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Abstract—Teams that bring together experts with different
expertise are important for solving complex problems. However,
research shows that teaming up people simply based on their
ability is not enough. Team members need to have clear roles,
and they should mutually endorse and respect their teammates
for the role they assume on the team. In this paper, we define the
MAXMUTUALRESPECT problem, a novel team-formation problem
that asks for a set of experts, each assigned to a distinct role, such
that the total respect that the individuals receive by the rest of the
team members for their assigned role is maximized. We show that
the problem is NP-complete and we consider approximation and
heuristic algorithms. Experiments with real datasets demonstrate
that our problem definitions and algorithms work well in practice
and yield intuitive results.

Index Terms—mutual respect, team formation, graphs

I. INTRODUCTION

Teams that bring together experts with different expertise for
different roles are essential for solving complex problems that
are too hard to be tackled by individuals. However, teaming
up people simply based on their expertise level is not enough.
Articles in research literature [1], [2] and in popular press 1,2
indicate that dynamics between the members of the team are
equally important for the success of the team. In particular,
they support that a successful team requires clearly defined
roles and responsibilities for each team member, and mutual
respect between the team members for their respective roles.

The problem of creating a team of experts while taking into
account the relationships between the team members was first
formulated in [3]. In that work they assume a set of experts,
each associated with a set of skills, organized in a network
capturing their ability to collaborate and communicate. The
goal is to identify a subset of experts that collectively have the
skills for a given task, while they induce a subgraph with low
communication cost. There has been considerable follow-up
work that considers different variants of this problem [4]—[8].

All prior work assumes that the dynamics in the team
are captured by a single undirected graph that represents the
overall compatibility between team members. However, an
equally important aspect in teams is the level of respect each
member enjoys for the specific role assigned to them. Respect
between individuals has distinctive characteristics. First, it
depends on the role. For instance, in the academic domain, an
expert in artificial intelligence may be respected by her peers
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for her abilities in this field, but she may not be (equally)
respected for her abilities in mobile computing, or databases.
Second, respect is a directed relationship. For example, it is not
reasonable to assume that the degree of respect that a graduate
student has for a senior professor is equally reciprocated.
Existing work on team formation does not account for such
role specialized and asymmetric relationships.

Motivated by these considerations we formulate the novel
MAXMUTUALRESPECT problem that asks for a team of
experts, each associated with a distinct role such that the total
respect that these experts receive by the other team members
with respect to their associated role is maximized. In our
setting, we have a set of roles that need to be filled, and every
role is associated with a distinct directed network over the
set of experts that we refer to as the respect graph. An edge
(u,v) in the respect graph of role r denotes that u respects
and endorses v for the role r. Our goal is to create a team of
experts that assigns an expert to each role, such that the in-
coming edges to the designated experts in the corresponding
respect graphs, by their teammates is maximized. We study
the problem theoretically and experimentally, and we make
the following contributions:

o To the best of our knowledge we are the first to for-
mally define and study the novel team-formation problem
MAXMUTUALRESPECT which aims to find a team of
experts that maximizes the total respect.

e We show that MAXMUTUALRESPECT is NP-complete
and design heuristic algorithms for solving it in practice.
For the variant of the problem where each respect graph
is derived from a ranking of the experts, we design a
polynomial algorithm for finding a team with maximum
respect, if such a team exists, as well as approximation
algorithms that rely on the properties of rankings.

o Our experiments on two real case studies demonstrate
that our problem definitions and algorithms perform well
in practice and yield useful and intuitive results.

II. RELATED WORK

Recent studies raise the importance of team formation in
different settings [9], [10]. To the best of our knowledge, we
are the first to introduce the MAXMUTUALRESPECT problem
that takes into account the endorsement that individuals receive
with respect to specific skills required for accomplishing a
specific task. Our work is related to a lot of existing work in



team formation, rank aggregation and endorsement deduction.
Below, we review this work and discuss how it relates to ours.

The importance of trust and respect in teams has been
studied in business literature [1], [2]. Their focus is mainly on
explaining why these are primary factors in team formation.
Our work uses these observations to formally define the
problem of creating a team with high respect.

The team-formation problem defined in [3] is the following:
Given a set of experts organized in a network, where each
individual is associated with a set of skills, identify a subset of
experts that together cover the skills required for completing a
task, while at the same time they induce a subgraph with low
communication cost. Different variants of the problem con-
sider different notions of communication cost [4]—[8], team-
design criteria [11]-[17], or task-arrival process [18]. There are
three key differences between our work and that line of work:
First, prior work assumes that the expert network is undirected,
defined by reciprocal relationships between the experts, while
our model assumes directed relationships. Second, we assume
a different network for each different role. Finally, in prior
work team formation is modeled as a coverage problem, where
the goal is to cover the set of skills for the task, while we have
an assignment problem where the goal is to assign an expert
to each role. These three factors make the problem considered
in this work fundamentally different from existing literature.

The variant of the problem where endorsements come in
the form of a ranking bears some similarity with the rank
aggregation problem [19]-[23]. However, in rank aggregation
the goal is to produce a single consensus ranking from the
input rankings. In our case, the goal is not to create a ranking
of the experts but rather to assign them to specific roles based
on the selected team’s consensus.

Finally, there is work on deducing endorsement relations
in social networks [24], [25]. Here, we assume that the
endorsement graphs are given as inputs. Creating these graphs
is out of the scope of this work.

III. PRELIMINARIES

We are given a set of experts V, and a set of roles S. Every
role i € S is associated with a directed graph G; = (V, E;)
over the set of experts. A directed edge (u,v) € E; denotes
that u respects and endorses v for the role i. We refer to G;
as the respect graph for role 7. Our goal is to create a team
of experts F' C V such that each role is assigned an expert,
and the assigned expert enjoys the respect of as many of the
other members in the team as possible for this role.

To formalize this idea, we define a role assignment as a
function f : S — V, where expert f(i) is assigned to role
i € S. Let FF = f(S) denote the selected team of experts.
We assume that the function f is injective, that is, each team
member can only be used for a single role, and therefore
|F'| = |S|. The respect R;(f) that expert f(i) receives with
respect to her role from the selected team is defined as
Ri(f) = |[{(u, f()) € E; : w € F,u # f(i)}|, that is, the
number of incoming edges in graph G; from the other team

members. The total respect score of the team is defined as the
sum of the respect values over all roles: R(f) = >, g Ri(f).

We can now define the MAXMUTUALRESPECT problem.

Problem I (MAXMUTUALRESPECT): Given a set of roles
S and the corresponding respect graphs G; = (V, E;), i € S,
find an assignment f : S — V, such that R(f) is maximized.

We can prove the following theorem for the complexity of
our problem. The proof of the theorem will be provided in an
extended version of this manuscript.

Theorem 1: The MAXMUTUALRESPECT problem is NP-
complete.

We also consider an interesting special case of the MAX-
MUTUALRESPECT problem where each respect graph G; is
derived from a full ranking of the experts in V. In this case
the input is a set of k rankings P4, ..., P, where k = |S| and
each ranking corresponds to a role, defined as permutations
of the nodes in V. The value P;[v] is the position of node v
in the ranking of role i. Lower value of P;[v] denotes higher
rank. Given a ranking, we assume that an expert respects all
experts above her in the ranking, and is respected by all experts
below her in the ranking. In the corresponding graph G; this
implies that we place an edge (u,v) for all pairs of nodes
such that P;[u] > P;[v]. We refer to this problem variant as
MAXRANKINGRESPECT.

The complexity of MAXRANKINGRESPECT remains un-
resolved. In Section IV we show that there is a polynomial
algorithm for finding the assignment with maximum possible
respect score R(f) = k(k — 1), if such an assignment exists.
This is the case where for each role, the expert assigned to
that role has higher rank than all team members for that role.

IV. ALGORITHMS

In this section, we describe our algorithms for the MAXMU-
TUALRESPECT and the MAXRANKINGRESPECT problems.

A. Algorithms for MAXMUTUALRESPECT

For the MAXMUTUALRESPECT problem we consider a
greedy algorithm, which assigns a score to every role-expert
pair, and at each step it selects the assignment with the highest
updated score value. We refer to the algorithm as Greedy.

The algorithm initially computes for each role-expert pair
(i,v) the score value:

. _ 1
s(i,v) = degg, (v) + =1 Z degérj (v), (1)
JESTj#i

where degg, (v) and deggi (v) denote the in-degree and out-
degree of expert v in the respect graph G;, respectively. High
in-degree in graph (G; means that node v is highly respected
for role 7, while high average out-degree for the remaining
roles means that node v has on average high respect for the
other experts in the other roles.

First, Greedy selects the role-expert assignment pair with
the highest score. It then proceeds iteratively, where, given
the partial assignment F' the algorithm computes a new value
for each unassigned role-expert pair (7, v) as follows:
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where f(j) = () denotes an unassigned role, and G[F] denotes
the induced subgraph of the set F' C V. Intuitively, a pair
(i,v) receives high score if node v has a lot of incoming
edges (respect) from the assigned nodes in F' for role ¢, it has
a lot of outgoing edges (respect) to the nodes of the assigned
roles, and has high average respect for the unassigned nodes
in the unassigned roles. The terms in the above values are
normalized to be in the same scale, and we use dictionaries
to efficiently update them in each iteration. This iterative
selection step continues until all roles have been assigned
an expert.The running time of Greedy is O(k?n). Note that
Greedy makes local decisions by considering exhaustively
all the available valid assignments and selecting the locally
optimal one. However, as we see in Section V this may lead
the algorithm to get stuck in local optima. To overcome this
limitation we propose a randomized variant of Greedy that we
denote as RandGreedy.

RandGreedy follows the same score computations as
Greedy, but instead of selecting the (¢,v) pair that maximizes
the score, it first selects a role i € S : f(i) = () uniformly
at random, and then selects the assignment pair (i,v) that
maximizes the score. We repeat the algorithm ¢ times and we
report the assignment with the highest score. The running time
of RandGreedy is O(¢kn).

B. Algorithms for MAXRANKINGRESPECT

For the MAXRANKINGRESPECT problem, we first present
the MaxScore algorithm that finds an assignment with maxi-
mum possible respect score R(f) = k(k—1), if such a solution
exists. The outline of the algorithm is shown in Algorithm 1.

The algorithm maintains a dictionary F' that stores which
experts have been assigned to which roles, and a set D that
maintains experts that are ineligible for assignment. MaxScore
proceeds iteratively and repeats the following steps in each
iteration. It picks uniformly at random an unassigned role
r €S : f(r) = 0, and traverses the full ranking of r in a
top-down order. For each encountered expert v we have the
following cases: (i) If v has never been encountered before
it assigns it to role r, f(r) = v and continues with another
unassigned role; (ii) If v € F and it is assigned to some
other role 4, it cancels this assignment, setting f(¢) = (), and
adds v to D thus rendering the expert ineligible for any future
assignment. It then continues traversing the ranking P, of role
r; (i) If v € D it ignores v and continues traversing the
ranking P,. The algorithm terminates when either of the two
following conditions is satisfied: (i) Assignment F' contains
k experts, one for each role; (ii) All rankings are traversed
without finding an assignment F' and the algorithm returns
the empty set. The running time of MaxScore is O(kn).

Algorithm 1 The MaxScore algorithm.

Input: Set S of k roles, rankings { P4, ..., Pi} with n experts.
Output: Assignment F'.

L F—{}; D+ {}C<+{1,...,1}

2: while |F| < k and 3 € S : C[i] # n do

3: 1 < pick an unassigned role s.t. C[r] #n

4. for j € {C[r],...,n} do

5 Clr]+j

6: v < the j-th expert in P,
7 ifve F: F[{] =v then
8 FlO)«0

9: D+ DU {’U}

10: else if v ¢ D then

11 Flr] < v

12: break

13: end if

14:  end for
15: end while

17: return F

Lemma 1: Algorithm MaxScore returns a non-empty assign-
ment f if and only if there exists an assignment with maximum
score k(k —1).

Due to space limitations the proof of Lemma 1 will be
provided in an extended version of this paper.

The MaxScore algorithm will return the assignment with
maximum score if such exists, but returns no solution other-
wise. It remains an open question if there exists a polynomial-
time algorithm that can find the optimal assignment. We
consider an approximation algorithm for this case.

Furthermore, we propose the TopCandidates algorithm
which works as follows. The algorithm considers the roles in
a random order. For each role r it assigns the expert highest
in the ranking P, that has not already been assigned. We
repeat the algorithm ¢ times and report the assignment with
the highest score. The running time complexity is O(¢kn).

Lemma 2: Algorithm TopCandidates is a %-approximation
algorithm for the MAXRANKINGRESPECT problem.

a) Proof [Sketch]:: When the algorithm considers the i-
th role in the worst case it will create ¢ — 1 respect violations.
Therefore, the total number of respect violations of the pro-
duced assignment f is at most k(k — 1)/2, and the respect
score R(f) > k(k—1)—k(k—1)/2 =k(k—1)/2. Since the
optimal assignment has score at most k(k — 1) the assignment
fisa %—approximation solution. |

We also propose the AllCandidates algorithm, an extension
of TopCandidates that exhaustively makes each possible role-
expert pair (i,v) € S x V as a first assignment. After the first
assignment, it proceeds in the same manner as TopCandidates
each time selecting to assign to a role the highest ranked
node that has not been assigned. From all the candidate
assignments it returns the one assignment with the highest
respect score. Since the assignment of TopCandidates is one



Team 1 Team 2 Team 3 Team 4 Team 5 Team 6
# Experts 68.9k 31.7k 95.9k 37.5k 56.7k 90.8k
# Roles 4 4 8 4 4 8
Avg. End./Role 728.7k 44.2k 659.5k 373.7k 586.4k 527.4k
Avg. End./Expert 42.25 55.85 55 39.82 41.33 46.46
Max End./Expert 2.6k 775 2.6k 920 1.88k 1.9k
# Overlap. Experts 13k 15.1k 37.3k 10.2k 4.6k 11.6k

TABLE I: A summary of the Citations dataset statistics; # Experts: Number of experts; # Roles: Number of roles to be fulfilled;
Avg. End./Role: Average in-degree of the respect graphs; Avg. End./Expert: Average in-degree of all experts; Max End./Expert:
Maximum in-degree of all experts; # Overlap. Experts: Number of experts encountered in all the respect graphs.

of the assignments considered by AllCandidates, it follows
that AllCandidates is also a %-approximation algorithm for
the problem. The running time complexity is O(£k?n?).

V. EXPERIMENTS

This section explores the practicality of our algorithms.
Specifically, (i) we evaluate the performance of our algorithms
on real-world datasets, (ii) we provide a runtime analysis.

For all randomized algorithms and experiments we set the
parameter ¢ (the maximum number of iterations) to 50. For
all our experiments we use a single process implementation
of the algorithms on a 64-bit MacBook Pro with an Intel Core
i7 CPU at 2.6GHz and 16GB RAM. We make the code, the
datasets and the chosen parameters available online .

A. Results for MAXMUTUALRESPECT

For the MAXMUTUALRESPECT problem we will experi-
ment with the algorithms Greedy and RandGreedy presented
in Section IV. For the latter, we also report the average and
standard deviation score it achieves (denoted as AvgRand-
Greedy in the plots). We also compare against a baseline
Ranking that sorts the experts in each role according to their
score s(v,4), and then runs TopCandidates, selecting the top
candidates in each position. This corresponds to a greedy
algorithm that computes the scores once, and then assigns the
candidates with the highest score. We perform ¢ different runs
(different order in role selection), and report the solution with
the maximum score. The running time complexity of Ranking
is O(knlogn+ ¢kn). Finally, in our experiments Max denotes
the maximum possible respect score that can be achieved even
though a solution with such score might not exists.

1) Citation networks: We study the MAXMUTUALRE-
SPECT problem on real data generated from academic citation
networks. In this setting, the experts are scientists, and the
roles correspond to scientific fields. The respect graph is
formed by citations: author v respects author w in scientific
field ¢, if author uw has a paper in field ¢, and author v has a
publication that cites that paper.

More precisely, we consider the following scientific fields
in Computer Science: Artificial Intelligence (Al), Neural Net-
works (NN), Natural Language Processing (NLP), Robotics,
Data Mining (DM), Algorithms, Data Bases (DB), Theory,
Signal Processing (SP), Computer Networking (CN), Informa-
tion Retrieval (IR), Wireless Networks and Mobile Comput-
ing (Wireless), Software Engineering (SE), High-Performance

3https://github.com/smnikolakaki/teammutualrespect
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Fig. 1: Respect Score (R) of the algorithms for the MAX-
MUTUALRESPECT problem (left) and the MAXRANKINGRE-
SPECT problem (right).

Computing (HPC), Distributed and Parallel Computing (DPC),
Operating Systems (OS). Using a publicly available resource*
we find the top-tier conferences for each field. We then use the
DBLP dataset® to extract the set of publications and authors
that belong to these top-tier conferences, and create the citation
networks for the different fields. To reduce noise we removed
all self-loops from the graphs, and iteratively pruned authors
with less than 5 incoming and outgoing citations.

We consider six possible teams: (1) Team 1 is an Al &
Applications team with scientists from AI, NN, NLP, and
Robotics; (2) Team 2 is a Data & Algorithms team with
scientists from DM, Algorithms, DB, and Theory; (3) Team 3
has scientists from the fields of Teams 1 and 2; (4) Team 4 is
a Systems team with scientists from SE, HPC, DPC, and OS;
(5) Team 5 is a Networks team with scientists from SP, CN,
IR, and Wireless; (6) Team 6 has scientists from the fields of
Teams 5 and 6. Table I exhibits some statistics on the datasets.

Figure la shows the performance of the Greedy, Rand-
Greedy, Ranking and AvgRandGreedy algorithms for the dif-
ferent teams. The results show that RandGreedy outperforms
Greedy, while Ranking performs poorly on all tasks. In the
cases of Team 1 and Team 2, RandGreedy is able to find
teams of maximum score. Interestingly, the performance of
AvgRandGreedy is closer to the one of Greedy, and for Team
2 it performs slightly better. This indicates that, in this dataset,
Greedy is more easily trapped in local optima. Furthermore,
we see that as the number of candidate experts grows (Teams
3 and 6) the performance differences between Greedy and
RandGreedy are more pronounced. This is because Greedy

“https://dl.acm.org/ccs/ces_flat.cfm
Shttps://aminer.org/citation



Al NN NLP Robotics DM Algorithms DB Theory
Top J.Lafferty G.Hinton E.Hovy V.Kumar C.Aggarwal A.Goldberg R.Agrawal M.Szegedy
Teaml | L.Zettlemoyer D.Koller C.Manning ANg - - - -
Team2 - - - - A.Tomkins D.Sivakumar R.Kumar S. Muthukrishnan
Team3 R.Mooney M.Jordan | A.McCallum D.Fox 1.Dhillon W.Wang Q.Yang Y. Freund
SE HPC DPC OS SP CN IR Wireless
Top G.Rothermel I.Foster L.Ni M.Kaashoek | G.Giannakis D.Towsley C.Buckley J.Polastre
Team4 R.Gupta P.Balaji A.Vishnu D.Panda - - - -
Team5 - - - - Z.Han S.Zhong B.Li ‘W.Trappe
Team6 M.Li J.Wu X.Li B.Li Z.Yang Y.Liu Z.Li Y.Wang

TABLE II: Teams produced by RandGreedy on different subsets of scientific fields. Top denotes the scientists with the highest
number of citations in the corresponding field. A dash in a column denotes that this role was not requested for the team.

gets trapped in local optima, while RandGreedy is able to
avoid them through random selections.

We demonstrate the quality of our results in Table II
where we present the experts selected by RandGreedy for the
different teams. For calibration, we also present the scientists
with the highest number of citations in each field (Rows 2
and 7 denoted as Top). We observe that in all experiments
the produced teams contain acclaimed researchers who cite
and acknowledge the contributions of their peers in different
fields. However, none of the teams contains the most cited
author in any of the fields. Also, the assigned scientists for
Team 3 differ from those assigned in Teams 1 & 2 even though
the set of roles required by Team 3 is a superset of those in
Teams 1 & 2. Furthermore, in Team 2, the algorithm selects A.
Tomkins for DM, D. Sivakumar for Algorithms, R. Kumar for
DB, and S. Muthukrishnan for Theory. The first three authors
have worked a lot in these fields and they have heavily cited
each other, while S. Muthukrishnan is a well-known theorist
who has also publications in DB and DM venues.

B. Results for MAXRANKINGRESPECT

In this section, we evaluate the algorithms for the
MAXRANKINGRESPECT problem.

1) NBA Statistics: We evaluate the algorithms MAXRANK-
INGRESPECT using the NBA dataset®. The dataset contains in-
dividual basketball player statistics for different NBA seasons.
We use data for the seasons 2010 - 2017, and the following
subset of 11 performance metrics that we consider important in
assembling a basketball team: STL, AST, FT, BLK, FG, TRB,
2P, 3P, DBPM, OBPM, VORP. We refer the reader to ’ for
the description of these attributes. These performance metrics
correspond to roles in our setting. We prune the set of players
so as to keep the ones that have played in at least one third of
the games of the season, and have played at least 15 minutes
per game. In the resulting data we have the following number
of players in each year; 2010: 278 players; 2011: 289 players;
2012: 286 players; 2013: 291 players; 2014: 294 players; 2015:
319 players; 2016: 299 players; 2017: 310 players. We create
the ranking for each performance metric by sorting the players
in decreasing order of the metric value.

Figure 1b shows the performance of AllCandidates and Top-
Candidates. Note that for all seasons a solution with maximum

Shttps://www.kaggle.com/drgilermo/nba-players-stats
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Fig. 2: Runtime performance of the algorithms for the MAX-
MUTUALRESPECT problem (left) and the MAXRANKINGRE-
SPECT problem (right).

respect score exists and was found by MaxScore. We observe
that AllCandidates which always finding a maximum respect
score solution, performs slightly better than TopCandidates.
Table III shows indicatively the results of the three al-
gorithms for the seasons 2010 and 2016. Interestingly, the
TopCandidates algorithm, which does not achieve the max-
imum score, selects many players such as Lebron James, R.
Westbook, or Stephen Curry, that are at the top, or close to
the top of their corresponding ranking. These players are also
at the top of other role rankings as well, and thus do not have
sufficient respect for the player that finally occupy this role (a
common phenomenon with star players in team sports).

C. Runtime analysis

We now investigate the runtime efficiency of all our algo-
rithms. We report the running times of the algorithms on the
datasets Citations and NBA for the MAXMUTUALRESPECT
and the MAXRANKINGRESPECT problems, respectively. All
times are averaged over 5 runs and are reported in seconds.

The results for MAXMUTUALRESPECT using the Citations
dataset are shown in Figure 2a. We compare the runtime per-
formances of Greedy, RandGreedy and Ranking. We observe
that the algorithms Greedy and Ranking are very efficient.
In fact, their execution times are less than a minute which
renders them very scalable. RandGreedy appears to be slower
than the other two algorithms. We noticed that for one iteration
of RandGreedy (¢ = 1) its corresponding asymptotic runtime
complexity becomes O(kn) and its running time becomes
comparable to that of Greedy. Note, however, that even though
for smaller values of ¢ RandGreedy is faster, its performance
is also more likely to drop.



Season 2010

Season 2016

MaxScore AllCandidat TopCandidat. MaxScore AllCandidat TopCandidati
STL R.Rondo R.Rondo R.Rondo R.Rubio R.Rubio R.Westbrook
AST S.Nash S.Nash S.Nash R.Rondo R.Rondo R.Rondo
FT C.Anthony C.Anthony D.Nowitzki D.DeRozan D.Gallinari J.Harden
BLK A.Bogut S.Battier A.Bogut H.Whiteside R.Gobert H.Whiteside
FG K.Bryant K.Bryant K.Durant C.J.McCollum E.Fournier K.Durant
TRB Z.Randolph Z.Randolph D.Howard A.Drummond K.Love A.Drummond
2P A.Stoudemire D.Lee A.Stoudemire K.A. Towns B.Griffin L.James
3p A.Brooks A.Brooks A.Brooks D.Lillard J.R.Smith K.Thompson
DBPM M.Camby T.Ratliff M.Camby A.Bogut A.Bogut A.Bogut
OBPM M.Ginobili M.Ginobili D.Wade C.Paul M.Conley S.Curry
VORP J.Smith J.Kidd L.James K.Lowry N.Jokic K.Lowry

TABLE III: Teams

of basketball players for the seasons 2010 (left) and 2016 (right). Column 1 represents the team roles. Each

of the columns 2-7 represent a different team found by the corresponding algorithm.

The results for MAXRANKINGRESPECT using the NBA
dataset are shown in Figure 2b. In Figure 2b we compare
the performances of MaxScore, AllCandidates and TopCandi-
dates. Note that we only report the running time of AllCan-
didates which does not exceed 20 seconds, but we omit the
running times of MaxScore and TopCandidates because these
are less than a millisecond. Here, we see that the asymptotic
running time complexities agree with the algorithms’ perfor-
mances; MaxScore and TopCandidates are highly efficient
while AllCandidates is the slowest of the three algorithms.

VI. CONCLUSION

We introduced the novel problem of creating teams of
experts associated with distinct roles such that the total respect
that these experts receive by the other team members with
respect to their associated role is maximized. We showed
that the problem is NP-hard to solve and designed heuristic
algorithms for solving it in practice. For the variant of the
problem where respect graphs are derived from rankings, we
design a polynomial algorithm for finding a team with maxi-
mum respect, if such a team exists, as well as approximation
algorithms that rely on the properties of the rankings. Our
experiments with real-world datasets demonstrate the utility of
our algorithms in practice. For future work, we are interested
in studying the weighted version of our problem.
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