining approaches. First, our problem pertains to sum-
marization, which requires a further step beyond dense subgraph discovery. These
approaches would not produce the desired output without further processing. Sec-
ond, our interest is in multi-entity summarization, and therefore our definition of
dense subgraph has a requirement that involves connectivity within and across
entities, whereas these approaches do not have multi-entity consideration. This
motivates our definition of multi-entity quasi-cliques (see Section 4).

Specifically, redundancy-aware maximal cliques or RAMC by Wang et al. [42]
is particularly related. It allows finding the top-K maximal cliques with diversity.
The key difference is our multi-entity consideration with intra- and inter-densities,
whereas RAMC is agnostic about entities and attempts to find dense subgraphs
based on connectivity alone. To investigate the utility of the multi-entity consid-
eration, we consider RAMC as a baseline in Section 6.

Review mining. In focusing on the reviewing feature of LBSNs, we are related
to the broader area of review mining. Previous works address various problems,
such as ranking reviews by quality [22], selecting a small subset of representative
reviews [19,37,18,25], or synthesizing a review [35,26]. The crucial distinction is
their focus on reviews for a single entity, as opposed to our multi-entity scenario.

Other works studying micro-reviews in Foursquare address different purposes.
[6] identifies unexpected micro-reviews for a single venue. [40] predicts which micro-
reviews would be popular (high number of likes). Yet several others focus not on
the reviewing aspect, but rather on other features of Foursquare as a location-based
social network, such as mobility [27], gamification [20] or privacy [31].

3 Overview

In this section we introduce the notation and terminology we use in the paper,
and we provide an overview of the proposed multi-entity summarization system.

Let Ω denote the universal set of all entities of a particular domain (e.g.,
restaurants). Each entity e ∈ Ω is associated with a set of tips Te. In turn, each
tip t ∈ Te is a set of sentences {s1, s2, . . . , s|t|}, each of which is modeled as a bag
of words drawn from a finite universal vocabulary. Without losing generality, here
we adopt Foursquare’s definition for each tip to have a limit of 200 characters.

A multi-entity collection C ⊆ Ω is a subset of entities. Though it may be any
arbitrary set of entities, in practice we expect C to be defined by some meaningful
conceptual boundary. For instance, one type of boundary may be ZIP codes, i.e.,
every ZIP code defines a collection C consisting of entities located within that ZIP
code. Other possible boundaries include cuisine types, dietary preferences, etc. It
follows that C is associated with a multi-entity corpora of tips TC = {Te}e∈C,
which is the union of partitions of the respective corpus of each underlying entity.

Problem: Multi-Entity Summarization. Given a multi-entity collection C
and its corresponding corpora of tips TC, and an integer K, we seek to derive a
summary RC of the content in TC consisting of K summary tips. The tips in RC
are not part of TC, but rather synthesized tips.

The summary RC is meant to describe the collection C as a whole, rather
than the individual entities within C. Therefore, it would not do to proportionally
generate K

|C| tips separately from each Te ∈ TC and stitch them together, as the
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Graph 
Construction

(Tip Sentences)

Quasi-Clique 
Finding

(quasi-cliques)

Micro-Review 
Synthesis

(Summary)

(Multi-Entity Graph)

: the -th tip sentence of entity 

• : inter links
• : intra links

: Amazing pork buns and ramen.
: Try the pork buns!
: Beware, ramen is addictive, 
and also the crab pizza!.

Entity 

: Pork belly sandwich is unreal!
: Get the pork belly sandwich.
: Get the pork buns and miso ramen.
: Best artichoke pizza.
: Must try the CRAB pizza! Entity 

: Get the pork belly 
sandwich. Try the pork 
buns!

: Best artichoke pizza. 
Must try the CRAB 
pizza!

Fig. 1 Multi-Entity Summarization Framework

resulting summary might be either repetitive or incomplete (it is possible that
K � |C|). Rather, the summary RC should represent the common threads among
entities in C that define the inherent characteristic aspects of C. Intuitively, the
summary tips should cut across the different entities, rather than go deep into a
single entity. Hence, we postulate that each tip in RC should capture some aspect
in common among two or more entities in C.

System Overview. Fig. 1 illustrates the proposed multi-entity summarization
framework. It consists of three main steps: The graph construction, the quasi-
clique finding, and micro-review synthesis. The input is a set of tip sentences
from different entities (e.g., restaurants). In the graph construction step, the tip
sentences are transformed into a multi-entity graph where each sentence is a node,
and there are edges between similar sentences (we define multi-entity graph in
Section 4.1). The quasi-clique finding step takes the multi-entity graph as input,
and finds K maximal multi-entity quasi-cliques (as defined in Definition 3). These
quasi-cliques of sentences capture the common aspects across the different entities.
After having the quasi-cliques, the micro-review synthesis step will generate a
summary tip for each quasi-clique based on the tip sentences inside the quasi-
clique. We now describe each step in more detail.

Graph Construction. In the graph construction step, we construct a multi-
entity graph G = (V, E) from the input tip sentences. Let n ≥ 2 be the num-
ber of entities (e.g., restaurants) in the collection C. The set of vertices V =
{V1, V2, ..., Vn} contains n partitions, one for each entity. Let SC denote the set of
sentences in all tips in TC. We view the sentence as the atomic unit of content.
We create a vertex in the set Vi for every unique sentence of the entity ei. Fig. 1
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illustrates this using an example of two entities. tij refers to the jth sentence of
entity ei. In Fig. 1, the vertices in V1 are drawn as hexagons, and the vertices in
V2 are drawn as circles.

The set of edges E of G, can be partitioned into distinct subsets. We denote
by Ei ⊂ E (for i = 1, . . . , n), the subset of edges that connect two vertices in Vi.
We call such edges connecting vertices within a partition: intra-edges. In Fig. 1,
they are drawn as dotted lines. We denote by Eij ⊂ E (for i < j), the subset
of edges that connect one vertex in Vi to another vertex in Vj . We call such
edges connecting vertices across two partitions: inter-edges. In Fig. 1, they are
drawn as solid lines. In this work, we create an edge between two sentences, if the
sentences are textually similar, that is, they use common words to describe the
same aspect or characteristic of the entities. Specifically, we create an edge between
two vertices if their corresponding cosine similarity is above a certain threshold
(we study the appropriate threshold in Section 6). Aside from cosine similarity,
there may be other approaches to determine similarity between sentences, such as
based on semantics or topic modeling [3]. The framework in Fig. 1 is general in that
such semantic-based similarity could be used to augment the graph construction
without much changes to the subsequent steps in our framework.

Quasi-Clique Finding. This step discovers common aspects among entities
in C, by identifying quasi-cliques in the multi-entity graph. Informally, a multi-
entity quasi-clique q is a subgraph of the graph containing nodes from multiple
partitions that are densely connected with both intra and inter edges. The density
of the intra and inter edges is controlled by two parameters α and β. We also
require that the set is maximal, i.e., we cannot grow it into a larger quasi-clique.
We discuss the exact definition of such quasi-clique in Section 4.

The set of nodes in the quasi-clique q corresponds to a set of sentences in SC.
We view this set of sentences as pertaining to some aspect that cuts across the
entities in C (since q contains nodes from at least two entities). We say that q

“covers” a sentence s if s ∈ q. We define the coverage of q as |q|
|SC| . Intuitively, the

larger the coverage of q, the more important an aspect it captures from C.
Given a set of K quasi-cliques Q = {q1, q2, . . . , qK}, we define the coverage of

Q as follows.

Cov(Q) =
|
⋃
q∈Q q|
|SC|

(1)

The goal is to derive a set Q that maximizes Cov(Q). That way, we would
obtain K quasi-cliques, which individually capture important cross-entity aspects,
and collectively represent the content in SC. This has the effect of discouraging
overlap, thus favoring diversity, among the quasi-cliques’s in Q.

At first glance, this is superficially similar to the maximum coverage problem
[7]. However, one crucial distinction is that the covering sets (in our case the q’s)
are not given as input. In fact, they have to be derived from SC. In Section 4, we
discuss how to derive efficiently a set Q that maximizes coverage.

In Fig. 1, we illustrate K = 2 quasi-cliques, one involving the blue vertices
concerning “pork”, and the other involving the red vertices concerning “pizza”.

Micro-Review Synthesis. A quasi-clique q ∈ Q may contain an arbitrarily
large number of sentences, which are not appropriate for use as a summary. The
third step deals with deriving a “summary tip” rq for the set q. rq is a subset of
sentences from q that represents the content of q, while still being concise (≤ 200
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characters)4. The final output is RC = {rq}q∈Q. Fig. 1 illustrates that a summary
tip is synthesized from each identified quasi-clique, resulting in two summary tips:
“Get the pork belly sandwich. Try the pork buns!”, and “Best artichoke pizza.
Must try the CRAB pizza!”.

4 Quasi-Clique Finding

The objective is to discover K quasi-cliques that collectively provide maximum
coverage over the input set of sentences SC associated with an entity collection C.

4.1 Problem

Given a multi-entity graphGC (Section 3), we seek dense subgraphs withinGC. The
densest possible subgraph is a clique, i.e., a completely connected subgraph. This
may be too strict a requirement, as it may exclude slightly weaker connectivity that
still supports a meaningful aspect. For example, two sentences: s1=“Huge wait for
a table.”, and s2=“Crazy long lines!” both concern the waiting time, but do not
share common words (potentially no edge). However, there might be an indirect
connection through another sentence s3 = “Is the line worth the wait... Always.”.
To include s1, s2, and s3 in one dense subgraph, we need to relax the density
constraint. As we expect that different aspects may correspond to subgraphs of
varying sizes, we employ a relative notion of density. In particular, we adopt the
definition of quasi-clique, with a specified minimum relative density of α, as follows.

Definition 1 (Quasi-Clique) For density threshold α ∈ [0, 1], a multi-entity

graph G = (V, E) is a quasi-clique if G is connected and |E| ≥ α
(|V|

2

)
.

The above definition has not taken into account the multi-entity perspective of
our problem. Such quasi-cliques may be overly skewed towards a single partition
Vi with only spurious connections to other partitions.

We seek a quasi-clique that not only has coherence within a partition (sig-
nifying an important aspect to an entity), but also can bring together multiple
partitions (signifying an important aspect of common concern across entities).
Therefore, instead of a single density threshold, we employ two density thresholds:
intra-density α within each partition and inter-density β across partitions. These
thresholds allow specifying the degree of connectivity for each entity, as well as
across entities in the collection.

Since we seek quasi-cliques that connect entities over some common aspect,
every pair of partitions (i.e., entities) should meet the inter-density constraint,
instead of letting a very dense pair of partitions compensate for a much less dense
pair of partitions (which may have lower relevance to the aspect being discussed).

Definition 2 (Multi-Entity Quasi-Clique) For density thresholds α ∈ [0, 1]
and β ∈ [0, 1], a multi-entity graph G = (V, E), with n ≥ 2 partitions, is a multi-
entity quasi-clique if G is connected and:

– for every partition Vi ∈ V, we have |Ei| ≥ α
(|Vi|

2

)
, and

4 We discuss this in Section 5.
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– for every pair of partitions Vi, Vj ∈ V (where i < j), we have |Eij | ≥ β|Vi||Vj |.

Based on this definition, different multi-entity quasi-cliques extracted from the
same GC may involve different numbers of entities (between 2 to |C|).

This notion of multi-entity quasi-clique is also distinct from multipartite quasi-
clique [9]. The latter only has cross-partition density requirements. In some cases,
only sequential partitions, e.g., Vi and Vi+1, are required to be connected.

Because it is not desirable to select an aspect that is subsumed by another
selected aspect, we would consider only maximal multi-entity quasi-cliques.

Definition 3 (Maximal Multi-Entity Quasi-Clique) Given a multi-entity
graph G = (V, E), a subgraph G′ ⊆ G is a maximal multi-entity quasi-clique if G′

is a multi-entity quasi-clique and there does not exist any subgraph G′′ ⊆ G such
that G′′ is a multi-entity quasi-clique and G′ ⊂ G′′.

As each maximal multi-entity quasi-clique models an aspect, we seek a num-
ber of such quasi-cliques that can comprehensively represent the content within
SC. Earlier, we define the notion of coverage in Section 3. If we view a maximal
multi-entity quasi-clique q as a set that “covers” the vertices in it, it follows that
the coverage Cov(QC) of the set QC containing K quasi-cliques is as defined in
Equation 1. We can view this as a variant of maximum coverage problem, whereby
the objective is to select a number of sets that cover as many vertices as possible.

Problem 1 (Maximum Coverage via Multi-Entity Quasi-Cliques) Given
a multi-entity graph GC, density thresholds α, β ∈ [0, 1], and an integer K, find QC
or the set of K maximal multi-entity quasi-cliques in GC to maximize Cov(QC).

Finding the optimal solution to Problem 1 above is computationally intractable.
This can be shown by reducing the Maximum Clique problem to our problem.

Lemma 1 Maximum Coverage via Multi-Entity Quasi-Cliques is NP-hard.

Proof (Sketch) For Maximum Clique, given a graph G, the objective is to find the
clique with the largest number of vertices. We transform G = (V,E) into a multi-
entity graph G′ = (V, E), by including the original vertices V as one partition of
V. In addition, as the multi-entity definition requires at least two partitions, we
create a second partition V ′ with only one dummy vertex that is connected to all
vertices in V . The optimal solution to the Maximum Coverage via Multi-Entity
Quasi-Cliques problem on G′ (with K = 1, α = 1, β = 0) will also be the optimal
solution to the Maximum Clique problem on G after extracting out the dummy
vertex from the resulting clique. Since the latter is known to be NP-hard [5,15],
it follows that the former (the more general case) is also NP-hard.

4.2 Approach

Due to the computational intractability, it is more productive to seek a heuristic
solution. We are inspired by the maximum coverage problem [7], with a well-
accepted greedy algorithm, which incrementally adds the next set that brings
in the largest number of newly covered elements into the solution. One crucial
distinction is that, in our case, the sets are not given in advance. In fact, they are
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the maximal multi-entity quasi-cliques to be discovered from the graph. Instead
of enumerating all maximal quasi-cliques that may still require exponential time
[2], we propose to incrementally find the next maximal multi-entity quasi-clique
that adds as many newly covered vertices as possible into the solution.

Algorithm 1: MMEQC (G,α, β, K)

Algorithm MMEQC(G,α, β,K)
1 Q = ∅
2 for k = 1, 2, . . . ,K do
3 q∗ = findNextMMEQC (G, α, β, Q)
4 Q[k] := q∗

5 end
6 return Q

Procedure findNextMMEQC(G,α, β, Q)
1 q = ∅
2 q = Construct(G, α, β, Q)
3 q = Local(G, q, α, β, Q)
4 return q

Procedure Construct(G, α, β, Q)
1 q = ∅
2 α∗ = 1
3 β∗ = 1
4 q∗ = {(x1, x2)} : initializing with an inter-edge (x1, x2) ∈ G (x1 /∈ Q and/or

x2 /∈ Q), with the highest number of common uncovered neighbors of x1 and x2
5 while TRUE do
6 q := q∗

7 if Nα∗β∗ (q) 6= ∅ then
8 Select x ∈ Nα∗β∗ (q)
9 end

10 else if Nαβ(q) 6= ∅ then
11 Select x ∈ Nαβ(q)
12 end
13 else
14 break
15 end
16 q∗ := q ∪ {x}
17 Set α∗ to be the lowest intra density in q∗

18 Set β∗ to be the lowest inter density in q∗

19 end
20 return q

Procedure Local(G, q, α, β, Q)
1 C = {t | t ∈ q ∧ t ∈ Q} : set of covered tip sentences in q
2 U = {u | u /∈ q ∧ u /∈ Q ∧ ∃v ∈ q : (u, v) ∈ G} : set of uncovered tip sentences in q
3 for each w ∈ C do
4 q′ := q \ {w}
5 for each v ∈ U do
6 if q′ ∪ {v} satisfies α, β requirements then
7 q′ := q′ ∪ {v}
8 end

9 end
10 if q′.size() ≥ q.size() then
11 q := q′

12 ensure that q is maximal

13 end

14 end
15 return q
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Algorithm 1 illustrates this approach, which we call MMEQC, the acronym
of Maximal Multi-Entity Quasi-Clique. It takes as input a multi-entity graph G,
the density thresholds α and β, the number of quasi-cliques to be discovered K.
The output set of cliques Q is initially empty. The loop runs K times, each time
identifying the next maximal multi-entity quasi-clique to be included in Q by
calling findNextMMEQC. We say that a vertex in G is covered if it is found in Q.

findNextMMEQC finds the next maximal multi-entity quasi-clique. One related
work inspiring our approach is [1], which applies the framework of Greedy Ran-
domized Adaptive Search Procedure (GRASP) to the specific problem of finding
the largest maximal quasi-clique in a graph. This framework employs a two-step
approach: Construct that constructs an initial solution using a greedy approach,
followed by Local that conducts local search to find a better solution. However,
our requirement is different from [1]. We are not finding the largest maximal quasi-
clique, but rather the objective is to find as many new vertices to cover as possible.
We also have to deal with the dual constraints α, β due to our multi-entity sce-
nario. These differences require several innovations affecting Construct and Local,
which we will elaborate shortly.

Construct. We now elaborate on Construct, whose pseudocode is shown in
as a procedure in Algorithm 1. First, we initialize q with an inter-edge containing
at least one vertex that is not yet covered. The basic idea is to grow q with as
high intra-density and inter-density as possible (initially α∗ = 1 and β∗ = 1) by
selecting a vertex x from Nα∗β∗(q), the set of vertices adjacent to q whose addition
would still satisfy the intra-density α∗ and the inter-density β∗. Otherwise, we
select x from Nαβ(q) that only seeks to satisfy the lower minimum thresholds α
and β, after which we then update the current α∗ and β∗ to the actual densities
in q. If there is no such vertex, q is already a maximal multi-entity quasi-clique
meeting the specified α and β density thresholds, and the algorithm returns q.

One key component of this procedure is the selection of the next vertex x in
line 8 or line 11. Because the objective is to be able to grow q to bring in as many
newly covered vertices into the solution as possible, the intuition is to pick an
x such that its addition to q would still allow q to keep growing. We associate
q with a quantity called potential, which measures how much denser q is than
the minimum required density. Because there are two types of density, we define
intra-potential and inter-potential separately. The intra-potential for a set q with
n entities is computed as Equation 2, where Vi(q) is the subset of vertices within
q that belong to partition Vi, and Ei(q) is the set of intra-edges among vertices
in Vi(q). In turn, the inter-potential is computed as Equation 3, where Eij(q) is
the set of inter-edges between vertices in Vi(q) and Vj(q). The overall potential
is defined as the sum of the two types of potential, as shown in Equation 4. q
has higher potential if its current density is still sufficiently high enough to allow
adding more vertices without lowering its density below the α and β requirements.

φintra(q) =
n∑
i=1

(
|Ei(q)| − α

(
|Vi(q)|

2

))
(2)

φinter(q) =

n−1∑
i=1

n∑
j=i+1

(|Eij(q)| − β|Vi(q)||Vj(q)|) (3)

φ(q) = φintra(q) + φinter(q) (4)
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Because potential indicates future opportunities for growth, we would select a
vertex x from the set of candidates Nαβ(q) (or Nα∗β∗(q)), whose addition into q
will maximize the gain (or minimize the drop) in potential, especially with respect
to the vertices that are not yet covered. Therefore, we select x that maximizes the
potential difference ∆q,x as shown in Equation 5.

∆q,x =
∑

y∈Nαβ(q)\{x}, y is uncovered

φ(q ∪ {x, y})− φ(q ∪ {y}) (5)

Local Search. After Construct produces an initial solution, we conduct a local
search, to attempt swapping each covered vertex that is already included in the
previous solution Q with one or more uncovered vertices. Because of the changes
in the vertices, we need to ensure that the resulting q would still be a maximal
multi-entity quasi-clique by growing it to its maximal again.

5 Micro-Review Synthesis

We expect the set QC of K maximal multi-entity quasi-cliques obtained through
the process described in Section 4 to capture K salient aspects of a collection of
entities C. However, for presentation purpose, a quasi-clique is not appropriate
due to the potentially large number of sentences (vertices). Therefore, we seek a
representation for human consumption in the form of one “summary tip” (under
200 characters) rq for each quasi-clique q ∈ QC discovered. The output summary
is thus a collection of K summary tips RC = {rq}q∈QC .

We observe that each quasi-clique q tends to contain sentences that pertain to
a coherent aspect, e.g., pork dishes. The respective sentences then may capture
still more specific information, such as different pork dishes, e.g., pork buns, pork
belly, pulled pork. To capture these pertinent sub-aspects, we seek to select a few
representative vertices from each q to make up rq. To do so, we really need to
address two issues: how many sentences should be selected, and which ones. The
more sentences we select, the more detailed and representative a summary tip
becomes. Meanwhile, it also becomes longer and requires higher cognitive load to
read. We therefore need to manage the trade-off between the ability of a summary
tip to represent the vertices in q and its length.

We find an appropriate formulation in terms of Facility Location Problem
(FLP) [8]. Given a set of facilities and a set of customers, FLP seeks to find
a subset of the facilities to open in order to serve all the customers with the lowest
cost possible. There is a cost associated with opening a facility, as well as a cost
for serving a customer from the closest facility. Therefore, FLP seeks to find a
balance between the extremes of opening too many facilities (high opening costs)
versus opening too few facilities (high service costs). In our context, customers
are sentences in q, whereas facilities are candidate sentences for selection into rq.
Therefore, we seek a specific formulation of FLP in our context to balance opening
costs (the overall length rq) versus service costs (the ability of rq to represent q).

We model the opening cost of a facility, i.e., a candidate sentence, to be a
function of the length of the sentence. This is shown in Equation 6, where length(si)
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is the length of a sentence si in characters 5, and λ is a coefficient to regulate the
effect of opening cost. In practice, we find that λ = 0.1 works well in experiments.

open(si) = λ · length(si) (6)

In turn, we model the service cost between a facility si and a potential consumer
sj as a function of the cosine similarity between their corresponding sentences, as
shown in Equation 7. The greater the similarity, the lower is the service cost.

service(si, sj) = 1− cosine(si, sj) (7)

Problem 2 (Micro-Review Synthesis) Given a maximal multi-entity quasi-
clique q and a length limit of γ, select a subset of vertices in q to be the set of
facilities to open rq, so as to minimize the total cost:

∑
si∈rq

open(si) +
∑
sj∈q

( min
si∈rq

service(si, sj))

subject to the constraint
∑
si∈rq length(si) ≤ γ.

Approach. FLP is known to be NP-hard [8]. There are different approaches to
solve the problem [33]. For non-metric distances, there exists a known approxima-
tion algorithm obtained by casting FLP into Minimum Weight Set Cover (MWSC)
as follows. Consider a tip sentence si as a facility, and let Tsi be the set of tip
sentences (i.e., customers) that are served by si (we regard si ∈ Tsi as it could
serve itself). We define a set corresponding to si that “covers” the elements in
Tsi , with weight open(si) +

∑
sj∈Tsi

services(si, sj). The solution to MWSC, i.e.,

the sub-collection of sets that cover all the elements with the minimum total of
weight, also provides the solution for the corresponding instance of FLP.

The greedy algorithm for set cover has a performance guarantee by a factor
of approximately lnn. It may seem at first glance that we need to select from
the enumeration of all the possible sets from the tips in q, which is intractable.
However, [13] shows that, for each si, it is sufficient to consider the pairs (si, T

k
si),

for k = 1, ..., |q|, where T ksi denotes the first k tip sentences sorted by the serving
cost. The process stops when all the tip sentences are covered. We then have a set
of selected facilities rq, and their corresponding partitions of customers.

Empirically, we observe that many times the greedy outcome naturally falls
within the length limit γ. Otherwise, we process the greedy outcome further by
omitting the facility that would result in the smallest increase of cost until the
length falls within γ. This is more advantageous than prematurely terminating the
greedy when γ is breached, as there may be another better facility to be omitted
among those selected by greedy than the one that would have been avoided by
such a premature termination.

5 We are working with micro-reviews. A summary tip mimics a micro-review. By definition,
micro-reviews are limited by character count. For instance, Foursquare defines the limit to be
200 characters. Therefore, we measure sentence length in terms of characters.
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Table 2 Foursquare dataset for 102 restaurants

Min Max Mean StdDev Total
#Tips 51 479 143.0 74.2 14583
#Tip Sentences 79 807 243.8 127.6 24872

Table 3 Datasets Based on Foursquare Entities

#Collections
#Entities in a Collection

Min Max Mean StdDev
ZIP Codes 16 2 21 5.9 4.7
Grids 56 2 12 5.8 2.9
Categories 39 2 22 4.7 3.6

6 Experiments

We describe experiments that evaluate the quality of summaries. A good sum-
mary RC for a multi-entity collection C should be representative of the underlying
content, diverse in capturing content relevant across entities, and coherent.

6.1 Experimental Setup

Dataset. We use the Foursquare data collected by [25]. This data contains the set
of tips of 109 restaurants in New York as of March 2012. We retain 102 restaurants
that have at least 50 tips for our experiments, so as to ensure that every restaurant
has sufficient content for summarization. Table 2 shows the statistics of the number
of tips and sentences, in terms of min, max, mean, standard deviation across
restaurants, as well as the sum total. On average, each restaurant has 143 tips.
As a tip may have multiple sentences, the average restaurant has 243.8 sentences.
The respective maxima are 479 tips and 807 sentences.

In this work, we are dealing not with individual entities, but rather with col-
lections of entities. There are various realistic scenarios whereby users may be
interested to know more about a group of restaurants. For instance, when they are
in a particular locality, they may want to know about restaurants in the neighbour-
hood. Alternatively, they may want to know about restaurants serving a particular
type of food. We base on these scenarios to create three datasets, whereby each
dataset consists of a number of different collections of restaurants.

1. ZIP Codes: The first dataset treats each ZIP code as a locality or neighborhood
of interest. As shown in Table 3, there are 16 ZIP codes with at least two entities
in the dataset. There are between 2 to 21 entities in each collection, with an
average of 5.9 entities per ZIP code-based neighborhood.

2. Grids: As ZIP Codes may correspond to neighborhoods of varying sizes (the
largest has 21 entities), we also consider another dataset based on uniform-sized
localities that tend to cover smaller areas. To derive these neighborhoods, we
first divide the area bounded by the restaurants into 60 x 20 equal-sized grids
of approximately 0.25 mile by 0.25 mile each. Then, we use sliding windows
of 2 x 2 grids to constitute the neighborhoods. Thus each neighborhood is ap-
proximately 0.5 mile by 0.5 mile, and any two adjacent neighborhoods overlap
in half their areas. We retain only neighborhoods with at least two entities,
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and ensure that there are no duplicate neighborhoods (exactly the same set of
entities). Table 3 shows that there are 56 such neighborhoods with between 2
to 12 entities, with an average of 5.8 entities per grid-based neighborhood.

3. Categories: Each restaurant in the corpora is also assigned to one or more
categories. These categories may correspond to cuisine type (e.g., Japanese,
Cuban, Thai), or the type of venue (e.g., bar, cafe). There are 39 categories
with between 2 to 22 entities, with an average of 4.7 entities per category.

Comparative Methods. We evaluate the following comparative methods in
terms of multi-entity summarization. The first three are graph-based approaches.
They produce K dense subgraphs, which are then transformed into summaries by
the micro-review synthesis process described in Section 5. This comparison could
help us understand the efficacies of several varying definitions of dense subgraphs.
The next three methods are text summarization techniques that work directly with
tips, and do not depend on finding dense subgraphs. This comparison helps us to
understand the effectiveness of basing our summary on dense subgraphs.

1. MMEQC : Our proposed method MMEQC stands for Maximal Multi-Entity
Quasi-Clique (see Definition 3). It is a composite of finding quasi-cliques de-
scribed in Section 4, followed by micro-review synthesis described in Section 5.
Our key distinction is modelling quasi-cliques with multi-entity constraints via
the intra-density and inter-density requirements.

2. MQC : We consider a simpler version of our method, by removing the multi-
entity constraints, and base the approach on regular Maximal Quasi Cliques
(MQC) (see Definition 1) with a definition of density that is agnostic to entities.
This is to test the effects due to multi-entity constraints.

3. RAMC : Related to finding dense subgraph, an existing work Redundancy-
Aware Maximal Cliques (RAMC) [42] tries to produce a concise and complete
summary of a set of maximal cliques. The output of RAMC is dependent on
the visibility parameter, τ , which reflects the percentage of coverage that each
maximal clique will be covered by the selected summary. We use the author
implementation6 to find the top K maximal cliques, following the procedure
described in [42] with deterministic setting and global filtering.

4. MEAD : We run extractive summarization MEAD [32] as follows. The tips
from the collection make up a ‘document’. Because the ordering of tips in a
document is not meaningful, the position feature is turned off. MEAD selects
K tips from the document as summary. We use the author implementation7.

5. TextRank : Another extractive method, but based on ranking, is TextRank
[24]. The objects to be ranked are the input tips. TextRank forms a graph
with tips as vertices connected by similarity-based edges, then runs a random
walk algorithm to find the K vertices with the highest stationary probabilities.

6. Opinosis: As a representative of abstractive summarization, we compare to
Opinosis [12], using the author implementation8 with standard settings. Opinosis
first forms a graph with words as vertices from the content in a collection, then
selects the K highest-scoring paths (sentences) as summary.

6 https://github.com/cntswj/clique-summary
7 http://www.summarization.com/mead/
8 http://kavita-ganesan.com/opinosis-summarizer-library
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Graph Construction. As described in Section 4, for an entity collection C,
we construct a graph GC that has sentences as vertices. For an edge to exist,
there should be sufficient similarity between two sentences. We therefore impose
a minimum similarity threshold, which is determined as follows. As ground truth,
we randomly pick 2000 pairs of sentences from our corpora, and manually assign
each pair with a binary label (match vs. non-match). To find the optimal similarity
threshold to approximate this ground truth, we “classify” each pair with similarity
equal or greater than the threshold as a match, and non-match otherwise. We com-
pare these with the ground-truth labels, and compute recall, precision, and their
harmonic mean F-measure for different thresholds. Fig. 2 tracks these metrics. As
expected, as the threshold increases, recall decreases while precision increases. We
do not show the trends beyond cosine threshold 0.1 because essentially the same
trends continue. F-measure finds an optimal balance at 0.02. Subsequently, we use
this threshold to build GC for each collection C. For any comparative method that
involves similarity measure, we use cosine similarity consistently.

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.02 0.04 0.06 0.08 0.1

Cosine Threshold

Recall Precision F-measure

Fig. 2 Graph Construction: Cosine Similarity Threshold

6.2 Evaluating Representativeness, Diversity, and Coherence

We now compare the summary RC generated for a collection of entities C by
MMEQC to those generated by the baselines listed in Section 6.1.

Metrics. As motivated previously, we would like the output summaries to
represent as much information as possible from the collection. Because we are
addressing multi-entity summarization, we would like the summary to contain tips
that are as diverse as possible, in terms of capturing content relevant across the
entities being represented. We would also like each summary tip to be as coherent
as possible. Towards these objectives, we introduce three metrics, as well as an
overall aggregate measure, as follows.

– The first metric is representativeness, i.e., how well a summary RC can capture
the content of the input corpora of sentences SC. Earlier we saw that cosine
similarity of 0.02 is good at signifying shared meaning. Therefore, we say that a
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summary tip r ∈ RC “represents” a sentence s ∈ SC, if the similarity between r
and s is above this threshold. In other words, each summary tip r is associated
with a subset Sr ⊆ SC. We refer to Sr as the set of sentences that are repre-
sented by r. The representativeness of a summary RC is thus defined as the

fraction
|
⋃
r∈RC

Sr|
|SC| . The higher the representativeness, the more information is

captured from SC.
– The second metric is diversity. For each r ∈ Rc, we would like Sr to be di-

verse with respect to the entities. To this end, we use the normalized entropy
H(Sr) = −

∑n
i=1

pi log pi
logn , where pi is the fraction of tip sentences in Sr belong-

ing to entity ei, and n is the number of entities in the collection C. The higher
the entropy H(Sr), the more even the distribution of representation among en-
tities within Sr. The diversity of a summary RC is thus defined as the average
normalized entropy across the summary tips, i.e., 1

K

∑
r∈RC H(Sr).

– The third metric is coherence. We measure coherence in terms of whether
the summary tip r itself contains related sentences, as well as whether the
represented set of sentences Sr contains related sentences. We therefore take
the average of the density within r, and the density within Sr. For the former,
we measure the density of the subgraph in GC induced by the vertices in r.
Note that it is possible for a summary tip r to contain sentences from a single
entity, as long as they are representative of Sr. For the latter, as Sr necessarily
contains sentences from multiple entities, we measure its density as the mean
of the intra-link density and inter-link density of the subgraph induced by Sr.
For a summary RC, we take the average coherence of its constituent summary
tips.

– The three factors of representativeness, diversity, and coherence are all in the
range of 0 to 1. Because we consider all the three factors equally important,
we look for a way to aggregate these factors in a balanced way. Average is
one common measure that considers their contributions equally. Therefore,
for an aggregate measure, we compute an Overall measure as the average of
the representativeness, diversity, and coherence. This Overall measure offers a
summative view of performance.

Some of the graph-based methods require some parameters to be tuned. We
conduct a grid-search of parameter settings and pick the best one for each method
that maximizes its Overall score. For RAMC, following [42], we vary the visibility
parameter τ from 0.5 to 1.0, and discover that the best setting is 0.7 for ZIP Codes,
0.8 for Grids, and 0.5 for Categories. For MQC, we vary α from 0.5 to 1.0, and
discover the best setting to be 0.9 on all datasets. For our method MMEQC, we
consider different pairs of parameter values (α, β), for α ∈ [0.5, 1] and β ∈ [0.5, 1],
and arrive at the following settings: (0.9, 0.9) for ZIP Codes and Grids, and (1,
0.9) for Categories. We use these parameter settings in the following discussion.

Results. Table 4 shows the representativeness, diversity, coherence, and overall
scores of various methods on the ZIP Codes dataset for K = 10. We will vary K
shortly. As shown in Table 4, our method MMEQC and the simplified MQC have
the highest representativeness. The simplified MQC is slightly better, because it
does not face the inter-density constraint. On the other hand, in terms of diversity,
our method MMEQC has the highest diversity among all methods at 0.57 for ZIP
Codes, whereas MQC now has the lowest, implying that MQC tends to discover
summary tips that are overly skewed towards a single entity. In terms of coherence,
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Table 4 ZIP Codes: Representativeness, Diversity, Coherence and Overall scores for K = 10

Representativeness Diversity Coherence Overall
MMEQC 0.45 0.57 0.82 0.61
MQC 0.48 0.37 0.79 0.55
RAMC 0.44 0.40 0.83 0.56
MEAD 0.43 0.47 0.40 0.43
TextRank 0.42 0.42 0.35 0.40
Opinosis 0.34 0.46 0.80 0.53

Table 5 Grids: Representativeness, Diversity, Coherence and Overall scores for K = 10

Representativeness Diversity Coherence Overall
MMEQC 0.46 0.53 0.80 0.60
MQC 0.48 0.40 0.78 0.55
RAMC 0.44 0.38 0.82 0.55
MEAD 0.44 0.48 0.38 0.43
TextRank 0.43 0.42 0.37 0.41
Opinosis 0.34 0.46 0.79 0.53

Table 6 Categories: Representativeness, Diversity, Coherence and Overall scores for K = 10

Representativeness Diversity Coherence Overall
MMEQC 0.51 0.67 0.85 0.68
MQC 0.53 0.58 0.82 0.64
RAMC 0.48 0.56 0.86 0.63
MEAD 0.49 0.63 0.42 0.52
TextRank 0.50 0.62 0.43 0.52
Opinosis 0.39 0.59 0.83 0.60

RAMC is the highest, as it is based on completely connected cliques. However,
MMEQC ’s coherence is very near to RAMC ’s. Considering the Overall scores
(italicized), MMEQC outperforms the other methods. Based on paired samples t-
test, MMEQC ’s outperformance over the other methods is statistically significant
at 0.05 level. This supports the motivation of factoring multi-entity constraints
into MMEQC, which finds summary tips of greater diversity.

The results for Grids and Categories are listed in Table 5, and Table 6 respec-
tively. The trends are essentially the same: the results and the observations echo
those for ZIP Codes.

In Fig. 3, we plot the Overall score for different values ofK ∈ [1, 10]. We observe
that MMEQC consistently outperforms the other baselines (except for K = 1 in
Grids), and the differences become more pronounced for larger K. For very small
K, MMEQC and the baselines tend to discover similar aspects, which might be the
most dominant aspects. However, for larger values of K, MMEQC continually dis-
covers new aspects, while the baselines may still cover aspects redundantly. Thus,
the differences between MMEQC and the baselines are statistically significant (at
0.05 level) for K ≥ 4 for ZIP Codes, K ≥ 3 for Grids, and K ≥ 2 for Categories.

6.3 Evaluation based on Relevance Ranking

In the previous section, evaluation is based on a binary notion of relevance, i.e., a
summary tip either represents or does not represent an input tip. However, there
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Fig. 3 The Overall Scores: Vary the Number of Summary Tips K

may be different degrees of relevance. In this section, we conduct a second set of
evaluations based on relevance ranking. Specifically, we model it as an information
retrieval task. A query is a salient keyword that a user may be interested in with
respect to the collection of entities. For each method, we treat each summary tip
as a ‘document’. Given a query, we rank all the documents (individual summary
tips) from all the comparative methods. A better method is expected to produce
a summary containing tips that rank highly across various queries.

First, we discuss what make good queries. One way is to look into the salient
words in the corpora. One popular notion for a word’s salience within a document
is tf-idf [23]. idf customarily refers to inverse document frequency. Because we
would like to arrive at words salient to each entity, we adapt it to our scenario by
computing tf-irf, where irf refers to inverse restaurant frequency, i.e., the inverse
of the number of restaurants that contain a word. tf in this case is the normalized
term frequency of a word in an entity’s tips. Thus, words with high tf-irf are
important to an entity. Because we are looking for words that are salient to a
collection of entities c, we average the tf-irf values of words across entities in c.
We then keep the top M words, occurring in two entities or more, with the highest
averaged tf-irf values as the M queries. Such keywords are reflective of what are
considered most important among the entities to be summarized.

We now discuss how to measure the performance of a method. For each query,
we rank the summary tips from the six comparative methods by relevance (cosine
similarity). The methods are then ranked from 1 (highest) to 6 (lowest) according
to their respective best-performing summary tip. As the evaluation metric, we
compute the percentile rank of a method as the fraction of methods with the same
relevance score or lower as the method of interest. The highest percentile rank
possible is 1. We average the percentile rank of a method across the M queries.

Fig. 4 shows the percentile ranks of the comparative methods with K = 10, for
varying number of queries M ∈ [10, 100]. Evidently, the proposed method MMEQC
tends to have the highest percentile ranks. The differences between MMEQC and
others are statistically significant (0.05 level) in all cases. This is followed by our
simplified model MQC, and then the baseline RAMC. Interestingly, these three
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Fig. 4 Relevance Ranking with K = 10: Vary the Number of Queries M
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Fig. 5 Relevance Ranking with M = 50: Vary the Number of Summary Tips K

approaches based on dense subgraphs outperform the other baselines based on
text summarization, such as MEAD, TextRank, and Opinosis.

This trend still stands, when we fix M = 50, and vary the number of sum-
mary tips K instead. Fig. 5 shows that MMEQC is still very competitive. The
differences are more pronounced with increasing K, as the performance of various
baselines begin to fall. The differences between MMEQC and others are statisti-
cally significant (0.05 level) in all cases for K ≥ 4, and in a number of cases for
K < 4. As we increase K, MMEQC still manages to generate summary tips that
are relevant across entities. Whereas, for the other baselines, the later summary
tips may be skewed towards a single entity, resulting in lower relevance overall.
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6.4 Evaluating Readability

Readability is difficult to quantify through automatic means. Therefore, we rely on
a simple user study, involving ten human judges who are not involved in this work.
We show the judges the summaries produced by the six comparative methods for
K = 10. Each human judge is asked to give a rating from 1 to 5, with 1 (lowest)
signifying an unreadable piece of text and 5 (highest) signifying a highly readable,
descriptive and easily understandable summary. Because of the heavy cognitive
load of the user study, we conduct this only on ZIP Codes, for the nine collections
of entities with at least five entities each. The judges are blind to which methods
produce which summaries, and the ordering of the summaries is randomized.

Table 7 shows the average readability scores by the human judges as well
as the standard deviations. The first four listed in Table 7, including our method
MMEQC, have average readability scores above 3.5, which we consider to be highly
readable. The differences between the top-four techniques are small, and as the
standard deviation indicates they are within error. Looking at the standard devi-
ations, we observe that the top ranking methods also have the highest standard
deviation, indicating a variance of opinions between the judges for the quality of
the methods. In contrast, the standard deviation for MMEQC is one of the lowest
in the group, implying an agreement between the judges about the high quality
of our method. The last two methods in Table 7 have scores below 3, noticeably
lower than the previous four.

Delving into the results, we postulate that the differences in readability may
be explained in part by the nature of the summarization approach itself, perhaps
more so than the specific efficacy of the respective algorithms.

Two of the approaches, i.e., TextRank and MEAD, are extractive methods,
which select from existing well-formed tips. As expected, their readability scores
are high, because these tips have been put together by a single author.

MMEQC, MQC, and RAMC share the same micro-review synthesis phase. In
this phase, a summary tip is assembled from sentences coming from different tips,
which may have been written by different authors. There is some risk that this
constructive approach may affect readability. Interestingly, the summaries from
MMEQC and MQC are still highly readable, comparable to the extractive sum-
maries above. RAMC may be lower because it is based on completely connected
cliques, which may be too restrictive to yield well-rounded summaries.

The lowest readability score is for the fully abstractive summarization method
Opinosis. This can be explained by the high level of difficulty of producing a
natural language sentence, which is a disadvantage in terms of readability.

Table 7 User Study on Readability

Readability
(Mean ± StDev)

Extractive
TextRank 3.8± 0.6
MEAD 3.6± 0.7

Constructive (Synthesis)
MMEQC 3.6± 0.4
MQC 3.6± 0.4
RAMC 2.9± 0.7

Abstractive Opinosis 2.2± 0.5
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We measure the agreement among the human judges by computing the Pear-
son’s correlation coefficient between each pair of human judges in terms of their
average readability scores for various methods. Understandably, there is some sub-
jectivity that may result in variance among judges. However, in general, there is
positive agreement among judges. In the range of [-1, 1] with -1 indicating total
disagreement and 1 total agreement, the average correlation is 0.3.

A deeper look reveals that a majority group of 7 judges have higher agreement,
with a higher average correlation of 0.5. The other 3 judges disagree with the
majority that results in lower overall correlation. The minority judges tend to
prefer shorter summaries, and as a result they penalize TextRank and MEAD
which have relatively longer summaries. To some extent, this explains the higher
standard deviations for TextRank and MEAD in Table 7.

7 Computational Efficiency

The main focus of this paper is on the effectiveness in discovering summaries that
represent the entities within a given set, which has been discussed extensively in
the previous section. In this section, we turn to a brief discussion on computational
efficiency. In particular, we are interested in two questions. First, as our algorithm
aims to construct a good summary by discovering interesting structures in the
data, we benchmark our algorithm in terms of quality and efficiency against a
black-box optimization approach that tries to directly optimize the quality of the
summary, and we investigate the tradeoff between quality and efficiency. Second,
we study how our algorithm performs, in terms of both effectiveness and efficiency,
as we increase the size of the entity collections, and the number of sentences.

7.1 Benchmarking against a Black-Box Optimization Algorithm

In Section 6, we evaluated the quality of the summaries produced by our approach
with the Overall measure, which is the mean of representativeness, diversity, and
coherence. The intuition is that the structures discovered by our algorithm cor-
respond to summaries with high overall score, and that the algorithm is able to
discover them efficiently. Alternatively, we could consider an algorithm that di-
rectly optimizes the Overall measure, using unlimited amount of time. We now
benchmark our algorithm against a black-box optimization algorithm that opti-
mizes directly the Overall measure. We adopt the Simulated Annealing [17] opti-
mization scheme, which is commonly used in practice, and we study the efficiency-
effectiveness tradeoff.

Simulated Annealing. The desired output are K summary tips, where each
tip consists of several sentences that collectively fall within 200 characters. The
search space encompasses all such summary tips that could be formed by sentences
within the corpus. Simulated annealing proceeds in iterations. It begins with K
random summary tips, each initially containing a sentence. In each iteration, we
create a neighboring solution by adding, swapping, or removing a sentence from
one of the summary tips. At any point, we ensure that a summary tip always has
at least one sentence, and has at most 200 characters. If the neighboring solution is
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better, it replaces the current solution. Otherwise, it may still be accepted accord-
ing to the following acceptance probability: exp(−(E(Rnew)−E(R))/T ), where R
and Rnew are the current and the neighboring solutions respectively, and E(·) is
the energy function, defined as the inverse of the Overall score of the summary. T
is the current “temperature”. Initially, T is high to allow greater exploration and
to escape local optima. Over time, T reduces according to a cooling rate. Once
the energy stops reducing, Simulated Annealing essentially has converged.

Benchmarking. We now compare the effectiveness (Overall measure) and the
running time of MMEQC vs. Simulated Annealing (SA) for K = 10 summary tips
on the three datasets used in Section 6, namely: ZIP Codes, Grids, and Categories.
Table 8 summarizes the Overall scores for all three datasets. First, we discuss the
performance of SA when given the same amount of time that our method takes to
complete. We refer to this as SA-EqualTime. Evidently, SA-EqualTime performs
significantly lower than MMEQC across the datasets, probably because it has not
yet converged. The version of SA that is run to convergence, SA-Converged, tends
to improve in terms of representativeness and diversity, but lags in coherence,
resulting in an Overall measure that is higher than MMEQC ’s. However, as we
will soon see, this comes at a cost in running time.

We now discuss the running times, which are listed in Table 9. First, for Zip
Codes, we look at the average running time across the entity collections in the
dataset. MMEQC completes in about 45s (under a minute), while SA-Converged
takes about 3504s (about an hour). We also show the median, minimum and
maximum running times for SA-Converged, as well as the corresponding times
for MMEQC. These statistics represent approximately two orders of magnitude
increase in running time required by SA-Converged. Similar results can be seen for
the other two datasets as well. If we consider the longest times for each dataset,
SA-Converged takes between 4 to 9 hours, whereas MMEQC requires only 3 to 10
minutes for the same cases.

This benchmarking suggests that MMEQC is relatively efficient in realizing
the gain in effectiveness within a much shorter running time than SA-Converged.
When given unfettered running time, SA-Converged could achieve a higher Overall
measure, but it is infeasible in practice due to the two order-of-magnitude increase
in running time.

For reference, to see if MMEQC would outperform a simpler, and more com-
putationally efficient baseline, we include a comparison to an algorithm based
on “two-level” KMeans. First, at the level of entities, we divide the entities into
clusters based on their bag-of-words representations. For parity, we generate 10
clusters using the KMeans algorithm to compare with MMEQC with 10 summary
tips. Second, at the level of sentences, in order to generate a summary tip for
each cluster, we will further divide the tip sentences in a cluster of entities into
K groups of sentences, again using the KMeans algorithm. Because each sum-
mary tip is restricted to 200 characters, we set the number of sentence groups to
K = 200/Ls, where Ls is the average length in character of the sentences in the
cluster. From each group of sentences, we select the medoid, and combine these
medoids into a summary tip. We repeatedly pick the medoid in the order of de-
scending sizes of sentence groups, while still meeting the length restriction. The
resulting 10 summary tips, one for each cluster of entities, make up the summary.

As shown in Table 8, this approach, referred to as KMeans, has the worst
Overall performance among the algorithms. Because one or more than one entity
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Table 8 Comparison with Simulated Annealing: Overall Scores

ZIP Codes Grids Categories
MMEQC 0.61 0.60 0.68
SA-EqualTime 0.46 0.48 0.55
SA-Converged 0.75 0.75 0.80
KMeans 0.34 0.35 0.42

Table 9 Comparison with Simulated Annealing: Running Time in Seconds

Average Median Min Max

Zip Codes
MMEQC 44.6 4.0 0.03 346.8
SA-Converged 3504.4 1269.3 42.73 18379.5
Kmeans 1.5 0.5 0.08 15.0

Grids
MMEQC 33.9 4.9 0.05 345.2
SA-Converged 2999.0 1640.3 56.56 14825.7
Kmeans 0.8 0.6 0.11 2.7

Categories
MMEQC 44.5 3.6 0.12 625.0
SA-Converged 3927.5 1370.7 51.49 33274.8
Kmeans 0.9 0.4 0.07 13.6

can only be summarized using one summary tip limited to 200 characters, the
summary could not cover many aspects, resulting in low Coverage. For the same
reason, a summary tip tends to cover diverse aspects of that entity, resulting in
low Coherence. While in some instances KMeans may have reasonable Diversity,
in aggregate the Overall scores are significantly lower than MMEQC. Thus the
gain in efficiency achieved by KMeans in Table 9 is at the expense of much lower
Overall scores.

7.2 Scalability

We now explore how the proposed method behaves with respect to different sizes
of entity sets. In order to consider sets of increasing sizes in a natural way, we build
on the concept of grids. Previously, the Grids dataset comprises of small grids of
equal sizes. In this experiment, we begin with a 6×6 grid in the center of the map.
As shown in Table 10, this corresponds to a set of 2 entities involving 466 sentences
(graph vertices). We then systematically enlarge the grid, each time expanding by
one unit in every direction, eventually reaching a 20× 20 grid corresponding to an
area of 5 miles by 5 miles, encompassing 62 entities and 11,885 sentences. Each
subsequent grid is a superset of the preceding grid, and the sizes naturally increase.
We use the same α = 0.9, β = 0.9 settings as the original Grids dataset.

First, we discuss the effectiveness of our algorithm as a function of the input
size. Table 10 shows that for larger grid sizes, representativeness tends to decrease,
which is expected as the same number of summary tips (K = 10) would need to
cover increasingly larger sets of entities. Meanwhile, diversity increases as there are
more entities involved. Coherence generally stays the same, with a slight decrease
to accommodate more varied entities. The Overall score is relatively stable across
grid sizes, suggesting that the algorithms are still effective for larger problem sizes.

We now look at efficiency. Fig. 6 shows how the running time of MMEQC
varies with the number of the input sentences. The number of sentences, which
translates to the number of vertices in the input graph, is a more reflective measure
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Table 10 Increasing Grid Sizes: Effectiveness

GridSize #Sentences #Entities Representativeness Diversity Coherence Overall
6 × 6 466 2 0.64 0.58 0.83 0.68
8 × 8 710 3 0.57 0.36 0.85 0.60

10 × 10 854 4 0.50 0.41 0.81 0.57
12 × 12 2435 10 0.49 0.42 0.82 0.58
14 × 14 4667 22 0.43 0.66 0.72 0.60
16 × 16 8424 41 0.40 0.68 0.77 0.62
18 × 18 10567 54 0.43 0.72 0.77 0.64
20 × 20 11885 62 0.41 0.72 0.78 0.64
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Fig. 6 Increasing Grid Sizes: Running Times in seconds

of the problem size than the number of entities (some entities have few, while
other entities have many sentences). For the largest set involving 11K sentences,
the running time is under four hours. For the typical inputs we considered in
this paper, the average running time is well under a minute (see also Table 9).
Moreover, as shown in Fig. 6 there is an approximately linear trend in the log-log
scale, which suggests that our algorithm scales polynomially with respect to the
size of the input N . For reference, we also include O(N3) trend line in the figure.
We also include the running time of SA-Converged9 on this dataset. Fig. 6 shows
that MMEQC is consistently much faster than SA-Converged across different input
sizes.

8 Conclusion

In this work, we develop an approach for multi-entity summarization, in the con-
text of synthesizing micro-reviews for a collection of entities from the content
associated with the underlying entities. We show that obtaining a summary for
multiple entities requires careful identification of aspects, modeled as maximal

9 For SA-Converged, we include data points that completed within 7 days.
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multi-entity quasi-cliques, drawing common threads across the entities. Experi-
ments on Foursquare data show that our summaries, in the form of micro-reviews,
are more representative, diverse, and readable than the baselines.

There are also some limitations to the approach. Because our intention is to
form a summary for a set of entities collectively, we assume that the entities have
some common aspects. In the case when all entities in a set are completely different,
by enforcing inter-density, our technique may result in few summary tips. Another
limitation is the quality of the output summaries inherently depends on the quality
of the input graph. If edges are accurate and sufficient, the summaries would be
of high quality. If the graph is too noisy or sparse, it may affect the output.

As future work, we are also interested in further exploring other forms of multi-
entity summarization including keyphrase extraction or word clouds.
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33. D. B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for facility location
problems. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing, pages 265–274. ACM, 1997.

34. R. Sipos and T. Joachims. Generating comparative summaries from reviews. In Pro-
ceedings of the 22nd ACM International Conference on Conference on Information &
Knowledge Management, pages 1853–1856. ACM, 2013.

35. H. Sun, A. Morales, and X. Yan. Synthetic review spamming and defense. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1088–1096. ACM, 2013.

36. I. Titov and R. McDonald. Modeling online reviews with multi-grain topic models. In
Proceedings of the 17th International Conference on World Wide Web, pages 111–120.
ACM, 2008.

37. P. Tsaparas, A. Ntoulas, and E. Terzi. Selecting a comprehensive set of reviews. In
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 168–176. ACM, 2011.

38. C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli. Denser than the densest
subgraph: Extracting optimal quasi-cliques with quality guarantees. In Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 104–112. ACM, 2013.



28 Thanh-Son Nguyen et al.

39. T. Uno. An efficient algorithm for solving pseudo clique enumeration problem. Algorith-
mica, 56(1):3–16, 2010.

40. M. Vasconcelos, J. M. Almeida, and M. A. Gonçalves. Predicting the popularity of micro-
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