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Abstract. The success of recommender systems has made them the focus of a massive research
effort in both industry and academia. Recent work has generalized recommendations to suggest
packages of items to single users, or single items to groups of users. However, to the best of our
knowledge, the interesting problem of recommending a package to a group of users (P2G) has
not been studied to date. This is a problem with several practical applications, such as recom-
mending vacation packages to tourist groups, entertainment packages to groups of friends, or sets
of courses to groups of students. In this paper, we formulate the P2G problem, and we propose
probabilistic models that capture the preference of a group towards a package, incorporating fac-
tors such as user impact and package viability. We also investigate the issue of recommendation
fairness. This is a novel consideration that arises in our setting, where we require that no user is
consistently slighted by the item selection in the package. In addition, we study a special case of
the P2G problem, where the recommended items are places and the recommendation should con-
sider the current locations of the users in the group. We present aggregation algorithms for finding
the best packages and compare our suggested models with baseline approaches stemming from
previous work. The results show that our models find packages of high quality which consider all
special requirements of P2G recommendation.

Keywords: Package to group recommendation; Recommender systems; Probabilistic models;
Recommendation fairness

1. Introduction

Consider a group of people who would like to dine at a restaurant and then have drinks
at a nearby bar. Given the potentially numerous options, the group would favor a rec-
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ommendation of a (restaurant, bar) pair, which is consistent with the preferences of its
members and does not make a member unhappy with respect to the rest of the group.

Despite the vast amount of work on recommender systems, to the best of our knowl-
edge, this package-to-group (P2G) recommendation problem has not been studied be-
fore, although there is work on recommending a package of items to a single user (e.g.,
(Deng et al. 2013, Xie et al. 2014, Interdonato et al. 2013)) and recommending a single
item to a group of users (e.g., (Amer-Yahia et al. 2009, Roy et al. 2014)). In addition,
there are studies on helping a group of users to select a bundle of items (e.g., (Stettinger
2014, Stettinger et al. 2015)). However, they assume that the users are given a set of
items and together they decide the items to select, which is a different problem from
P2G recommendation.

Specifically, given a group of usersU , the goal of P2G recommendation is to suggest
one or more packages of items to U , which are suitable for U ’s members. This problem
has several applications beyond the night-out scenario. For example: (i) A tour opera-
tor wants to create a package for a group of tourists, consisting of hotels, restaurants,
attractions and activities; (ii) An academic institution that organizes a summer school
wants to create a curriculum that meets the interests of a group of students; (iii) A movie
channel wants to package together a set of movies to offer to a group of movie-goers,
or a large family.

In line with previous work on package recommendation (Xie et al. 2010, Parameswaran
et al. 2011), we assume the existence of constraints limiting possible item combinations
that can be included in a package. Constraints may be either hard or soft. Hard con-
straints should definitely be satisfied by a set of items in order for it to form a valid
package. Soft constraints express desirable, but not necessary properties for an item set.
In terms of hard constraints, without loss of generality, we focus on the special, but prac-
tical case, where the items are divided into categories, and a valid package is formed by
selecting one item from each category. For instance, in the night-out example, the group
may be interested in a package which includes a restaurant and a bar (i.e., one item from
category “restaurants” and one item from category “bars”); the tourist group visit a city
and they are interested in visiting a museum, dining at a restaurant, and finally resting at
a good hotel; the summer school may consist of courses covering different areas (e.g.,
Theory, Systems); the movie-goers may want to watch a thriller and a comedy. The soft
constraints we consider in the paper are defined based on the relationships between the
items in a package. For example, in a venue-package recommendation problem, a set of
places far from each other is less likely to be selected by a group, compared to a package
of nearby places. In this case, we say that the package is less viable. The assumption
of constraints is not compulsory and is independent of our proposals, as we show in
Sections 3.4 and 7.5. For instance, the category constraint can be easily replaced with
selecting a number of items regardless of their categories, by virtually assuming that all
items belong to a single large category.

Based on the above, we present two probabilistic models for P2G recommendation:
one that first computes the probabilities that the group of users likes individual items,
before deriving the probability that the group would select a package of items, and
one which first forms item packages that are favored by the individual group members
before identifying those that have high likelihood to be selected by the group. Our ex-
perimental results show that the first model is superior because it seamlessly takes into
consideration all special factors of P2G recommendation (e.g., user impact, package vi-
ability). In addition, we design and implement algorithms for the models on a database
of individual user ratings on items. The algorithms efficiently combine items into candi-
date packages for recommendation, while avoiding the exploration of the entire search
space with the help of pruning bounds.
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A unique and novel characteristic of P2G recommendation is that it raises the issue
of fairness. User groups may be heterogeneous, consisting of people with potentially
dissimilar tastes. Thus, for a package I that is overall good for the group (i.e., the aver-
age group member preferences on its items are high), there could be one or more mem-
bers that do not like any of the items in I; these users would be frustrated if I is selected
by the group. In this case, we consider the package to be unfair. On the other hand, if
each group member finds at least one item in the package that she likes, we consider
such a package to be fair. We formalize fairness for P2G recommendation, inspired by
the corresponding concept in fair division of resources (Steinhaus 1948) and adapt our
models accordingly. Note that our fairness definition is very different from that in group
decision making (Stettinger 2014), where it is assumed that the group would do item
selection for multiple times and to be fair, the unsatisfied users will have higher priority
in the next decision. On the contrary, the fairness problem in P2G recommendation is
one time and defined on item basis.

This paper is an extended version of (Qi et al. 2016). In addition to the general P2G
problem, here, we also investigate a special case of it, where the items for recommen-
dation are related to places (e.g., points of interest, venues of events, etc.) and the users
of the group should travel to these places; hence, the recommendation should consider
the locations of items and the current locations of the users in the target group U . For
example, the users in U may currently be at their workplaces which may be different
for each individual group member. If the group U would like to dine at a restaurant
and then have drinks at a bar, the recommended (restaurant, bar) packages to U should
include places that are not too far, otherwise the package is likely to be rejected. We
adapt our P2G recommendation models to comply to this application scenario and test
these adaptations experimentally. Moreover, in this paper, we present extended versions
of the algorithms that implement P2G and prove their correctness.

The contributions of this paper can be summarized as follows:

– This is the first work that formulates and studies P2G recommendation.
– We propose probabilistic models that incorporate factors such as user impact, package

viability, and fairness.
– We consider the application scenario where the the group users have to travel to the

recommended items and include the travel distance in the probabilistic models.
– We design efficient P2G recommendation algorithms that scale for large data.
– We evaluate the effectiveness of our models via experiments on two real datasets.

The rest of the paper is organized as follows. We first formally define P2G recom-
mendation in Section 2. Section 3 presents our two probabilistic models and introduces
package viability. In Section 4, we define fairness and show how it can be integrated
into the models. Section 5 presents the location-based P2G problem and our suggested
solutions for it. In Section 6, we propose algorithms that efficiently implement the pro-
posed P2G recommendation models. Section 7 presents our experimental evaluation.
Related work is reviewed in Section 8 and the paper concludes in Section 9.

2. Problem Statement

We assume a collection I of items and a collection U of users, who express their pref-
erences to items from I through ratings. A rating r(u, i) of user u for item i may be
explicit, i.e., u has used and evaluated item i, or implicit, i.e., predicted by a classic
recommender (e.g., collaborative filtering (Sarwar et al. 2001)).
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Given a group (set)U of users in U , we consider recommending toU a package (set)
I of items in I. Recommended packages must be valid, i.e., have specific properties. In
this paper, we study the case where items belong to categories taken from a set C (e.g.,
C = {restaurant, bar, theater, museum}). Without loss of generality, we assume that each
i ∈ I belongs to a single category ci ∈ C. The group U inputs a query specifying the
set of categories C ⊆ C where the items of the package should be drawn from (e.g.,
C = {bar, restaurant}). For the ease of discussion, we assume that each item belongs to
only one category and a feasible package must contain one item per category (e.g., the
users want to visit one bar and one restaurant). More general problem instances will be
elaborated in Section 3.4.

Formally, a P2G recommendation task takes as input a group of users U ⊆ U , a set
of ratings, and a set of user-specified item categories C ⊆ C, and recommends to U the
k most preferable among all feasible packages. We now present generic probabilistic
models which define the preference of a group U over a package I .

3. Probabilistic Models

Given a target group U and a query input by U specifying category set C, the objective
is to derive the probability distribution Pr(I|U,C) of the group U to select the package
I over C. The probability Pr(I|U,C) obviously depends on the preference of each user
u ∈ U for the individual items i ∈ I . Given a u ∈ U and an item i from a specific
category ci ∈ C, the probability of u independently selecting i in ci can be defined as

Pr(i|u, ci) =
r(u, i)∑

i′∈ci r(u, i
′)

(1)

Here r(u, i) is u’s (explicit or implicit) rating on i. Note that a Pr(i|u, ci) is defined
for every category ci. Intuitively, u is more likely to accept a recommendation i ∈ ci
with higher r(u, i) compared to r(u, i′) for other items i′ ∈ ci. Next, we present two
models for computing Pr(I|U,C) based on Pr(i|u, ci) and other factors, such as the
influence between users in the group, and the likelihood that a set of items are appealing
together as a package.

3.1. Group Rating (GR) Model

In the group rating (GR) model, we first define the probability that the group U will
select an item i. Then we combine the probabilities of individual items, to derive the
likelihood of a package.

Item to Group (I2G) Probability
Given group U and a category ci, the probability of U selecting i ∈ ci is Pr(i|U, ci).
Here Pr(i|U,C) = Pr(i|U, ci), that is, the probability of item i being selected depends
only on its own category and not in the full set of categories C. The above probability
can be computed based solely on the probabilities of the users in U selecting the item
(e.g., see (Gorla et al. 2013)). In our model we adopt the approach in (Liu et al. 2012,
Yuan et al. 2014), where it is assumed that different group members may have different
impact on the group’s decision. In simple words, one or more members of the group,
who could be considered as experts on a category, may influence the group in select-
ing an item in this category. For example, the preference of a group member who is a
“foodie” will count more in selecting a specific restaurant.
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Following this intuition, we model the group selection as a stochastic process where
a user u is first selected as the representative of the group with probability Pr(u|U, ci),
and then the group selects an item according to u’s item distribution. Therefore, we
have:

Pr(i|U, ci) =
∑
u∈U

Pr(u|U, ci) Pr(i|u, ci) (2)

In this work, we assume that the probability Pr(u|U, ci) of a user u ∈ U is proportional
to the activity of the user in category ci, relative to the other members in the group. This
captures the relative expertise of the user in the group for this category, which deter-
mines her influence in the group. Specifically, let ηu,ci denote the number of explicit
ratings user u has given for items in category ci. We have that

Pr(u|U, ci) =
ηu,ci∑

u′∈U ηu′,ci

Note that Equation (2) is general enough to model different scenarios, depending
on the definition of the probability Pr(u|U, ci). For example, we can set Pr(u|U, ci) to
the uniform distribution, where all users influence equally the final selection. Or, we
may assume that user influence is independent of the category as Pr(u|U). In fact, we
also considered an approach similar to that in (Yuan et al. 2014), where we used topic-
modeling to extract the user-topic and item-topic distributions, and then defined the user
influence probability based on the user-item distribution. Experimentally, this approach
gave us similar recommendation results on our test data, because the categorization of
items is correlated to their underlying topics.

Package to Group (P2G) Probability
To derive the probability Pr(I|U,C) of the package I to be selected by the group
U , for the moment we assume that items are selected independently. Therefore, given
Pr(i|U, ci), we have:

Pr(I|U,C) =
∏
i∈I

Pr(i|U, ci) (3)

3.2. User Package (UP) Model

The GR model assumes that items are selected independently, according to the prefer-
ences of a representative user, who is chosen according to her expertise and influence in
the item category. The user package (UP) model reverses the above generative process.
In UP, the group first chooses a representative user u with probability Pr(u|U,C). The
representative user will decide for the whole package. We assume that the representa-
tive user selects each item independently for now, according to her own preferences.
Formally:

Pr(I|U,C) =
∑
u∈U

Pr(u|U,C) Pr(I|u,C)

=
∑
u∈U

{
Pr(u|U,C)

∏
i∈I

Pr(i|u, ci)

}
(4)

Accordingly, once the group has selected a representative u, the selection probability
for the package depends only on u, i.e. Pr(I|u, U) = Pr(I|u). Also, Pr(i|u,C) =
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Table 1. Comparison of GR and UP

u1 u2

X
x1 1 0
x2 0 1

Y
y1 1 0
y2 0 1

Packages GR UP
I1(x1, y1) 1/4 1/2
I2(x1, y2) 1/4 0
I3(x2, y1) 1/4 0
I4(x2, y2) 1/4 1/2

(a) Pr(i|u, ci) (b) Pr(I|U,C)

Pr(i|u, ci) similar to GR. We can again adjust the probability Pr(u|U,C) to model
different scenarios. Different from GR, however, UP considers the user impact on pack-
ages instead of items. Therefore, Pr(u|U,C) is defined based on the influence of u on
all target categories C collectively.

Pr(u|U,C) =

∑
c∈C ηu,c∑

u′∈U
∑

c∈C ηu′,c

where as before ηu,c is the user u’s overall influence on category c.
Essentially, the selection is a two-step process: The package to user (P2U) phase

computes the probability Pr(I|u,C) that user u selects package I , for all users in U ; the
package to group (P2G) phase computes the overall preference probability Pr(I|U,C)
of the group by taking the combination of the user preferences weighted by the user
impact probabilities.

Note that the UP model gives more power to the user selected as representative, since
the package selection disregards other group members. As a result, GR and UP may
produce very different package selection probabilities, even in the case of uniform user
impact probabilities. Consider the example in Table 1(a), where a group of two users
U = {u1, u2} wants to select a package over two categories C = {X,Y }, each having
two items, (x1, x2) and (y1, y2) respectively, with the preference probabilities shown
in the table. Assume that Pr(u1|U) = Pr(u2|U) = 1/2, in all categories. Table 1(b)
shows the probabilities of GR and UP for each possible package.

The example shows that, for the UP model, a package that no user likes as a whole
(I2 and I3) will have very low (zero) probability, while the packages with high proba-
bility are actually favored by a single user (I1 by u1 and I4 by u2). On the other hand,
in the GR model, a package becomes acceptable as long as there is at least one user
that likes some item in the package (e.g., u1 likes x1 and u2 likes y2), balancing the
preferences of the users better.

Overall, the UP model has the following drawbacks: (1) It assumes each user selects
the package as a whole, so that the users’ impact on different categories cannot be
evaluated; (2) For the same reason, a user will never select a low rated item by her,
that is, a user will never compromise for the sake of the group; (3) The top packages
for different users may not overlap, especially for dissimilar users, leaving the group
dissatisfied as a whole. We therefore expect UP to produce worse packages than GR in
practice.

3.3. Package Viability

So far, we have considered only the preferences of the users over individual items, as-
suming independence between items. However, in real-life, some items are more likely
to be selected together than others. For example, a restaurant and a movie theater have
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higher chances to form a preferable package if they are spatially close. Motivated by
this fact, we define the probability Pr(V |I) that a package I is viable as a whole. One
possible evaluation of Pr(V |I) is to consider the pairwise relevance between items in
I .1 Here, V denotes a random variable, which is 1 if the package is viable and 0 other-
wise. The relevance between two items can be derived by a function on their features
(e.g., their spatial distance), or by recorded statistics (e.g., joint probability). Take the
case of recommending a package of places as an example. If we regard the relevance
between any pair of items to be inversely proportional to their distance (measured by a
function dist(.)), we can define Pr(V |I) as:

Pr(V |I) ∝ e−maxi,i′∈I{dist(i,i
′)} (5)

Intuitively, if the maximum distance between any pair of places in a package is large,
the package has low probability to be appealing. There can be other measurements of
Pr(V |I) as well. For example, we can consider the visting order of the items in I , or
relate the viability to traveling time cost instead of distance between items; we can also
define Pr(V |I) based on the historical probability where items in I are selected together
(Zhu et al. 2014). Our models are independent of the specific definition of Pr(V |I)
and for ease of discussion, we use Equation (5) as an exemplary viability definition.
In Section 5, we discuss in detail a practical definition of Pr(V |I) in a location-based
recommendation scenario, where the items for recommendation correspond to places
and we consider both the locations of items and the fact that the users in U have to
travel from their current locations in order to visit the places.

Let us now formalize the probability that a group U will select a package I and the
package is viable. Assuming that viability depends only on the package, we have:

Pr(I, V |U,C) = Pr(V |I, U,C) Pr(I|U,C)

= Pr(V |I) Pr(I|U,C) (6)

In the rest of the paper, both the GR and UP models are augmented with package
viability according to Equation 6.

3.4. Generality

So far we have assumed that (1) each item i belongs to a single category and (2) only
one item is recommended from each category. In a real-life scenario, these assumptions
may be too restrictive. Our models can be easily adapted to apply to more general cases.

Firstly, suppose that an item may belong to multiple categories, e.g., a place is re-
garded both a restaurant and a bar. If the group U accepts a duplicate item serving
different purposes, then the models do not require any adaptation; an item may appear
in the recommended package multiple times, from different categories. If, on the con-
trary, U would not accept any duplicate item in a package, the models can still work
with a minor adaptation that filters out packages containing duplicate items. For exam-
ple, given a package I , its viability probability Pr(V |I) is set to 0 if an item appears
more than once in I .

Next, suppose that the group U is looking for multiple items in one category, or
simply looking for items without any category constraint. Without loss of generality,

1 In general, for a set of n items, the viability can be defined by aggregating their pairwise relevance or by
defining an n-ary function. In this paper, for simplicity and due to the application domain of our case studies
in the experiments, we follow the first approach.
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we assume that U wants to find n items in category ci (or C if U sets no category
constraints). In this case, we virtually replicate ci n times and apply the same models
on categories set C ′ = {c′i1, ..., c′in}. As a result, n items will be selected from category
ci. However, since it becomes possible to select an item from ci multiple times, the
aforementioned filtering method should be applied to avoid selecting duplicate items.
The above strategy also extends to the generic case of recommending arbitrary number
(0 to |ci|) of items from multiple categories. In Section 7.5, we show experimentally the
performance of our models without category constraint.

4. Fairness in Recommendations

Both GR and UP find the top packages without considering which users are the most or
least happy with the items in the packages. For a selected package I , it is possible that a
given user u ∈ U does not like any of the items in I , or that u is the least satisfied user
in U for all items in the package. Therefore, although U as a whole may like package
I , the package selection is not fair to user u. In a real-life scenario, where the users in
the group care for each other’s preferences, we should recommend a package which is
both attractive and fair to the majority of the group members.

For a user u and a package I , we say that I is fair to u, if there exists at least one
item i ∈ I , such that u’s rating on i is ranked in the top-∆% of u’s ratings on all items.
The rationale is that the existence of at least one item in the package for which u has
high rating would make the user tolerant to the existence of other items that she may not
prefer, considering that there are other members in the group who may like these items.
Given the group U and a package I , we denote by Uf ⊆ U the users to whom I is fair.
A fairness measure fair(U, I) is accordingly defined:

fair(U, I) =
|Uf |
|U |

, (7)

meaning that the more users I is fair to, the better I is for U .
Lastly, we define the fairness-aware score of a package as

scorefair(U, I) = Pr(I, V |U,C) · fair(U, I), (8)

i.e., we look for packages that are both highly preferable and fair. Note that the above
equation is applicable to both GR and UP models. It scores a package I based on both
its relevance to the group members U (according to GR or UP), and its fairness to U .
In the rest of the paper, we denote the GR and UP package selection models augmented
with fairness as GR-Fair and UP-Fair, respectively.

Fairness is inspired by the classic fair division problem in Economics (Steinhaus
1948). Fair division splits one or more heterogeneous resources to a number of people
who have different preferences to different parts of the resources, such that everybody
believes that they have a fair share. Our P2G selection problem is reminiscent to fair
division, because every user in the group has different preferences in the items. How-
ever, in P2G, the group members share the items in the suggested package, instead of
the items being divided. Fair allocation of resources has also been studied in the context
of CPU usage scheduling to a number of users that concurrently use a machine (Kay
& Lauder 1988) and in the context of network scheduling, where the objective is to
maximize throughput while ensuring a minimal level of service to all users (Kushner &
Whiting 2004).
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5. Location-based Recommendation

In this section, we study a special case of the P2G problem, where the items for recom-
mendation correspond to places (e.g., points of interest, venues of events, etc.) and the
P2G recommendation should consider the locations of items and the current locations
of the users in U . When making recommendations, we consider the fact that the users in
U must travel to the locations of the items in I . For example, let U be a set of users who
would like to dine at a restaurant and then have drinks at a bar. Assume that the users
are currently at their workplaces which may be different for each u ∈ U . The recom-
mended (restaurant, bar) packages to U should not include items that are too far from
the current locations of the users in U , otherwise there is high chance that the package
is rejected.

Formally, we assume that each u ∈ U has a current location (we overload symbol u
to denote u’s location). In addition, we assume that each candidate item i has a location
(also denoted by the same symbol). We use dist() to denote the spatial distance between
two locations (e.g., dist(u, i) denotes the distance between the locations of user u and
item i). We explore and compare two definitions of package viability with respect to
the current user locations and the item locations. In the first, we change Equation (5) to
model the viability of a package with respect to the locations of U and I as follows:

Pr(V |U, I) ∝ e−maxu∈U,i∈I{dist(u,i)} (9)

The intuition behind Equation (9) is that the probability that a package is appealing
to a group of users is inversely proportional to the maximum distance between any user
in the group and any item in the package. That is, the dissatisfaction of the group would
be low if all items in the package are relatively close to the users of the group.

However, the above definition sets the probability to be relevant only to the maxi-
mum distance between users and items, disregarding the remaining distances. We now
explore an alternative definition of viability, which considers the fact that the users
would first meet at one item (i.e., place) of the package and then visit the remaining
ones as a group. This definition decouples the quality of the package as a function of
the distances between the items in it with the distance between the users and the best
meeting point inside the package. Therefore, Equation (10) extends Equation (5) to also
account for the minimum meeting point distance for any item in I .

Pr(V |U, I) ∝ e−maxi,i′∈I{dist(i,i
′)}−mini∈I{maxu∈U{dist(u,i)}} (10)

The distance between the group U and an item i, assuming that the group members
are going to meet at i is maxu∈U{dist(u, i)}, because the farthest distance from i to any
member in U determines the time to be spent until all members meet. This definition
also encapsulates the fairness between group members in choosing i. By choosing the
best meeting point from the items in I , i.e., the one that minimizes maxu∈U{dist(u, i)},
we get a quantity proportional to the probability thatU likes I , based on the best meeting
point for U in I . Pr(V |I) (as in Equation (5)) is the probability that U likes I based on
only the distances between the items in I (given that the group will travel between these
items). By multiplying the two factors, we get the location-based viability Pr(V |U, I)
of package I for the group U of users. Equation (6) then becomes:

Pr(I, V |U,C) = Pr(V |U, I) Pr(I|U,C) (11)

For the generation of fair P2G recommendations, Equation (11) is used in the scor-
ing Formula 8 for the definition of Pr(I, V |U,C).
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6. Algorithms

Given a group U of users in U , a set of categories C, a database of items I and the user
ratings over the items, our goal is to find the top-k packages that maximize score(U, I)
according to Equation (8), following either model GR or UP. An efficient implementa-
tion is critical because the number of candidate packages is exponential to the number
of categories. We now present efficient branch-and-bound algorithms for ranking pack-
ages based on GR and UP. We also discuss how the algorithms can be adapted for the
location-based P2G recommendation problem presented in Section 5.

6.1. Algorithms for GR

Recall that GR includes two phases: the I2G phase which finds in each category the
probability Pr(i|U, ci) of each item being selected, and the P2G phase which combines
items into packages. The final scoring function (Equation (8)) considers three factors
in the P2G phase, (1) the group preference Pr(i|U, ci) (Equation (2)), (2) the package
viability Pr(V |I) (Equation (6)), and (3) fairness (Equation (8)). As a result, combining
the best items found in the I2G phase into packages does not necessarily lead to the best
packages. We now present two algorithms for GR.

6.1.1. Baseline Algorithm for GR

To implement the GR model, a baseline algorithm (GR-BA) is to firstly calculate the
I2G probability for each item relevant to U , then consider each possible package by
calculating its P2G probability and finally select the top-k packages. One optimization
is that once there are at least k package candidates, a lower bound θ of the current k-th
maximum probability can be calculated, so that for any package I , it can be directly
pruned unless Pr(I, V |U,C) ≥ θ. Based on similar idea, we can further optimize the
algorithm by pruning at the item level even before the package is formed. Assume there
is a partial package Ip = {i1, i2, ...}, ij ∈ cj . For any package I that can potentially be
formed by expanding Ip, the maximum possible probability of I being selected satisfies

Pr(I, V |U,C) ≤ Pr(Ip, V |U,C)

where

Pr(Ip, V |U,C) ≤
∏
i∈Ip

Pr(i|U, ci)

Therefore, if Pr(Ip, V |U,C) < θ, any packages that contain Ip can be directly pruned
before a complete package is constructed. The pseudo-code of GR-BA is presented in
Algorithm 1. However, even with the optimizations, GR-BA does not prioritize differ-
ently rated items and various packages, and thus considers most of the possible pack-
ages.

6.1.2. An Incremental Algorithm for GR

As an alternative to GR-BA, we propose a 2-level incremental algorithm GR-INC,
which prioritizes items and packages with respect to their potential probability of be-
ing selected and computes the I2G and P2G phases concurrently. In particular, the I2G
phase is implemented as an (incremental) top-k selection query (Fagin et al. 2003),
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ALGORITHM 1: Baseline Algorithm for GR (GR-BA)
Input : U , C, k
Output: R

1 min-heap R← ∅, table PU ← ∅, θ =∞
2 for each item i rated by u ∈ U do
3 PU [i] = Pr(i|U, ci)
4 for (partial) package Ip do
5 calculate Pr(Ip, V |U,C) with PU

6 if Pr(Ip, V |U,C) < θ then
7 skip any package containing Ip
8 if Ip is a full package then
9 update R and θ if Pr(Ip, V |U,C) ≥ θ

10 θ = kth largest score in R
11 return R

which generates for each category a list of its items in decreasing probability order of
being selected by the group U , according to Equation (2). The I2G phase takes as input
|U | sorted lists of item ratings, one per user in U ; each list includes only the items in
one of the input categories ci. The P2G phase is implemented as an (incremental) top-k
join query (Ilyas et al. 2003) where viability is considered in the aggregation score of
the joined item combinations. P2G takes as input the items output by the I2G phase
on each category and combines them. Algorithm 2 is a pseudo code of GR-INC, using
Procedure 3 as a module, which implements the I2G phase.

Procedure 3 takes as inputs the group U , a category c, the number of requested items
k, and a reusable max-heapHc, and returns the next top-k items in c that are most likely
to be selected by U . Here Hc is used to store the recommended items ranked by their
probability of being selected. The bounds θi and Ti (Line 1) are used to terminate the
procedure while guaranteeing the next top-k items are found, and ubu (Line 2) records
the upper bound of u selecting an unseen item i ∈ c. In each round (Lines 4-10), GR-
INC-I2G accesses from each u the next rated item i ∈ c in decreasing order (Line 5)
and performs random accesses to retrieve the ratings of i by the other users, in order to
calculate Pr(i|U, c) (Line 6) and update Hc (Line 7). Because the items are accessed
in decreasing order w.r.t. u’s ratings, the last seen item i must have larger probability
than any unseen ones to be selected by u. Therefore, the procedure updates ubu to
be Pr(i|u, c) (Line 8). After the accesses, GR-INC-I2G updates θi (Line 9) and Ti
(Line 10). Note that Ti is calculated based on Equation (2) but instead uses ubu from
each user. Lastly, the procedure terminates when Ti ≤ θi, returning returns the top-k
items as results while removing them from Hc. The following lemma shows that the
termination condition is correct.

Lemma 6.1. GR-Inc-I2G correctly finds the next top-k items when Ti ≤ θi.

Proof. An unseen item i better than the current top-k items must satisfy Pr(i|U, ci) >
θi. For any unseen item i, based on Equation (2),Pr(i|U, ci) =

∑
u∈U{Pr(u|U, ci)Pr(i|u, ci)}.

Because ubu ≥ Pr(i|u, ci), we derive that Pr(i|U, ci) ≤
∑

u∈U{Pr(u|U, ci)×ubu} =
Ti ≤ θi. Therefore, it is impossible to find better items and the lemma holds.

Algorithm 2 takes as input the group U , the category set C, the number of requested
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packages k, and returns the top-k package recommendations R for U . The result set R
is initialized as a min-heap ranked by the score defined in Equation (8) (Line 1). For
each category c ∈ C, it initializes a max-heap Hc to be used by GR-Inc-I2G, a buffer
Bc to record the accessed items in c, and an upper bound ubc of the maximum possible
I2G probability that U selects an unseen item i (Lines 3-5). Similar to Procedure 3, two
bounds θI and TI (Line 6) are used for terminating the algorithm. The algorithm then
follows a rank-join procedure (Line 7-17). In each round, it selects the next category c
to be accessed (Line 8), based on the corner bound (Ilyas et al. 2003) ubc ≥ ubc′ , c

′ 6=
c. GR-INC then calls Procedure 3 to get the next k group recommendation items Lc

(Line 9). For each item i ∈ Lc, i is inserted into the buffer Bc (Line 11) and joined with
buffered items in other categories to form packages (Lines 12-15). Afterwards, ubc is
updated as the I2G probability of the last seen item from c, i.e., minimum one in Lc

(Line 18), θI is updated based onR (Line 15), and TI is calculated based on Equation (3)
using ubc from each c ∈ C (Line 17). Finally, the algorithm terminates when TI ≤ θI
and returns R as the results. In the following, we show that the termination condition of
GR-INC is correct.

Lemma 6.2. GR-INC correctly finds the top-k packages when TI ≤ θI .

Proof. For an unseen package I , in order to be better than the current top-k results,
it must satisfy score(U, I) > θI . For any unseen package I , based on Equation 8,
score(U, I) = Pr(I, V |U,C) × fair(U, I). Based on Equation 6 and Equation 3,
Pr(I, V |U,C) ≤ Pr(I|U,C) =

∏
i∈I Pr(i|U, ci), thus score(U, I) ≤

∏
i∈I Pr(i|U, ci)×

fair(U, I). Because ubc ≥ Pr(i|U, ci) and ubfair ≥ fair(U, I), we derive that
Πi∈IPr(i|U, ci)× fair(U, I) ≤ Πc∈Cubc × ubfair = TI ≤ θI , so that score(U, I) ≤
θI . Therefore, it is impossible to find better packages and the lemma holds.

Figure 1 illustrates an example where there is a groupU with three users u1-u3 look-
ing for recommendations from categories bar cb(b1, ..., b5) and restaurant cr(r1, ..., r5),
assuming that a package I(bi, rj) is always viable (i.e., Pr(V |I) = 1).

For simplicity, in Algorithm 2, we assume that the packages are ranked and selected
in decreasing order of Pr(I, V |U,C) (not score(U, I)). Its adaptation to a GR-Fair
algorithm (i.e., find the top packages considering fairness) is straightforward. GR-Fair
ranks the packages by scorefair(U, I) based on Equation (8) (Line 13) and sets θI as the
kth maximum score in R (Line 16). Based on Equation (8), we can use a tigher bound
TI,fair = Πc∈Cubc · ubfair (replacing Line 17) where ubfair is the maximum fairness
degree of unseen packages. ubfair is initially 1, and is decreased by 1/|U | if a user u
exhausts all her top-∆% items, as in this case none of the unseen items could be fair
to u. Finally, to implement the location-based P2G problem, we define Pr(I, V |U,C)
according to Equation (11), which is based on Equation (9) or (10).

6.2. Algorithms for UP

We can design algorithms for the UP (and UP-Fair) model in a similar manner as for
the GR model.

6.2.1. Baseline Algorithm for UP

The baseline UP-BA algorithm, in the first step, finds for each user u ∈ U the relevant
packages Iu and their probabilities of being selected by u, i.e., Pr(I|u,C). Next, UP-
BA considers all packages from ∪u∈UIu and ranks them using Equation 6.



Recommending Packages with Validity Constraints to Groups of Users 13

(b2, 0.3)

(b4, 0.2)

(b3, 0.2)

(b1, 0.2)

(b5, 0.1)

u1, cb

(b4, 0.4)

(b1, 0.3)

(b3, 0.1)

(b5, 0.1)

(b2, 0.1)

u2, cb

(b3, 0.3)

(b2, 0.3)

(b4, 0.2)

(b1, 0.1)

(b5, 0.1)

u3, cb

(r1, 0.3)

(r2, 0.3)

(r3, 0.2)

(r4, 0.1)

(r5, 0.1)

u1, cr

(r3, 0.3)

(r2, 0.2)

(r5, 0.2)

(r4, 0.2)

(r1, 0.1)

u2, cr

(r2, 0.4)

(r3, 0.3)

(r1, 0.1)

(r4, 0.1)

(r5, 0.1)

u3, cr

(b4, 0.27)

(b2, 0.23)

(b3, 0.20)

(b1, 0.20)

(b5, 0.10)

U, cb

1/3 1/3 1/3

(r2, 0.30)

(r3, 0.27)

(r1, 0.17)

(r5, 0.13)

(r4, 0.13)

U, cr

1/3 1/3 1/3

I2G: 

Top-k query

(Incremental)

(b4, r2, 0.081)

(b4, r3, 0.073)

(b2, r2, 0.069)

...

P2G: 

Top-k join

(Incremental)

Fig. 1. GR-INC

ALGORITHM 2: Incremental Algorithm for GR (GR-INC)
Input : U , C, k
Output: R

1 min-heap R← ∅
2 for each c ∈ C do
3 initialize a max-heap Hc ← ∅
4 initialize a buffer Bc ← ∅
5 ubc =∞
6 θI = −∞, TI =∞
7 while TI > θI do
8 c = select the next category
9 Lc = GR-INC-I2G(U, c, k,Hc)

10 for each item i ∈ Lc do
11 insert i into Bc

12 for each package I with i and items from Bc′ , c
′ 6= c do

13 calculate Pr(I, V |U,C) // Eq. 6
14 insert I into R and pop from R if |R| > k

15 ubc = mini∈Lc
Pr(i|U, ci)

16 θI = kth largest probability in R
17 TI = Πc∈Cubc

18 return R
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PROCEDURE 3: GR-INC-I2G
Input : U , c, k, Hc

Output: Lc, Hc

1 θi = −∞, Ti =∞
2 ubu =∞ for each u ∈ U
3 while Ti > θi do
4 for each u ∈ U do
5 access the next item i ∈ c rated by u
6 calculate Pr(i|U, c) // Eq. 2
7 insert i into Hc

8 ubu = Pr(i|u, c)
9 θi = kth largest I2G probability in Hc

10 Ti =
∑

u∈U{Pr(u|U, c) · ubu} // Eq. 2

11 move the top-k items in Hc to Lc

12 return Lc

6.2.2. Incremental Algorithm for UP

Similar to GR-INC, the UP-INC algorithm also follows a 2-level procedure prioritizing
items and packages w.r.t. their potential probability of being selected by a user or the
group. Hence, the P2U phase of UP is implemented as an (incremental) viability aggre-
gated top-k combination query to gradually access packages being liked by each user.
On top of that, the P2G phase is implemented as an (incremental) top-k selection query
where the packages being liked by the group as a whole are incrementally selected.

Figure 2 presents an example for UP with the same data and setup as in Figure 1.
UP-INC performs top-k join at the bottom P2U level. Take the package recommendation
to u1 as an example, the algorithm incrementally accesses u1’s items from cb and cr,
respectively. It combines the accessed items and first returns the package (b2, r1) as the
top-1 package for u1. The upper I2G level operates as a top-k query over the packages
retrieved from each user. Note that UP-INC returns a different top-1 package (b2, r2)
than GR-INC, due to the difference between the two models.

GR-INC and UP-INC, reduce the complexity in practice by only examining only
a small percentage of the packages for recommendation. However, in the worst case
where the package qualities have very small differences, the algorithms examine the
majority of packages; hence, the worst-case time complexity of the algorithms is the
same as that of an exhaustive algorithm that iterates through all item combinations, i.e.,
O(n

|C|
c ), where nc is the average number of items per category and |C| is the number

of categories in the P2G recommendation problem.

7. Experimental Evaluation

This section evaluates our P2G models and algorithms. Section 7.1 details the setup of
our analysis. Section 7.2 studies the effectiveness of the proposed models. Section 7.3
evaluates the effect of considering fairness in the models and presents a user study.
Finally, Section 7.4 tests the efficiency of our algorithms.
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Fig. 2. UP-INC

7.1. Setup

We use two real datasets: Yelp2 and MovieLens3 in our evaluation. For Yelp, we use as
items venues from the city of Phoenix and consider five categories (restaurants, shop-
ping, beauty & spa, health & medicine, nightlife) with the most venues. Yelp originally
contains about 100K users, 17K places and 476K reviews with a numerical rating. Be-
cause the number of reviews is small, we employ collaborative filtering (CF) (Sarwar
et al. 2001) to get additional review ratings for each user. In particular, we use Mahout4
to build an item-based CF recommender and retrieve for each user u all item ratings
that are not present in the dataset. For the items that are neither explicitly rated by u
in the dataset nor recommended by CF, we set zero as u’s rating. Finally, we end up
having 53M non-zero ratings in total. For MovieLens, we use movies as items from
the five most popular genres (drama, comedy, thriller, romance, action), which contain
about 138K users, 33K movies and 31M reviews. The same CF recommendation pro-
cess results in 51M ratings in total. To prevent bias toward any user, in both datasets,
we normalize the ratings of every user to [0, 1]. Lastly, we use the number of reviews
to model the activity and thus the impact of each user, relatively to the other users in
the group. As we have discussed in Section 3, the impact is calculated in each category
ci ∈ C for GR and in all target categories C for UP. All algorithms were implemented
in C++ and the tests ran on a machine with Intel Core i7-3770 3.40GHz and 16GB main
memory, running Ubuntu Linux.

Table 2 summarizes all parameters involved in our study. In each test, we vary one
parameter, while keeping the others to their default values. Each test computes the top-
10 recommended packages to a random group U of users. We consider two classes of
user groups. Groups in the SIM class consist of users that have similar preferences to
items. Each SIM group is generated by randomly selecting a user and then iteratively

2 http://www.yelp.com/dataset challenge
3 http://grouplens.org/datasets/movielens/
4 http://mahout.apache.org
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Table 2. Parameters in experiments (default values in bold)

description parameter values

Group size |U | 1, 2,3, 4, 5

Number of categories |C| 1, 2,3, 4, 5

Fairness threshold (%) ∆ 1, 5,10, 50, 100

picking the next user as the one for which the item preference vector has the maximum
cosine similarity to the selected users so far. DSIM user groups are generated in the
same way, however, using minimum instead of maximum similarity when selecting the
next user to add to the group.

7.2. Model Evaluation

We study the effectiveness of our proposed GR and UP models, by first focusing on the
basic models where fairness is not considered. In the evaluation, we include a baseline
approach (BASE) which is based on the state-of-the-art group recommendation tech-
nique (COM (Yuan et al. 2014)). For each category c ∈ C, COM is used to select the
best item for U . These items are then combined to form the top package. The 2nd-best
item of each category is then combined with the best items from the other ones to form
additional packages and so on until k packages are computed. BASE aims at maximiz-
ing the preferences of the group to the individual items in the suggested packages. Note
that the original COM model is designed for the scenario where the topics (categories in
our case) are not specified by the group of users and thus need to be inferred from group
or user-topic distributions. BASE adapts the COM model for our problem by limiting
to one topic for recommendation in each category. Still, BASE ignores the possible re-
lationships between items (see Section 3.3); thus, the top items per category selected by
BASE do not necessarily form good packages.

We compare BASE, GR, and UP in terms of package quality using two metrics:
the average group-item rating R(U, I) and the average item distance dist(I). R(U, I),
indicating how much the members of U like the individual items in I , is the average of
group rating ρ(U, i) to each item i ∈ I , weighted by the user impacts:

R(U, I) = avg
∑
i∈I

ρ(U, i) = avg
∑
i∈I

∑
u∈U

Pr(u|U, ci)r(u, i)

The average distance dist(I) = avg
∑

i,i′∈I dist(i, i
′) between the items in the package

I indicates how viable it is for them to be chosen together (i.e., items far from each
other could be a bad choice). For Yelp, dist(i, i′) is the Euclidean distance between the
items (venues). For MovieLens, we define dist(i, i′) = 1 − sim(i, i′), where sim is
the similarity between movies i and i′, calculated via the Movie-Topic matrix extracted
using Latent Dirichlet Allocation (LDA). In this LDA model, we use movie items as
documents and users who have rated a movie as its words. Note thatR(U, I) and dist(I)
are two indicators of package quality, in terms of group rating on items and package
viability, respectively. BASE is expected to generate packages with the best R(U, I),
because it is designed to combine items most liked by the groups regardless of the
relationship among them. A desirable model should have similar R(U, I) to BASE and
at the same time find packages with small dist(I) (i.e., high viability).
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Figure 3 shows the average R(U, I) over the packages recommended by BASE,
GR and UP, respectively, on Yelp and MovieLens. Since each model recommends a set
of top-10 packages, we average R(U, I) (and dist(I)) over all these packages. BASE
performs the best because of its design goal, however GR finds packages of nearly the
same group-item rating. UP, on the other hand, always performs the worst because it
only considers user impact at the package level, failing to address cases where different
users have different impact on the various categories inC. As expected, for SIM groups,
the models perform similarly, as it is easy to find packages where all items satisfy all
group members.

Figure 4 compares the models based on the average distance dist between items.
Since BASE ignores relationships between the items, the packages it selects may con-
tain items that are far from each other and have high dist(I) values. UP fails to find
packages with items close to each other, which are liked by the group as a whole, but
not that much by individual group members (i.e., representatives); hence, its perfor-
mance w.r.t. dist(I) is worse than that of GR. On MovieLens, dist(I) tends to be larger
than on Yelp, because it is harder for two movies to be very similar to each other, com-
pared to finding venues in Yelp that are spatially close. In addition, we observe that the
relative performance among the models is the same regardless of the similarity between
group members (SIM/DSIM). Overall, GR performs the best considering dist(I), while
being only marginally inferior to BASE w.r.t. R(U, I). In the rest of the experiments,
we only show results for the more interesting case of DSIM groups.

7.3. Fairness Evaluation

In this section, we compare the basic GR and UP models presented in Section 3 with
the variations GR-Fair and UP-Fair that consider fairness (see Eq. 8). Our goal is to un-
derstand the tradeoff between quality of recommendation and fairness. Figure 5 shows
the package quality in terms of R, for all three versions of GR and UP. Figure 6 shows
the average fairness degree of the packages; fair(U, I), defined in Eq. 7, with ∆ = 10.
In order to consider a metric of fairness independent of the ones optimized in our algo-
rithms, we also compute the mean highest rank of an item i ∈ I for a user u. Formally,
hrank(U, I) = avgu∈Umini∈I rank(u, i) where rank(u, i) is defined as the rank of
i among all items rated by u in category ci (normalized to (0, 1], the lower the better).
Intuitively, if a user u is happy in at least one category, at least one item will have high
rank. Figure 7 shows hrank for our algorithms.

The first observation from these plots is that introducing fairness to GR reduces the
quality, as it prevents the model from selecting packages of higher quality which are not
fair to some users. Nevertheless, the loss in quality is relatively small. On the other hand,
the gains in fairness are significant: GR-Fair improves both hrank (the lower the better)
and fair. Surprisingly, we observe that the addition of fairness improves the quality of
UP (i.e., UP-Fair performs better than UP). Note that UP is inherently unfair (it has the
worst performance in all fairness metrics – Figures 6 and 7), since it bases the selection
on the preferences of a single user. The introduction of fairness counter-balances the
drawbacks of UP, and forces the selection process to consider better packages.

Figure 8 evaluates the effect of the fairness threshold ∆, which controls the tradeoff
between package quality and fairness. The figure shows the hrank and quality values
(based on Eq. 6) against ∆. For small ∆, an item must be ranked very high by u to make
u happy; on the other hand, if ∆ is large, fairness becomes looser. As expected, with
∆ increasing, quality improves and fairness deteriorates. ∆ = 10 gives a good tradeoff
between the two.
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Fig. 3. Group Rating

We repeated the above tests on MovieLens; the results are consistent with those on
Yelp. In sum, GR-Fair finds packages such that users are more likely to be happy by at
least one item, while not compromising quality compared to GR.

User Study. We also conducted a user study with 30 participants (students) to test
the effectiveness of our models and the importance of fairness. First, we asked each
participant to rate 70 popular movies belonging to 5 different genres (action, animation,
comedy, romance, thriller). The participants were divided into 10 groups of 2-4 users
each. For each group, movie packages with 3-4 genres were generated using BASE,
GR-Fair, and UP-Fair. We also used a RAND model which selects movies randomly
and a least-misery (LM) model that minimizes the maximum compromise a member
makes for the group. We asked each group to assess the created packages by providing
(1) an overall rating (PR) of the package and (2) a characterization of its fairness (PF).
We did not provide any information on how the packages were generated and presented
them to the groups in random order. Figure 9 depicts the average of the PR and PF
values (0–1) given by the users. We also report the R(U, I) and dist(I) values of the
packages as defined in Section 7.2. In terms of PR, the GR-Fair model outperforms
all other models, i.e., it generated the packages that the groups liked the most. This is
consistent with the fairness (PF), where GR-Fair also gives the best result, indicating
that group satisfaction is correlated with fairness. Lastly, the relative values of R(U, I)
and dist(I) are consistent with our experiments on Yelp and MovieLens.
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7.4. Efficiency Evaluation

Finally, we evaluate the efficiency of algorithms GR-BA, GR-INC, UP-BA and UP-INC
that implement GR and UP models (Section 6). In terms of CPU cost, as Figures 10(a)
and 10(b) show, GR-INC outperforms GR-BA by up to an order of magnitude, espe-
cially for large values of |U | or |C|. As opposed to GR-BA, GR-INC accesses and
calculates items/packages in an incremental fashion only when necessary, and stops
once the bounding condition is satisfied. Similarly, UP-INC outperforms UP-BA. Note
that the UP model is more expensive than GR to compute, because UP prioritizes pack-
ages favored by a single user, however, most of these items/packages are not favored
by the other users and do not participate in the results. Package recommendations are
more costly on MovieLens (Figure 10(c)) compared to Yelp. This is again due to the
different item distance distribution between Yelp and MovieLens; on MovieLens, it is
more likely that packages have larger distance and thus lower viability, rendering the
termination condition during package formation harder to hold. Finally, GR-INC and
UP-INC outperform GR-BA and UP-BA, respectively, in terms of accesses to item rat-
ings (Figure 10(d)). Summing up, (1) GR-INC and UP-INC greatly outperform baseline
implementations of GR and UP and (2) GR is not only better than UP in terms of quality
of suggested packages, but also it is much faster to compute.

7.5. The Case of No Category Constraints

As discussed in Section 3.4, our definitions and models are also applicable in the more
general case, where there are no category constraints. Figures 11–13 show the perfor-
mance of our models on the Yelp dataset, for the case where the users specify the de-
sired number of items |I| to be drawn from the general pool of items regardless of their
categories. Observe that the relative performance of the models is similar to that of
the category-constrained case. Specifically, GR-Fair is best at finding packages that are
more likely to satisfy each user by at least one item (i.e., being fair) without compro-
mising quality compared to GR.
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Fig. 13. Fair Models Without Category Constraints: Highest Rank

7.6. Location-based P2G Recommendation

Lastly, we test the effectiveness of our GR-Fair on location-based package to group
recommendation. For this purpose, we conducted a series of experiments, in which we
assume that the users in the target group U are currently in different locations. Using
the Yelp dataset, we set as the default location of each user, the geometric centroid of
the items the user has already rated.5

We compare three versions of GR-Fair: the location-agnostic version, which disre-
gards the locations of the users in U and uses Equation 6; GR-Fair-Max, which con-
siders the maximum distance between any user in U and any item in the recommended
package as a selection criterion (i.e., Equations 11 and 9); and GR-Fair-MinMax, which
considers the best meeting point in the recommended package and package viability
(i.e., Equations 11 and 10).

In the first experiment, we measure the different aspects of the three models as a
function of the recommended package size. As shown in Figures 14 the general trends
agree with those in the previous experiments. The package quality of GR-Fair-Max is

5 Since the user has visited all these restaurants, it is reasonable to assume that his usual location would be
the one that minimizes the average distance to all of them.
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Fig. 14. Location-based P2G: varying |C| on Yelp

slightly inferior to that of the other two models, while the fairness of all three models is
identical. Considering the maximum distance from any user to any item in the package,
as expected GR-Fair-Max achieves the best performance, although the difference to
GR-Fair-MinMax is not significant. As expected, the packages recommended by GR-
Fair-MinMax have the lowest meeting point distance, since this model focuses on that
factor. In terms of runtime cost, GR-Fair-MinMax is cheaper than GR-Fair-Max because
it facilitates the faster termination of GR-INC, however, it is slower than GR-Fair. Recall
that GR-Fair does not consider the distance and hence takes better advantage of the
initial order of the user-item ratings.
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Fig. 15. Location-based P2G: varying |U | on Yelp

Figure 15 tests the three methods as a function of the group size. In terms of maxi-
mum distance and meeting point distance, GR-Fair-Max and GR-Fair-MinMax recom-
mend much better packages than GR-Fair, especially when the group size is small (<3).
Again, each model performs best on the measure it optimizes.

In the last experiment, we tested the effect of the distance between the current loca-
tions of users in U to the quality of the recommendations. In specific, we computed the
geometric centroid c of the original locations of all users and tested different magnifi-
cation factors µ of this distance, by re-locating the users after multiplying their original
distance to the centroid c by µ. For example, if µ = 1, the locations of all users are
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Fig. 16. Location-based P2G: varying |U | on Yelp

the original ones, whereas if µ = 2 the locations of all users are dispersed so that their
distances to the centroid are doubled. Figure 16 shows the quality of recommendations
for different values of µ. Note that the recommendation quality and fairness are not af-
fected by µ. On the other hand, as expected the maximum and meeting point distances
increase with µ, but the relative performance of all three methods is not affected.

In summary, our location-based models (GR-Fair-Max and GR-Fair-MinMax) can
gracefully be integrated in our P2G recommendation framework. Our experiments show
that GR-Fair-MinMax is superior to the simpler GR-Fair-Max model because it achieves
similar performance with respect to the max distance measure but significantly better
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performance with respect to the meeting point distance, which makes more sense in a
real application. Finally GR-Fair-MinMax is cheaper to compute.

8. Related Work

8.1. Package to User Recommendation

One category of previous work deals with recommending a package of items to a sin-
gle user. The recommender by (Xie et al. 2010) finds packages of items that collec-
tively maximize the user’s interest, but whose total cost does not exceed a given budget.
Budget-based package selection, considering diversity and complementarity is studied
in (Amer-Yahia et al. 2014). In (Deng et al. 2013), it is shown that selecting a package
of items is a hard problem because of the larger search space; strict user-defined con-
straints can reduce this complexity (e.g., see the work of (Parameswaran et al. 2011)).
To avoid searching the whole space, Xie et al. (2014) propose a learning process for pre-
dicting the interestingness of packages to users. Interdonato et al. (2013) form packages
for different models under item type compatibility and given contextual constraints, and
then rank them based on the user’s ratings and model/item property preferences. Zhu
et al. (2014) study the problem of recommending packages to a user by maximizing
the expected reward of the packages. The reward expectation of a package depends on
the probability of the user buying all its items together, which can be derived from the
transactions history. Package viability (discussed in Section 3.3) is a generalization of
the reward defined in (Zhu et al. 2014).

8.2. Item to Group Recommendation

Another line of work deals with the recommendation of single items to a group of users.
Some approaches (Jameson & Smyth 2007) combine the ratings of all group members,
in order to derive the ratings of a single artificial representative user for the group; then,
a base recommender is used. Other methods compute recommendations for each group
member separately and then aggregate them (O’Connor et al. 2001). For the compu-
tation of the combined rating, Amer-Yahia et al. (2009) also considers the agreement
between group members. Some recent works (e.g., (Li et al. 2014)) use the social re-
lationships between members to derive group recommendations. Using feedback from
users to improve group recommendation has been studied in (Recio-Garcı́a et al. 2009,
Roy et al. 2014). Gorla et al. (2013) define the probability of a group liking an item,
based on the item’s relevance to each user as an individual. The I2G component of
our GR model (see Section 3.1) is an extension of (Gorla et al. 2013) where we also
consider the impact of each user on the different categories. Liu et al. (2012) propose
a personal impact weighted topic model, where each user has different impact on the
group’s selection of topics and thus items; i.e., the group selection may be more biased
to the preferences of the more influential user.

Yuan et al. (2014) propose an improved consensus model (COM) which differenti-
ates the preference of a user to a topic as an individual or a group member and defines
topic-specific user impacts. Our P2G recommendation problem differs from those stud-
ied in (Liu et al. 2012) and (Yuan et al. 2014); in our case, the group requests recommen-
dations of items from particular categories. Therefore, we use a probabilistic model with
users’ item preference in each category, instead of a topic model with users’ topic and
item distribution, to derive the group preferences. Finally, Yuan et al. (2014) considers
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content information (e.g. venue distance) to improve group recommendation. However,
such information is derived from the user selection history and is used to infer the user’s
historical preference. This is different from our definition of package viability, which
models the potential of a set of items being selected as a package.

In a follow-up work (Serbos et al. 2017) of this paper, we focus on the problem of
fairness in P2G recommendation. Specifically, we model the problem of maximizing
fairness in package recommendations as an NP-hard coverage problem and propose
greedy algorithms that compute approximate solutions within acceptable time. On the
other hand, our focus here is the maximization of package quality in combination with
the satisfaction of fairness.

8.3. Location Recommendation

Our work is also related to the problem of recommending locations, such as points of
interest (POIs), to users. Most of the studies in this direction assume that the users form
a location-based social network (like Foursquare) and use their past check-in records
as well as contextual information such as the semantics of places and social, location,
and temporal information. Some recent works that model and use social influences via
friendship links in POI recommendation are (Wang et al. 2013, Ye et al. 2010). Geo-
graphical influences have been considered in probabilistic recommendation models in
(Liu et al. 2013, Zhang & Chow 2013, Lian et al. 2014, Li et al. 2015). For example,
Rank-GeoFM (Li et al. 2015) is a ranking based geographical factorization method for
POI recommendation. Yuan et al. (2013) proposed time-aware POI recommendation,
where the goal is to recommend activity venues (shopping malls, movie theaters) to a
user, by considering the times and locations of activities, via user-based collaborative
filtering. Semantics have also been considered in location recommendation models (Gao
et al. 2015, Zhang et al. 2015). A recent work (Lu et al. 2017) studies the problem of
group recommendation for location data.

Besides user check-in records, GPS data from mobile services have also been used
as a basis for location recommendation. For example, GPS trajectories were analyzed
in (Zheng et al. 2009), in order to discover POIs as locations where the movements stall
for a long time. Zheng et al. (2010) studied the recommendation of activities based on
their locations and GPS data from the target users.

9. Conclusion

In this paper, we studied the problem of recommending one or more packages of items
to a group of users. We proposed two probabilistic models (GR and UP), both of which
incorporate individual ratings by users to items, user impacts, and package viability. In
addition, we introduced fairness which is a unique but important feature of the P2G
problem. Algorithms were proposed to efficiently implement the two models. Our ex-
periments show that the GR-Fair model finds packages of superior quality in terms of
user satisfaction, package viability, and fairness, compared to baseline approaches and
UP models. In addition, our algorithms GR-INC and UP-INC clearly outperform base-
line implementations. Finally, we showed that GR-Fair can gracefully be adapted for a
location-based P2G recommendation problem, where the current locations of the group
users and their distances to the suggested items are taken into consideration. In the fu-
ture, we plan to study additional classes of P2G problems, e.g., when items are selected
based on soft/hard budget constraints. We also plan to investigate more issues related
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to fair P2G recommendation, for example algorithms that find packages of maximum
fairness.
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