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Abstract

A queueing network is a set of interconnected servers. Customers are injected continu-
ously in the system, inducing some workload for each server. A fundamental issue that arises
in this context is that of stability: will the total workload in the system remain bounded
over time? In this thesis, we investigate the question of stability within the model defined
in [BKR*96], where workload is induced by an adversary. Prior work in the adversarial
model considers only packet routing networks, a special case of queueing networks, where all
customers require unit service time. We extend this model to include more general queueing
networks, where the customers may require different service times at different servers of the
network. We show that the queueing policies proven to be universally stable for packet rout-
ing networks, are universally stable in the new adversarial model as well. Unlike the packet
routing networks, we prove that in the new model, the unidirectional ring is not universally
stable. Furthermore, we define four new queueing policies for the new model, which depend
upon the service times of the customers, and we examine their stability. Finally, following
the outline in [BKSW96], we provide a detailed proof that the Nearest-To-Go queueing

policy can become unstable when workload is injected at arbitrarily small constant rate.
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Chapter 1

Introduction

1.1 The Problem

Queueing networks are important models of complex systems, such as packet routing net-
works, manufacturing systems, and time shared computer systems. In this work we analyze
the behavior of queueing networks where customers are continuously injected into the sys-
tem. Each customer induces some workload in the network. A crucial question arising in
this context is that of stability — will the total workload in the system remain bounded
as the system runs for an arbitrarily long period of time? The answer to this question typi-
cally depends on the rate at which workload is injected into the system and the queueing

policy that is used at the nodes of the network.

A queueing network is a set of interconnected servers. We assume that each server
is associated with a single queue of infinite size, and each queue is serviced by a single
server. Customers arrive at the servers of the network. When the service of some customer
at some server is completed the customer moves to another server or it exits the system.
If more than one customer wishes to be serviced at some server S, the queueing policy
chooses one of the customers to be serviced next; the remainder of these customers wait
in the queue of server S. A queueing policy is work-conserving if a server is never idle
whenever there is at least one customer in the queue of the server. A queueing policy is
called non-preemptive if the service of some customer at some server is never interrupted

until it is completed.

In general, a queueing network is characterized by the following parameters.
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The process that injects the customers in the network.
e The routing of the customers in the network.

The service times of the customers at the servers.

The queueing policy.

It is obvious that if the rate at which workload arrives at some server is greater than the
rate at which the workload is serviced at that server, then the system becomes unstable.
A natural condition for stability, referred to as the rate condition, is that the rate at
which workload is induced at any server is strictly less than the service rate of the server.
Intuitively, it seems that the rate condition should be sufficient for stability of any queueing
network. This is true for many systems [Kle75, Kel79], but it is not true in all cases
[LK91, RS92, DW96, Bra94a, Bra94b, Sei94]. The question of necessary and sufficient
conditions for stability is one of the most interesting questions in the area of queueing
networks.

Queueing networks are the object of study of queueing theory. Typical assumptions
in queueing theory are that the customers are injected according to a time invariant dis-
tribution (often a Poisson process), and that the service time of a customer, or customer
type at some server is a random variable following a time invariant distribution ( often an
exponential distribution). In this thesis we work within a model proposed by Borodin et
al. [BKR196], in which probabilistic assumptions are replaced by worst-case inputs. The
underlying goal is to determine whether it is feasible to prove stability results even when
customers are injected by an adversary, rather than a randomized process; the adversary
determines the route of the customers in the system and the service time they receive at
each server. For systems that are not stable, we seek to establish instability within the

weakest possible adversarial model.

1.2 Adversarial Queueing Theory

Adversarial Queueing Theory was introduced by Borodin et al. [BKR*96], for the study of
packet routing networks. A packet routing network is a special case of a queueing network
where packets (i.e. customers) move on the edges (i.e. servers) of a directed graph. All

packets take unit time to cross any edge in the network. Any packet routing network
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can be easily transformed into a queueing network, simply by transforming edges into
servers. The resulting queueing network is stable, if and only if the packet routing network
is stable. However the converse does not hold; there exist queueing networks that can not

be transformed into packet routing networks.

In the adversarial model the packets are injected by an adversary, rather than some
independent randomized process. The model considers time evolution in the system as a
game between an adversary and a queueing policy. Time proceeds in discrete steps. In each
time step, the adversary injects a set of packets at some nodes; for each packet it specifies a
path of edges that it must traverse, after which the packet is absorbed. A queueing policy
is said to be stable against an adversary if the total number of packets in the system is
bounded over time.

A crucial parameter of the adversary is the rate. In [BKR*96] a request by the adversary
is defined to be a set of packets requesting edge-disjoint paths; in their terminology an
adversary injects at rate r, if for all £, no more than [rt] requests are made in any interval
of ¢t steps. We call this model the adversarial path-packing model. A more general
model was suggested in [BKR196], and was fully developed in [AAFT96], in which the rate
of the adversary is specified by a pair (w,r), where w is a natural number, and 0 < r < 1.
The requirement of the adversary is the following: of the packets that the adversary injects
in any interval of w steps at most |rw] can have paths that contain any one edge. We will
refer to this model as the adversarial packet routing model.

In [AAFT96] a universally stable queueing policy is defined as a queueing policy
that is stable against any adversary of rate less than 1, on every network. A universally
stable graph is defined as a graph G, such that every queueing policy is stable against
every adversary of rate less than 1 on G.

Borodin et al. [BKR'96] showed that directed acyclic graphs (DAGs) are universally
stable in the adversarial packet routing model. In [AAF*96] the unidirectional ring is shown
to be universally stable in the same model. Furthermore, Andrews et al., prove that in this
model the queueing policies Furthest-To-Go (FTG), Longest-In-System (LIS) and
Shortest-In-System (SIS) are universally stable. The SIS queueing policy gives prece-
dence to the customer most recently injected in the network; the LIS queueing policy gives
precedence to the customer injected the earliest in the network; the FTG queueing policy

gives precedence to the customer whose distance to its destination is maximal. However, two
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of these queueing policies (FTG and SIS) can require queues of exponential size in the size
of the network, while for LIS the best known upper bound on the queue size is also exponen-
tial. Andrews et al., show that there is a distributed randomized protocol with a polynomial
bound on the queue size, with high probability. On the negative side, they present instabil-
ity examples for the queueing policies First-In-First-Out (FIFO), Last-In-First-Out
(LIFO) and Nearest-To-Go (NTG). The NTG queueing policy gives precedence to the
packet whose distance to its destination is minimal. They prove that these protocols can

be unstable on commonly used networks, including arrays and hypercubes.

1.3 Our results

The model presented in [BKRT96, AAF*96] is directed to the study of packet routing
networks, where customers require unit service times. In this thesis we define a broader
class of adversaries that models general queueing networks. This model was first suggested
in [BKR*96]. In the new model the adversary injects customers that may require different
service times at each server along their path. The rate of an adversary in our work will be
specified by a pair (w, p), where w is any number and 0 < g < 1. The requirement on the
adversary is the following: the total service requirement that the adversary induces at any
server, in any interval of w units of time is at most pw. We will refer to this new model as
the adversarial queueing model.

The general adversarial model allows for some new queueing policies that depend upon

the service requirements of the customers. We consider the following queueing policies:

e Most-Time-To-Go (MTTG) : The MTTG queueing policy gives precedence to the

customer whose remaining service time in the system is maximal.

e Least-Time-To-Go (LTTG): The LTTG queueing policy gives precedence to the

customer whose remaining service time in the system is minimal.

e Most-Service-Demand (MSD): The MSD queueing policy gives precedence to
the customer that requires the maximum service time at a given server among those

queued for that server.

e Least-Service-Demand (LSD): The LSD queueing policy gives precedence to the

customer that requires the minimum service time at a given server among those that
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are queued at that server.

We will prove that the queueing policies F'TG, LIS and SIS remain universally stable
in the adversarial queueing model. Furthermore, the queueing policy MTTG is universally
stable against a restricted class of adversaries, where the service requirements of any cus-
tomer injected by the adversary, at any server, are bounded from below. If we allow the
adversary to inject customers that require arbitrarily small service times at some servers,
then we will show that MTTG can be made unstable. The new model, and in particular
the stability results, can be motivated by packet routing networks, where packets can have
different sizes, and therefore take different times to cross an edge, or the edges themselves
can transmit at different rates.

In the adversarial queueing model the unidirectional ring is not universally stable. We
will show that there are simple queueing policies, such as NTG, MSD, LTTG and FIFO,
for which there is an adversary of rate less than 1, that causes them to become unstable on
the ring. This implies that any non-acyclic network, with a big enough cycle can be made
unstable.

So far our focus has been on adversaries that inject customers at some rate less than
1. It is interesting to study the behavior of queueing policies against adversaries with arbi-
trarily small injection rate. A recent result of Borodin, Kleinberg, Sudan and Williamson
[BKSWO96] indicates that NTG can be unstable against adversaries of arbitrary small pos-
itive rates. We present a detailed proof of the instability of NTG on a packet routing
network, when packets are injected at constant rate. The adversary determines only the
initial configuration of the system. Depending on the size of the network the injection rate
can become arbitrarily small. The instability example answers negatively an open question
raised in [AAFT96]: is there some rate for which any queuing policy is universally stable?

The rest of the thesis is organized as follows. In Chapter 2 we present a short review
of some relevant results in queueing theory. In Chapter 3 we introduce the new adversarial
model, and present proofs of the stability and instability results. In Chapter 4 we present
the proof of instability of NTG against an weaker “adversary” of arbitrarily small rate. The
thesis concludes in Chapter 5 with a summary of the results and a discussion of some open

problems.



Chapter 2

Previous Work

2.1 Classical Queueing Theory

Queueing theory is a well developed subject of fundamental importance to computer sci-
ence, providing the mathematical foundation and the main analytical tools for performance
evaluation of computer systems. In this section we give a short review of some basic results
and sketch some of the most recent advances in the area of queueing theory. A more detailed

survey can be found in [Ana96].

We begin by outlining some of the basic definitions and techniques (see, for example,
the texts of Kelly [Kel79] and Kleinrock [Kle75]). Typically, in queueing theory a system
is viewed as a Markov process in which the “state” of the system changes whenever there
is an injection or a service completion. Here the state of the network is a vector describing
the state of each server; the state of a server describes the customers currently waiting for
service as well as the customer(s) being serviced and the remaining time of such service. We
say that the queueing network is stable if this Markov process has a stationary distribution

and call this the equilibrium state.

Many different models have been proposed for the study of queueing networks. Depend-
ing on the kind of customers that are injected in the system, we distinguish two classes of

networks: single-class networks and multiclass networks.
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2.1.1 Single-class networks

In single-class networks all customers that visit a particular server of the network are essen-
tially indistinguishable. All customers receive the same service and follow the same routing
scheme. Single-class networks can also be called station-centered networks, since the ser-
vice times and the routing variables are associated with the servers, and they are handed

out to customers as they are picked for service [BI'94].

The model of single-class networks was first introduced by Jackson [Jac63]. A Jackson
network consists of J interconnected servers. The outside world is conventionally indexed
as server (. The arrivals of customers from the external world to a server are all generated by
an independent Poisson process. An arriving customer is routed to server j with probability
Poj, with Z}{;l po; = 1, where it is queued in FIFO order. The service time required
by a customer at server j is exponentially distributed with mean p;. Service times are
independent and identically distributed and independent of other parameters. When the
service of a customer at server j is completed, the customer moves to sever k with probability
Pjk, or it leaves the system with probability p;o, where Zi:o pjr = 1. Consider now the n-th
customer at server j. The server to which this customer is routed next is a random variable
rj(n). Thus, we can view routing at server j as a random process r; = {r;(n), n > 1}
indexed by the customer number. The process r; is independent and identically distributed
and independent of the arrival process and the service times. This routing mechanism is
often called Bernoulli routing. It is also referred to as Markovian routing, since the next

server that a customer moves to depends only on the server at which it is currently serviced.

If the rate condition is satisfied, Jackson networks have a product form solution: the
equilibrium state of the network is the product of the equilibrium states of the individual
servers. Product form solutions can be derived for such networks with queueing policies

other than FIFO, as long as the queueing policy is work conserving.

Consider now a direct generalization of the Jackson network, where the assumptions of
Poisson arrivals and exponentially distributed service times are replaced by general inter-
arrival and service time distributions. These networks are classed as generalized Jackson
networks. The problem of determining the stability of generalized Jackson networks turned
out to be more difficult to resolve. Satisfactory solutions have been obtained only recently

by Borovkov [Bor86], Foss [Fos89, Fos91], Meyn and Down [MD94], Chang et al. [CTK94],
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Baccelli and Foss [BF94, BFM96] and Dai [Dai95] for various assumptions on the arrival
process and the service times. In particular, systems with Bernoulli routing and independent
identically distributed inter-arrival and service times, are shown to be stable for any work-
conserving, non-preemptive queueing policy. Some additional constraints may be required
for the inter-arrival times. Typically it is assumed that the inter-arrival times are bounded
and spread out. Baccelli and Foss [BF94] prove that if the routing at every server is a
random sequence that is stationary and ergodic [BF94], and the arrival process and the
service times are also stationary and ergodic, then the system is stable under any work-

conserving, non-preemptive queueing policy.

2.1.2 Multiclass networks

In multiclass networks, customers that arrive at some server belong to different classes.
The routing and possibly the service time of the customers at a server vary depending on
the class of the customer. This model allows for more general routing schemes. Multiclass
networks can also be called customer-centered networks since the routing variables and
the service times are associated with the individual customers [BI'94].

The multiclass model was introduced independently by Kelly [Kel75] and Basket et al.
[BCMPT75]. We first present the model described in [Kel75]. A Kelly network consists of
J servers and [ different types of customers. Customers of type ¢ are injected by a Poisson

process of rate v(i) and pass through the predefined sequence of servers

r(i,1),7(%,2),...,r(, N;),

and then exit the network. The class of a customer is defined as the type of the customer
and the stage along its route that this customer has reached. Each customer requires an
amount of service time at each server that is exponentially distributed with unit mean. The
service of customers at any server j is defined by a set of rules. These rules are general
enough to model common queueing policies such as FIFO, LIFO and Processor Sharing
(PS). However, they can not model queueing policies that distinguish between customers of
different classes. Kelly proved that this class of networks is stable under the rate condition,
and it has a product form solution.

Another class of stable networks described in [Kel75, Kel79] is the following. The cus-
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tomers are still injected by a Poisson process. The service time required by a customer
at any server follows a distribution, that may be other than exponential, and may depend
upon the class of the customer. Under the rate condition, this class of networks is stable,
under LIFO and PS queueing policies, and has a product form solution.

A related model was introduced independently by Basket et al [BCMP75]. There are J
servers and [ classes of customers. Customers are injected by a Poisson process with arrival
rate dependent on the state of the system. An arriving customer enters at server ¢ in class
r with a fixed probability ¢;.. A customer of class r that completes its service at server ¢
will next require service at server j in class s with a certain probability F;,.; . Basket et
al., proved that under the rate condition the following classes of networks are stable and

have a product form solution.

e The queueing policy is FIFO and all customers have exponentially distributed service

times at each server.

e The queueing policy is LIFO or PS. Each class of customers may have a distinct service
time distribution. The service time distributions have a rational Laplace transforma-

tion.

BCMP and Kelly networks assume Poisson arrivals and impose restrictions on the service
times and the queueing policy. The question of stability of multiclass networks for general
queueing policies, under generalized distributional assumptions on the arrivals and the
service times has only been considered recently. Lu and Kumar [LK91] consider a special
class of networks called “re-entrant lines” [Kum93]. 1In this model all customers are of
the same type; they enter the system at the same server and follow the same route. The
distinctive feature is that customers may revisit the same server more than once with
different service requirements at each visit. The arrival process follows the leaky-bucket
model introduced by Cruz [Cru9la, Cru91b]. The arrivals of customers are deterministic:

during any interval of time [s, ] the number of customers that arrive in the system is

A(t—S) +7,

where A is the arrival rate, and v is a constant that allows for some burstiness in the

arrivals. Lu and Kumar prove that the queueing policies First-Buffer-First-Serve (FBFS)
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and Last-Buffer-First-Serve (LBFS) are stable. FBFS gives priority to the customers that
are in the earliest stage of their route, while LBE'S gives priority to the customers that are
in the latest stage of their route. These queueing policies are equivalent to the FTG and
NTG queueing policies we defined for general networks.

Lu and Kumar also consider a generalization of the re-entrant lines, where there are
more than one type of customer. They prove that in this setting some variations of FBIF'S
and LBFS are stable.

Rybko and Stolyar [RS92] consider a two server network with two types of customers
moving in opposite directions. They prove that the system with Poisson arrivals and arbi-
trary service times is stable under FIFO queueing policy. Their analysis, using fluid models,
inspired the work of Dai [Dai95], where fluid models are used to prove the stability of more
general networks. In [Dai95] inter-arrival and service times are independent and identically
distributed. The inter-arrival times are assumed to be unbounded and spread out. The
fluid model of a queueing network is a solution to a set of equations that model the network
dynamics. Dai [Dai95] proves that a queueing discipline is stable if the corresponding fluid
model is stable. It remains a major open question if the converse also holds. Using fluid
models Dai and Weiss [DW96] prove that FBES and LBES are stable for any re-entrant
line. Furthermore, the unidirectional ring of servers is stable under any work-conserving
queueing policy.

Recent results by Bramson [Bra96] use the fluid model defined by Dai to prove the
stability of multiclass networks under general distributions on the inter-arrival and service
times. Bramson considers networks where the service time of a customer at a server depends
on the server and not on the class of the customer that is being serviced. These networks are
termed in [Bra96] as generalized Kelly networks. He proves that under the assumptions
of the fluid model for inter-arrival and service times the system is stable under FIFO and

PS queueing policies.

2.1.3 Instabilities in multiclass networks

For a very long time it seemed plausible that the rate condition could be sufficient for
stability of general networks. This belief was recently shattered by a series of instability
examples. We now briefly sketch the genesis of these examples.

Consider a two server network, with servers S; and S3. There are two buffers at each
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server; By and B4 in Sy, and By and Bs in Sy. Let mq, mg, m3, and m4 be the service times
required by any customer at each buffer. We assume that every server works at rate 1.
There is a single type of customers in the system that follows the sequence By, By, Bs, By.
Customers arrive at constant rate; one customer arrives at each time step. Kumar and
Seidman [KS90] consider the special case of a manufacturing system. In this model a server
services some buffer until this buffer empties out. If at that time the other buffer is not
empty, the server switches to that buffer. They proved that in this model the above network

can become unstable if mq +my4 > 1.

Building on this example, Lu and Kumar [LK91] considered a queueing policy that
imposes the following priority rules for which buffer the server will serve: buffer By has
priority over buffer By at server 51, and buffer By has priority over buffer B3 at server S;.
They proved that if mqy = m3 = 0 and my = my = % the system becomes unstable. Dai
and Weiss [DW96] proved that the corresponding fluid network is unstable, if and only if
mgy + my4 > 1, under the assumptions of the fluid model for the inter-arrival and service
times. This is a strong indication that the queueing network is unstable under the same
conditions. It remains an interesting open question whether this network is stable under
FIFO queueing policy.

Motivated by an example described in [KS90], Rybko and Stolyar [RS92] constructed
a new example. They replaced the single customer stream with two types of customers;
customers of type 1 that visit servers Sy, 52, and customers of type 2 that visit servers
S9,51. The input stream of customers of both types is a Poisson process of rate 1. The
service time of a customer of type 7 at server S; follows some distribution with mean m,;.
The queueing discipline imposes the same priority rules as in [LK91], i.e., customers of
type 1 have priority at server Sy, and customers of type 2 have priority at server S;. They

proved that if miy = mg9; > I, the system is unstable. The same result was proven in

29
[DW96] for the corresponding fluid network, under the assumptions of the fluid model for

the inter-arrival and service times.

Both examples above are based on priority rules for the servers. Bramson [Bra94a]
extended the phenomenon underlying these examples to the case of FIFO queueing policy.
Bramson considers a two server network where customers enter the network according to
a Poisson process and follow the route Sy, 53,...,59,51 and then exit the network. The

number of visits to the second server is large. The service requirements at each visit along
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the route are exponentially distributed random variables with mean ¢ at the first visit to
server Sy and the last visit to server S;, and mean ¢ at the first visit to server S; and
all but the first visit to server Sy. It is demonstrated in [Bra94a] that for ¢ sufficiently
close to 1, if the number of visits to server Sy is sufficiently large and ¢ is sufficiently
small, then the system is unstable under the rate condition. A second example by Bramson
[Bra94b] demonstrates that for any arbitrarily small p < 1, it is possible to have a multiclass
network with FIFO queueing policy, where the load factor at each server is less than p, but
the network is unstable. An interesting corollary derived in [Bra94b] is that decreasing the
mean service times within the network may have the effect of making it unstable. Instability
of FIFO queueing policy on multiclass networks was also shown by Seidman in [Sei94] for a
different model, where arrivals and service times are deterministic. The results of Bramson
[Bra94a, Bra94b] and Seidman [Sei94] are some of the most surprising developments in the

area of queueing networks.

2.2 Applications to packet routing

A packet routing network is a special case of a queueing system. In packet routing networks
the customers are packets that move on a directed graph. The servers are the edges of the
graph. The distinctive characteristic of a packet routing network is that all packets require
unit service times, whereas the more typical assumption in queueing theory is that the
service times are exponentially distributed. This apparently slight difference posed subtle
difficulties in adapting queueing theory to packet routing. However, recent advances in the
area of generalized Jackson and Kelly networks make it possible to argue directly about
stability in packet routing networks, using results in queueing theory.

The problem of packet routing was first considered outside the context of queueing theory
([Lei90],[KL95]). Stamoulis and Tsitsiklis [ST91] were the first to apply results of queueing
theory to the special case of layered Markovian networks. In Markovian networks the next
edge to be traversed by a packet is a random function of the edge just traversed, and it is
independent of the identity of the packet. Packets are assumed to have random destinations.
Stamoulis and Tsitsiklis consider such networks under the assumption of Poisson arrivals.
They prove that for a layered Markovian network the total number of packets in a network

with constant edge traversal times and FIFO queueing policy is statistically dominated
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by the total number of packets in a network with a processor sharing queueing policy.
Since the latter has a product form solution, queueing theory can yield bounds on the
expected queue sizes. They apply this result on layered networks such as the butterfly and
the hypercube. Harchol-Balter and Wolfe [HBW95] generalize the result in [ST91] for any
Markovian network, showing that the “layered” assumption is not necessary. But they also
show that when removing the Markovian assumption there is an example where the delays
for FIFO with constant service times are no longer statistically dominated by the delays for
processor sharing servers.

Harchol-Balter and Black [HBB94] consider the analysis of packet routing on arrays and
toroidal networks. They provide a simple formula for the calculation of the queue sizes in the
case that the service times are exponentially distributed and the packets are injected by a
Poisson process and have random destinations. Then, they replace exponentially distributed
service times with constant, and use experimental results to indicate that the queue sizes
in this case are upper bounded by the queue sizes under exponentially distributed service
times. They conjecture that this holds for any network. Mitzenmacher [Mit94] proves
this conjecture for one bend routing on arrays using the result of Stamoulis and Tsitsiklis.
However, the counter-example of Harchol-Balter and Wolfe indicates that it is not possible
to obtain bounds for general networks by applying the approach in [ST91].

The question of stability of FIFO queueing policy on packet routing networks was re-
solved only recently by Bramson [Bra96], using limiting fluid models. Bramson considers
networks where the service time of a customer at a server depends on the server and not on
the class of the customer that is being serviced (this condition excludes the unstable net-
work described in [Bra94a]). He proves that any queueing network is stable under the FIFO
queueing policy, under the assumptions of the fluid model for the inter-arrival and service
times . This class of networks includes packet routing networks with constant service times
and Poisson arrivals.

A different model was proposed by Cruz [Cru9la, Cru91b] that models the so-called
“leaky-bucket” method of flow control proposed for high speed networks. In this model
the packets are injected in S sessions; at each session packets that follow a fixed path are

injected at a fixed rate (with some burstiness allowed). The total traffic arriving at any

"The fluid model assumes that the inter-arrival and service times are independent and identically dis-
tributed. Furthermore, the inter-arrival times are assumed to be unbounded and spread out.
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edge of the network at any interval of time (s,?) is at most

p(t —s) + o, (2.1)

where p < 1, and o is a constant that allows for some burstiness. Cruz [Cru91b] proves
the stability of every work-conserving queueing policy on every layered DAG. Tassiulas and
Georgiades [T(G96] work within this model and prove that every work-conserving queueing
policy is stable on the ring.

The Cruz model tries to capture worst case settings and it is in fact a weaker adversarial
model. At each one of the S sessions a different type of packets is injected. The paths of
packets of different types may share edges. The total traffic at each edge is subject to
the condition 2.1. Therefore, for a sufficiently large w > 1, depending on o, there exists
0 < r < 1, such that the amount of traffic injected in any window of w steps is at most |rw].
Thus, a set of S sessions in the leaky-bucket model corresponds to an adversary of rate less
than one in the adversarial model defined in [AAFT96], or in our model. Any stability
result in the latter models implies an analogous result in the former model. However, the
class of adversaries described by the Cruz model is significantly weaker than the one defined
in [AAFT96], or in our model. The Cruz model requires that once some session is set up,
it remains permanently active, and it always injects packets at the same rate. The model
in [AAFT96] allows the adversary to halt and resume the operation of some session, or to
introduce a new session. The rate of some session may vary over time. This broader model
is necessary, when modeling connections of limited duration. Thus, stability in the Cruz

model may not imply stability in the adversarial model.



Chapter 3

The New Adversarial Model

3.1 Model definition

A queueing network is a graph. FEach node consists of a server and a queue of infinite
capacity. Customers arrive continuously at the nodes of the network. We assume that each
customer has a predefined path: a sequence of servers it must visit, and the service time
the customer requires at each server along the path. We assume that every server in the
network serves at rate one. When the service of a customer at some server is completed,
the customer moves to the next server in zero time. If the server is the last server in its
path, the customer exits the system. At any time ¢ at most one customer can be serviced
at any server. The conflicts are resolved by the queueing policy. In this work we consider
only work-conserving and non-preemptive queueing policies.

Customers are injected into the network by an adversary. We consider time to be
continuous. At any time ¢ the adversary injects a set of customers at some nodes of the
network. For each server in the path of each customer the adversary specifies the service
time that the customer requires at that server. We say that customer ¢ induces workload
m for server S at some particular time, if the remaining workload of customer ¢ at server
S is m. We say that W amount of workload is queued at server S, if the total workload
for S from all the customers queued at, or served by server S is W !. We say that the
workload (induced) for server S is W, if the total workload for server S induced by all the

customers in the system is W. Finally, we say that the total workload in the system is W,

"When we talk about customers queued at server S we also include the customer that is being served by
S.

15
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if the summation of the workload for all servers in G is W. The rate of an adversary in our

work will be specified by a pair (w, i), where w is any number and 0 < p < 1.

Definition 3.1 We say that A is an adversary of rate (w, ), if for all servers S in the
networks, and all continuous intervals I of length w, the customers it injects during I induce

at most pw amount of workload for server S.

Following the definition of Andrews et al. [AAF196], a system is defined as a triplet
(G, A, Q), where G is the underlying graph of the network, A is the adversary, and Q is the

queueing policy. At any time ¢:
(i) A set of customers (which may be empty) is injected by the adversary A.

(ii) If the service of some customer ¢ at server S is completed at time ¢, then the customer

advances to the next server in its path in zero time.

(iii) If the queue of server S is non-empty at time ¢, then the queueing policy Q selects

the next customer to be serviced at server S.

(iv) If the server S in (ii) is the last server in the path of customer ¢, then ¢ exits the

system at time £.
We give the following definition of stability:

Definition 3.2 A system (G, A, Q) is stable if for every initial configuration, there exists

some constant C, such that the total workload in the system at all times is bounded by C.
Following the definitions in [AAFT96] we give the following definitions:

Definition 3.3 We say that a graph G is universally stable, if for every e > 0 and w > 1
every work-conserving queueing policy is stable against every adversary of rate (w,1—¢) on

G, for any initial configuration.

Definition 3.4 We say that the queueing policy Q is universally stable, if for every e > 0
and w > 1, and every network G it is stable against every adversary of rate (w,1 —€) on

G, for any initial configuration.

In the following lemma we show that the initial configuration is not always important in

the definition of universal stability of queueing policies. We prove the lemma for a class of
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queueing policies that we call memoryless queueing policies, which make scheduling deci-
sions independent of the past history of the customers in the queue. Memoryless queueing
policies include policies that make scheduling decisions based on local information at each
server (i.e., FIFO, LIFO, MSD, LSD), or based on the future of the customers in the queue
(i.e. NTG, FTG, MTTG, LTTG).

Lemma 3.1 Let G be a graph, Q@ a memoryless queueing policy, and A an adversary of
rate y. For any system (G, A, Q) that starts from a non-empty configuration, there exists
a time 7 and a system (G', A', Q), where A" is an adversary of rate p and G is a subgraph
of graph G', such that (G', A’, Q) starts from an empty configuration and for all t > T the
system (G', A’, Q) behaves identically with the system (G, A, Q).

Proof: We construct the graph G’ as follows. For each node v € G, which in the system
(G, A, Q) begins with k, customers, we define a set of nodes T, which can be thought of
as forming a tree rooted at v. T, has k, branches, one for each of the k, customers, which
are rooted at node v and do not intersect. Therefore, no customers in T),, meet before they
reach their root in v. The service requirements of the customers at the servers of the tree
T, can be chosen arbitrarily as long as they are less than pw. For all v we choose T, to be
sufficiently large that there is an adversary A’ of rate u that can inject k, customers into
T,, such that under any work-conserving queueing policy, all customers arrive at their roots
in G at the same time ¢*. This is possible since each branch of servers is used exclusively
by a single customer. Making the branches sufficiently long and choosing the service times
appropriately, we can guarantee that the adversary injects at rate u, and all customers
arrive at their root at the same time, although they are injected at different times. Starting
from time ¢*, A" behaves like A, and the system (G’, A’, Q) behaves like (G, A, Q). This
means that if we observe some node v’ in the subgraph G of G’, and the corresponding node

v in G, then, starting from time ¢*, the two nodes are indistinguishable. |

Corollary 3.1 If a memoryless queueing policy Q is stable against every adversary A, on

every network G, starting from an empty configuration, then Q is universally stable.

Corollary 3.1 implies that in order to prove universal stability of some memoryless
queueing policy @, it suffices to prove stability of ) starting from an empty configura-

tion. Furthermore, if some system (G,.A, Q) is unstable, starting from some non-empty



18 CHAPTER 3. THE NEW ADVERSARIAL MODEL

configuration, then there exists a system (G, A’, Q) that is unstable starting from an empty

configuration, where A" has the same rate as A.

3.2 Universal stability of queueing policies

Andrews et al. [AAFT96], showed that the queueing policies Furthest-To-Go (FTG),
Longest-In-System (LIS) and Shortest-In-System (SIS) are universally stable in the
adversarial packet routing model. The SIS queueing policy gives precedence to the customer
most recently injected in the network; the LIS queueing policy gives precedence to the
customer injected the earliest in the network; the F'TG queueing policy gives precedence to
the customer whose distance to its destination is maximal. In case of a tie among customers
that have the same priority, we consider an adversary that selects the next customer to be
serviced. The adversary may use any priority rule to resolve the tie. We will prove that
these queueing policies remain universally stable in the new model. For the following proofs
we will assume that the length of the longest path of any customer injected by the adversary

is bounded. The proofs of stability follow closely the proofs presented in [AAF196].

The assumption of bounded path lengths is also stated in [AAFT96]. However, in the
adversarial packet routing model the bound on the length of any path is directly implied
by the fact that all packets require unit service times at all servers, and no packet can
cross an edge more than (1 —e)w times. This does not hold in our model, since the service
requirements of some customer, at some server, may become arbitrarily small, and possibly
zero. Thus, the adversary can inject customers with arbitrarily long paths. It remains an

interesting question if it is possible to obtain stability results in this case.

Note that the assumption of bounded path lengths still allows the adversary to inject
customers that require arbitrarily small service times at some servers. A stronger assump-
tion is that the service requirements of any customer injected by the adversary, at any
server, are bounded from below by some constant é. This condition implies a bound on
the length of the longest path of any customer. We later show that within this model, the
MTTG queueing policy is universally stable. This model can be slightly generalized by
allowing the adversary to inject customers with zero service requirements at some servers.

We call this the (0,4)-model.
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3.2.1 SIS is universally stable

Theorem 3.1 Let G be a directed network, and A an adversary of rate (w,1 — €), with
e > 0. Then the system (G, A,SIS) is stable.

Proof: Consider some customer ¢ in the system (G, A, SZS) at time ¢ waiting in the queue
of server S, and suppose that the total workload induced for server S by customers that
have priority over ¢ is W. This includes the service requirement of the customer being
serviced at the time that ¢ arrives at server S. Since the queueing policy is non-preemptive,
the service of this customer must be completed before ¢ becomes eligible for service. Let
W' be the first multiple of w greater than W, W < W’ < W + w. We claim that ¢ will
start being serviced in the next WT/ units of time. Suppose that it is not. Then during each
of the next W?’ units of time some customer is serviced that has priority over ¢. But any
customer in the system during this time that has priority over ¢, and requires server S must
be one of the customers existing in the system at time ¢, or injected after time ¢ within the
next WT' units of time. Without loss of generality, we assume that € = % for some natural
number n. The total workload induced for server S during this time is at most W?l(l —e).
Thus the total workload induced for server S by customers that have priority over ¢ during
this time is at most W 4 WT/(l —g)< WT’, a contradiction. The service requirement of ¢ at
server S is at most w(1 — €); therefore, ¢ will leave server S after at most 2 + w(1 — )
time units.

The initial configuration of the system may be non-empty. Denote by L the maximum
workload induced for any server by the customers initially in the system. We consider the
customers of the initial configuration as being all injected instantaneously at some time
before time zero. We define f§ = w(1 — ¢), and numbers Wy, Wy, ... by the recurrence
Wi = max{8, L} + 3, W;41 = e~ (W; + ) + (1 — ) 8+ 2. Consider now some customer ¢
whose path visits the servers Sy, Ss, ..., Sy, where d’ < d and d is the length of the longest
path that the adversary injects in G. Now, by induction on j, we claim that at the time that
c arrives at the queue of server S;, or at any time prior to that, the following holds: for any
server S; in the remaining path of ¢ (including server S;), the total workload induced for
server S; by customers that have priority over ¢ is at most W;. This holds for j = 1, since
for any server S;, the only customers that want to visit server .S; and have priority over ¢ are

the customers injected at the same time as c. The total service time required at server S;
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by these customers is at most L if ¢ is one of the initial customers, or at most § = w(1 —¢)
if ¢ is one of the customers injected later. Additionally, server S; may be servicing some
customer at the time that ¢ arrives. The service requirement of this customer at server Sy
is at most § = (1 — €)w units of time. Thus, the total workload induced for server S; by
customers that have priority over c is at most Wj.

Now, suppose that the claim holds for some j. Then by the above argument, ¢ will arrive
w+W;

at server S; 41 in at most —

+ 3 units of time after reaching server S;. The total workload
induced for any server of the network by customers injected during this time (which have
priority over ¢) is at most [(wt—WJ +6)/w](l—-e)w < (1 - e)w':—wj + (1 —¢)B+ 8. Server
S;+1 may be servicing some customer when ¢ arrives. The service time of this customer at
server S;4q is at most § = w(l — ¢) units of time. Thus, when c arrives at server S;1; the

total workload induced for any server by customers that have priority over c is at most

Wi+ (1-¢) (1—e)8+26 =Wy,

and hence the claim holds.

Finally, let m be the number of servers in G. We claim that the total workload in G
is at most m(Wy + (1 — e)w). For if there was ever m(Wy + (1 — €)w) + 6 amount of
workload in the system, then there would be some server S for which the total workload
is Wag+ (1 — e)w + §/m. Consider now the customer with the lowest priority for server S.
The service time required by this customer at server S is at most (1 —e)w time units. Thus
the service time required at server S by customers that have priority over this customer is

at least Wy 4 §/m which contradicts the claim of the previous paragraph. |

3.2.2 LIS is universally stable

Let us denote as class [ the set of customers injected at time [. Note that this set may be
empty if no customers were injected at time /. A class [ is said to be active at time ¢ if and
only if at that time there is some customer in the system of class [’ < [. Note that if £ is the
smallest active class in the system at time ¢, then all classes in the interval [¢,t] are active.
We define this interval to be the interval of active classes at time t. We define r; =t — £ to
be the range of active classes at time ¢.

The initial configuration of the system may be non-empty. Denote by L the maximum
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workload induced for any server by the customers initially in the system. We consider the
customers of the initial configuration as being all injected instantaneously at some time
before time zero. Since these customers are injected before time starts advancing for the
system no class is defined for them. The interval of active classes does not include the
customers of the initial configuration.
Consider now some customer ¢, injected at time Ty, whose path visits servers 51, 5o, ..., 54,

in this order, where d is the length of the longest path that the adversary injects in G. We
use T} to denote the time that the service for customer ¢ is completed at server S; 2. Let ¢

be some time in [Ty, T;), and define r = maxg(r, 1, 71-
Lemma 3.2 T; — Ty < (r +3w)(1 — &) + L%-

Proof: The customer c¢ reaches server S; at time 7;_q. Since c is still in the system, all
classes in [Ty, T;_1] are active at time T;_y. The interval of active classes is [¢,T;_1], where
¢ < Ty. The interval of active classes that can block ¢ in the queue of S; is [¢,Tp]. From
the definition of r the range of that interval is at most r — (731 — Tp). The total workload
induced for server S; by customers injected in [, Tp] is at most [(r+To—Ti—1)/w](1—e)w <
(1 —e)(r+ 1o —Ti—1 + w). If there are any customers of the initial configuration still in
the system, they have priority over ¢, and induce at most I, amount of workload for server
S;. Thus, the total workload induced for server S;, by customers that have priority over ¢
is at most (1 —¢)(r +To — Ti—1 + w) + L. Server S; may be servicing some customer at the
time that customer c¢ arrives. Since the queueing policy is non-preemptive, the service of
this customer must be completed before ¢ becomes eligible for service. The service time of

any customer at any server is at most M = (1 — €)w units of time. Therefore,
Ti<Tian+(Q—e)(r+w+To—Tiq)+ L+ M+ M,
where M. is the service time required at server S; by customer ¢. Therefore,

T, < Tia+(Q-eg)r+w+To-Tio1)+L+2(1-c)w

= i+ A —-e)(r+3w+To)+ L.

2T: is well defined since there is some finite time at which the customer ¢ becomes the oldest customer
among those queued at S;, and it is selected to be serviced next.
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Thus, solving the recurrence, we obtain

d—1 d—1
Ty < eTo+(1—-e)(r+3w+To)Y e+ LY &
=0 =0
1— d
= To+ (r—}—Sw)(l—ed)—}—L(l_i)
and the claim follows. [ |

Theorem 3.2 The range of the interval of active classes in the system (G, A, LIS) is never

more than i—fi“ + @, where d is the longest path in G.

Proof: et r = 9;_7;10 + ﬁ and assume that at time ¢, it is the first time that the range
of the interval of active classes becomes r + § where é > 0. Hence, at time ¢ there are
customers that have been in the system for r + § time units, and during the first r time
units the range of active classes was no more than r.

However, from the above lemma, any customer that has at most r active classes while

in the system (except maybe at time ¢), is absorbed in at most

(r +3w)(1 — &%) + L(ll__"j) — = (3w - (Buw(l—e%) -

L—L(1-¢%
1-¢

et

= r— (3we? + 1—5)

units of time. Since €% > 0, 3we? + % > 0. Therefore, the customer exits the system in

less than r units of time, and we reach a contradiction. |

Corollary 3.2 Let G be a directed network, and A an adversary of rate (w,1 — ¢), with
e > 0. Then the system (G, A, LLS) is stable. The workload in the system is never more than

o4+ (15#), and the mazimum time any packet spends in the system is O(Z5+ ﬁ)

3.2.3 FTG is universally stable

Theorem 3.3 Let G be a directed network, and A an adversary of rate (w,1 — ¢), with
e > 0. Then the system (G, A, FTG) is stable.

Proof: Let m be the number of servers and d be the length of the longest path that the
adversary injects in graph G. Let us define W; = 0 for ¢ > d, and W; = m} .., W; +
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2mw(l —¢) for 1 < 7 < d. We prove by a backwards induction on i that the system
is stable. We claim that for all j > 7 the workload induced in the system by customers
that have ezactly j servers left to visit (including the server the customers is queued , or

processed at) is at most W;.

This is trivial for j > d since each customer has at most d servers to visit. For some
i > 1, assume that it is true for all j > ¢. Now, consider a particular server S and let X;(¢)
be the set of customers that are queued at the queue of server S at time ¢t that still have
to visit at least i servers. Let ¢ be the current time, and let ¢ be the most recent time
preceding time ¢, at which X;(¢') became non-empty (i.e., X;(t') > 0 and X;(¢' — &) = 0, for
any § > 0). Any customer in X;(¢) must either have had at least i+ 1 servers to visit at time
t' (since it must have been at least one server away from ), or else it was injected after time
t'. From the induction hypothesis the total workload induced for any server by customers
that had exactly j > i servers to visit at time ¢’ is at most W;. If at time ¢’ some customer
was being serviced at server .S, then since the queueing policy is non-preemptive the service
of this customer must have been completed before the server S started servicing customers
from X;(¢'). The service requirement of any customer at any server is a < (1 —¢)w units of
time, so customers from X;(¢') become eligible for service at time ¢’ 4+ a. If @ >t — ¢/, then
no customer from X;(¢') has been serviced. Otherwise, from the definition of the queueing
policy at every time t” € [t' + «,t] some customer from X;(t") was serviced at server S.
Consider some arbitrary server S’ in G. We define 7;(¢) to be the workload induced by the

customers in X;(t), for S’.

t—t
T(1) < YW+ (1 - e [ - } (=) +a,
7>
where 3., W; + (1 —€)w is an upper bound on the amount of workload induced for server
S" by customers in X;(¢) that had j > i servers to visit at time ¢/, and (1 — e)w[t;—tl'\ is the
amount of workload induced for server S’ by customers in X;(¢) that were injected during
the interval [/, t]. Since the queueing policy is work-conserving, ¢ — ¢’ amount of workload
was serviced during this interval; min{a,t — t'} < o time units of this workload is induced

by a customer that does not belong to X;(t). Since a < (1 — €)w,

Ti(t) <> Wi+2(1—e)w —e(t —t').
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The above inequality has two consequences. First, the workload induced by customers
that have to visit exactly i servers, for any server in G, is always at most m ) ;. W; +
2m(1 — e)w = W; and so the inductive step holds. Second, t —t' cannot be greater than
1(X;5i W;+ 2(1 — e)w). Hence this expression gives the maximum amount of time that
a customer with ¢ servers to visit can remain in a queue. Therefore under FTG the total
workload in the system is bounded by ijl W; , and the maximum amount of time that

any customer spends in the system is bounded by % |

3.3 Instability of the ring

Andrews et al. [AAFT96], proved that the ring is universally stable in the adversarial packet
routing model. Any packet routing network can be easily turned into a queueing network,
simply by replacing the edges with servers. The resulting network is a unidirectional ring of
servers; if Sp, ..., 5,_1 are the nodes of the ring, then a customer that completes its service

at server S; can only move to server S( or exit the network. The result in [AAF*96]

i+1)ymodn’
implies that if the service times required by the customers are the same at any server of the
network, then the ring of servers is universally stable. A similar result was proven in [DW96],
using limiting fluid models, under the assumptions of the fluid model for the inter-arrival
and service times. Stability of the ring under any queueing policy was also proven in [TG96]
for the “leaky bucket” model defined by Cruz in [Cru91la, Cru91b]. We show that this does
not hold if the customers can require different service times at different servers. There
are simple queueing policies, such as Nearest-To-Go (NTG), Most-Service-Demand
(MSD), Least-Time-To-Go (LTTG) and First-In-First-Out (FIFO), for which there
is an adversary of rate (w,1 — ¢) that causes them to become unstable on the ring. The
NTG queueing policy gives precedence to the customer whose distance from its destination
is minimal. The MSD queueing policy gives precedence to the customer that requires the
maximum service time at a given server among those queued at that server. The LTTG
queueing policy gives precedence to the customer whose remaining time is minimal. The
remaining service time of some customer ¢ is the summation of the service times required
by c at all servers in its path that ¢ has not visited yet (including the one ¢ is queued at).

It may seem surprising that a system where workload is serviced faster than it is induced

at each server can be made unstable. The adversary forces instability by causing some
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servers to remain idle. Workload is induced for these servers, but it is blocked at other
servers. Therefore, the total service capacity of the system becomes less than the load

induced by the customers, which causes the system to become unstable.

3.3.1 Instability of NTG, LTTG and MSD on the ring

We will prove that the NTG queueing policy is unstable on the two node ring. The example
we describe is a simple generalization of the examples in [RS92] and [LK91].

Let G be the two node ring. Let S; and S; be the two servers of the ring. Rybko
and Stolyar [RS92] consider two types of customers: customers of type 1 that visit servers
51,52 and customers of type 2 that visit servers S3,.57. The queueing policy gives priority
to customers of type 1 at server S; and to customers of type 2 at server S;. Note that these
rules define the NTG queueing policy. It is easy to prove that the same example is unstable
in the adversarial context, under the same conditions on the service times. The analysis

uses a similar technique to that described by Lu and Kumar in [LK91].

Theorem 3.4 Let pu > % There exists an adversary A of rate (1, ) such that the system

(G, A, NTG) is unstable, starting from some non-empty configuration.

Proof: The adversary A injects two types of customers: customers of type 1 that visit
servers 57,53, with service requirements m; and mg, and customers of type 2 that visit
servers Sy, .51, with service requirements ms and my4. For simplicity we assume that mqo =
my4 = m, and my = m3 = €. Furthermore, we assume that ¢ < m.

We break the construction of A into phases. Our induction hypothesis will be as follows:
at the beginning of phase j, there will be at least ¢; customers of type ¢ queued at server
Si, where t; = ca’, for some constants ¢ and @ > 1. Depending on whether j is odd or even,
1=1or 2.

To start out, however, we need sg customers of type 1 queued at server Sy. Thus, setting
¢ = sp, the induction hypothesis for phase 0 is certainly met. For a general phase j (assume
that J is odd) we will show that if at the beginning of phase j the queue of server S;
contains a set of s = a’sy customers of type 1, then at the start of phase j + 1, there will
be at least a’t'sy customers of type 2 in the queue of server Ss.

The adversary starts injecting customers immediately after the first customer of type

1 has reached server Sj. For each of the next [%-s| time units we inject exactly one
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customer of each type. Since € < m, there is always at least one customer of type 1 at

server So which blocks the customers of type 2. The total workload induced for server S,

_m_

- sJ + ms. Since server S; serves customers

during this time by customers of type 1is m|
at rate 1, by the end of this period there exists at most one customer of type 1 in the

system, queued at server So, with residual service time

m L ?WZSJ + ms — LfﬂbmJ s=ms— (1—m) L 7—nmSJ = (1—m)r,

where 0 < r < 1 is the decimal part of ;*~. The adversary waits for this customer to
complete its service. This ends phase j.

The total number of customers of type 2 queued at server S5, at the end of phase j is

|7-5] > 775 — 1. For some arbitrarily small # > 0, we can select s to be sufficiently

large so that
m

80—12(1—0) S0.

1-m 1-m
By induction hypothesis, s > sq. Therefore, -5—-1 > (1-0)7%Z-s. Weset a = (1-0) 2.

In order for the induction hypothesis to be met for phase 7 + 1 we need

> 1.

(1-9)

1-m

Since m < 1, the above inequality is satisfied when m > % + g. Therefore, gt = m+¢ >
% + % + £, where 8 and € can be chosen arbitrarily small. The adversary A has rate (1, u)

and the system (G, A, N'TG) is unstable. [ |

For simplicity of the proof, and in order to achieve the lowest possible bound on the rate
i we assumed that mg = my, and m; = m3. We may consider a more general case, where
the service times are not the same. It is not hard to show that in this case the system is
unstable when mq + my4 > 1, and my < mq and ms < my.

The queueing policy NTG gives priority to customers of type 1 at server 2, and to
customers of type 2 at server 1. Note that the customers of type 1 require more service
time at server 2 than customers of type 2, and that customers of type 2 require more service
time at server 1 than customers of type 1. Furthermore, the remaining time of customers of
type 1 queued at server 2 is less than the remaining time of customers of type 2 queued at

the same server; the remaining time of customers of type 2 queued at server 1 is less than
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that of customers of type 1. Therefore, in this network, and for this adversary, the NTG

queuing policy is identical with LTTG and MSD queueing policies.

Corollary 3.3 Let u > % There ezists an adversary A of rate (1, p) such that the system
(G, A, LTTG) is unstable, starting from a non-empty configuration.

Corollary 3.4 Let u > % There ezists an adversary A of rate (1, p) such that the system
(G, A, MSD) is unstable, starting from a non-empty configuration.

3.3.2 Instability of FIFO on the ring

We define the graph G, to be the unidirectional 2n-node ring. We denote by Sg, ..., S2,_1
the servers of the ring. For the proof of the following theorem we assume that the adversary
may inject customers that require zero service time at some server. It is easy to prove that

the theorem still holds when we replace 0 by an arbitrarily small €.

Theorem 3.5 Let u > % There is an n, and an adversary A of rate (1, u) such that the

system (G, A, FIFQ) is unstable, starting from some non-empty configuration.

Proof: Consider # > 0 such that g > 1 + 6, and let A = (1 — 6)p. One can check that
ﬁ > 1. For reasons that will become clear later, we select n so that % > 1. We
break the construction of A into phases. Our inductive hypothesis will be as follows: at
the beginning of phase j, there will be at least ¢; customers in the queue of server S5;,
that want to visit servers Sin, Sint1 ..., S(G41)n—1 and require service time u at each server,
where ¢; = ca’, for some constants ¢ and a > 1. Depending on whether j is even or odd,
1=0or 1.

To start out, however, we need sg customers queued at Sy. For reasons that will become
clear later we choose sg such that |[A"usg| > (1 — 6)A"usg. Furthermore, sq is sufficiently

large so that for any A > A" usg,
|A] > (1—6)A. (3.1)

These sp customers want to visit servers Sp,...,S,_1, and require service time p at each
server. Thus, setting ¢ = sg, the induction hypothesis for phase 0 is certainly met. Let j
be a general phase, and without loss of generality assume that j is even. Assume that at

the beginning of phase j the queue of server Sy consists of a set of s > sg customers that
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want to visit servers Sg,...,S,_1, with required service times p at each server. We will
show that at the start of phase j+ 1, there will be at least M%ls customers in the queue

of server S,,, that want to visit servers S, ..., S9,_1, with required service time p at each

A(1=A")
T—X

server, We can therefore let a = > 1.

We break the construction of phase j into n sub-phases, 0,1,...,7n— 1. The duration of
sub-phase k is Wy time units, where W}, is the amount of workload queued at server S} at
the beginning of sub-phase k. During this time, for | W] steps, the adversary injects exactly
one customer that wants to visit servers Sg,...,Sn_1,94,...,5,_1 with required service
time 0 at servers Sg,...,S,_1 and u at servers S,,...,S9,_1. Furthermore, if £k < n — 1,
the adversary also injects exactly one customer that wants to visit servers Sg41,...,5,-1

with required service time u at each server.

For simplicity we introduce the following definitions. We say that a customer ¢ wants

to complete a full circle, if for some 0 < k£ < n — 1, ¢ is queued at Sj and wants to visit

servers Sk, ..., S,_1,5,...,52,_1, with service requirements 0 at servers S, ..., S,_1 and
@at Sy, ..., 52,_1. We say that a customer ¢ wants to complete a half circle, if for some
0 <k <m-—1, cis queued at Sp and wants to visit servers Sg,...,S,_1, with service

requirements p at all servers.

We now give an informal description of the behavior of the system. At any point in
time there may exist only two types of customers in the system: customers that want to
complete a full circle, and customers that want to complete a half circle. We will show
that half-circle customers always block full-circle customers. Consider some sub-phase £,
where £ is not the first or the last phase. We will show that at the beginning of sub-phase

k, there exists a set of half-circle customers queued at server S, and a set of full-circle

customers queued at server Si_;. There exist no customers at servers Sg, ..., Sir_2. There
may exist some half-circle customers at servers Sgy1,...,S5,-1, left over from the previous
sub-phase. There exist no customers at servers S,,...,S52,_1. Full-circle customers move

to server Si. Furthermore, the adversary injects new full-circle customers at server Sj.
Since the queueing policy is FIFO, all these full-circle customers are blocked by the half-
circle customers which were there first. These half-circle customers drain out of server Sj,
during sub-phase k. The adversary injects more half-circle customers at server Si4q which
partially replace the half-circle customers that are absorbed. Sub-phase k ends when all

the half circle customers at server S move to server Siyi. Note that during sub-phase k
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full-circle customers are blocked at server Si, and therefore no customers go beyond server
S,_1. Also no customers are injected for servers Sp,...,Sg_1, or S,,...,S2,_1. Thus, all
the activity in the network is concentrated at servers Sg,...,.S,_1.

We will show by induction that at the end of each sub-phase the number of full-circle
customers in the system increases. We will prove that the full-circle customers accumulated
at the end of the last sub-phase satisfy the inductive hypothesis for phase j + 1.

Denote by N = us the workload queued at server Sy at the beginning of phase j. We

will prove by induction that for any sub-phase k£, 0 < k£ < n — 1 the following hold:

1. At the beginning of sub-phase k there exists at least A* N amount of workload queued

at server Sg, induced by customers that want to complete a half circle.

2. At the end of sub-phase k, there exist at least (1 — 8)(14+ A+ ...+ \*)N customers

queued at server Sy that want to complete a full circle 3.

At the beginning of sub-phase 0, there exists N amount of workload queued at server Sp,
induced by customers that want to complete a half circle. During the N time units of
sub-phase 0 the adversary injects | N | customers that want to complete a full circle which
are queued at server Sg. Note that these customers are blocked at server Sy since they have
lower priority. By 3.1, [V] > (1 —6)N. Thus, at the end of sub-phase 0 there exist at least
(1 — @)N customers, so the induction hypothesis is satisfied for sub-phase 0.

Consider now a general sub-phase k£, 0 < £ < n — 1. By induction hypothesis, at the
beginning of sub-phase k& — 1 there exists Wi > A*~'N amount of workload queued at
server Si_; that is induced by customers that want to complete a half circle. During sub-
phase k£ — 1 the workload queued at server S;_;, moves to server Si. The adversary injects
|Wk] > [MIN|. customers at server Si that want to complete a half circle. By 3.1,
|Wk] > (1 — 0)A\*='N. These customers induce at least p(1 — §)A*"'N > A*N amount
of workload for server Si. Since the queueing policy is work-conserving the amount of
workload serviced during phase & — 1 is Wj. Thus, at the beginning of phase k there exists
at least A*N + Wi, — Wi = A*N amount of workload queued at server Sy, induced by

customers that want to complete a half circle. The first part of the induction hypothesis is

satisfied for sub-phase k.

3We adopt the convention that the end of sub-phase k is the point in time when the workload initially
at server Sy has been serviced, but before the customers with zero service time at server S; have moved to
the next server.
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By the induction hypothesis, at the end of sub-phase k& — 1, there exist at least (1 —
OH(1+A+...+ /\k_l)N customers queued at server Si_; that want to complete a full circle.
During sub-phase & these customers move to server Si. Furthermore, the adversary injects
at least (1 — @)A\*N customers that want to complete a full circle, which are queued at
server Si. All these customers are blocked at server S; by customers that want to complete
a half circle, which have higher priority. Thus, at the end of sub-phase k there are at least
(1 —8)(1+ X+ ...+ M)N customers queued at server Si that want to complete a full
circle. Therefore, the second part of the induction hypothesis is also satisfied for sub-phase
k, so the induction hypothesis is met for sub-phase k. This concludes the induction on the
sub-phases of phase j.

Therefore, at the end of phase j there exist at least (14+A+. .. +A""1) N customers queued
at server S,,_; that want to visit servers S,_1,95,,...,52,_1, with service requirements 0
at server 5,1 and p at all other servers. We consider customers with zero service time to
be moving instantaneously, so at the beginning of phase j + 1 all customers that want to
visit server S, are in the queue of server S,,. The number of customers queued at server .5,

is at least

1-A" Al = A7)
r_ (1 _ k — (1= =
sSs=01-01+A+...+ )N =(1 0)1_/\,us TS

Thus, the induction hypothesis is met for phase j + 1. |

3.4 The MTTG queueing policy

The Most-Time-To-Go (MTTG) queueing policy gives precedence to the customer
whose remaining service time in the system is maximal. The remaining service time of
some customer c is the summation of the service time required by ¢ at all servers in its path
that ¢ has not visited yet (including the one ¢ is queued at). We will prove that MTTG is
stable against a class of restricted adversaries, where the adversary is restricted to injecting
customers with service requirements bounded from below. That is, there exists some ¢ > 0,
such that for any customer ¢, the service time required by ¢ at any server in its path is
at least 8. The proof follows closely the proof of stability of FTG presented in [AAF196]
and the one presented in section 3.2.3. If we allow the adversary to inject customers that

require arbitrarily small service time at some servers, then we will show that there exists
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a network G on which the queueing policy MTTG is unstable. The instability example for
MTTG is similar to the one for the NTG queueing policy. In order for the adversary to force
instability, it injects customers that require service times that are a decreasing function of
the time.

An interesting question is how to resolve ties between customers of different types queued
at the same server that have the same remaining service time. Ideally, we would prefer an
adversary to select the next customer to be serviced. The adversary may use any priority
rule to resolve the tie. In the case that the service times are bounded form below, the proof
of stability of MTTG that we present considers worst case settings, and it is not affected
by the decisions of the adversary that resolves the ties. In the (0,d)-model *, however, it is
not hard to see that the instability example described for NTG in section 3.3.1, works also
for the MTTG queueing policy. Specifically, if we set m; = m3 = 0 then all customers that
meet at any server have the same remaining service time. Selecting the NTG priority rule
to resolve the ties causes the system to become unstable. It remains an interesting question

if it is possible to force instability in the (0, d)-model when there are no ties.

3.4.1 Stability of MTTG

Theorem 3.6 Let G be a directed network, and A an adversary of rate (w,1 — ¢), with
€ > 0. The service time required at any server, by any customer injected by A, is at least

8. Then the system (G, A, MTTG) is stable.

Proof: Denote by m the number of servers in the network. The total service time required
by any customer is at most D = mw(1 — ). Let d = [2]. Let us define W; = 0 for i > d,
and W; =m 3, Wi +2mw(l —¢) for 1 <i <d. For j > 1, define A; to be the interval
[76, (74 1)8). We prove by a backwards induction that the system is stable. We claim that
for all § > 1 the workload induced in the system by customers with remaining service time
in A; is at most W;.

This is trivial for j > d since each customer requires at most D total service time.
For some ¢ > 1, assume that it is true for all j > 7. Now, consider a particular server

S and let X;(t) be the set of customers that are queued at the queue of server S at time

“In the (0,0)-model the service requirement of some customer at some server may be zero, but the
non-zero service requirements of the customers are bounded from below by some constant 4.
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t with remaining service time at least i§ 5. Let ¢ be the current time, and let ¢ be the
most recent time preceding time ¢, at which X;(#') became non-empty (i.e., X;(¢') > 0 and
X;(t'—~) =0, for any v > 0). Any customer in X;(¢) must either have been injected after
time #', or else it must have been at least one server away from S at time ¢/, and therefore
it must have had remaining service time at least (¢ 4+ 1)d. From the induction hypothesis,
for all § > ¢ the total workload induced for any server by customers with remaining service
time in A; at time ¢’ is at most W;. If at time ¢’ some customer was being serviced at server
S, then since the queueing policy is non-preemptive the service of this customer must have
been completed before the server S started servicing customers from X;(¢'). The service
requirement of any customer at any server is @ < (1 — ¢)w units of time, so customers
from X;(¢') become eligible for service at time ' + a. If @ > ¢ — ', then no customer from
X;(t) has been serviced. Otherwise, from the definition of the queueing policy at every
time ¢t € [t' + a,t] some customer from X;(¢") was serviced at server S. We define T;(t)
to be the workload induced by the customers in X;(#), for any server in G. Following the

argument for the proof of stability of FTG queueing policy,

Ti(t) < ZW]-—}—(l—e)w[ ;/-‘—(t—t')—l—a
J>i
< Y W20 —e)w—e(t —t).

The above inequality has two consequences. First, the workload induced by customers
that have remaining service time in A, is always at most m ., W;+2m(1—¢)w = W;, and
so the inductive step holds. Second, t — t' cannot be greater than (3,5, W; 4+ 2(1 — &)w).
Hence, this expression gives the maximum amount of time that a customer with remaining
service time in A; can remain in a queue. Therefore, under MTTG the total workload in
the system is bounded by }>;5; W; , and the maximum amount of time that any customer

spends in the system is bounded by % |

5This is the main difference between the proofs of stability of FTG and MTTG. In the former case, the
induction is on the number of edges remaining in the path of some customer. In the latter case, the induction
is on the remaining time, which is discetized into intervals of size 4.
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3.4.2 Instability of MTTG

We define G to be a network with four servers. We denote by Sy, S7 and Vp, V; the servers
of the network. The servers Sy and S; form a 2-node ring, and the servers Vi and V; are
attached to Sy and Sp respectively. For simplicity, in the following theorem we assume that
the adversary may inject customers that require zero service time at some server. We will

remove this assumption later on.

Theorem 3.7 Let p1 > 2

3- There is an adversary A of rate (1,u) such that the system

(G, A, MTTG) is unstable, starting from a non-empty configuration.

Proof: The adversary A injects two types of customers: customers of type 0 that visit
servers S, S, Vo, and customers of type 1 that visit servers Sy, S1, V1. We break the con-
struction of A into phases. Our inductive hypothesis is as follows: at the beginning of
phase j, there exist at least ¢; customers of type 7 queued at server S;, where t; = ca’™!
for some constants ¢ and @ > 1. These customers want to visit servers S;, V;, with service

requirements u and £ respectively. Depending on whether j is even or odd, i = 0 or 1. For

J
the sake of simplicity, in the following we assume that p = % We will later show that the
theorem can be generalized for p arbitrarily close to %

For convenience, we consider the first phase of the system to be phase 1. To start out
we need s; customers of type 1 at the queue of server Sy, for s; = 1. The customers require
service time g at both servers Sy and Vj. Thus, if we set ¢ = sy the induction hypothesis
is met for phase 1. Consider now a general phase j and assume that j is even. Assume
that at the beginning of phase j there exist s = (ﬁ—ﬂ)j_lsl customers of type 0 queued at
server Sp, that require service time p and % at servers Sy and V. We will show that at the
beginning of phase j 4+ 1 there exist (lf—ﬂ)jsl customers of type 1 queued at server Sy, that

u

require service time p and J% at servers S7 and V;. We set a = T = 2.

The duration of phase j is ﬁs time units. For each of the next ﬁs time units the
adversary injects exactly one customer of each type. Customers of type 0 visit servers
S1, So, Vo, with service requirements 0, p and % Customers of type 1 visit servers Sp, S1, V1
with service requirements 0, pt and ]% Customers of type 0 have priority over customers of
type 1 at server Sp. At the end of phase j there exist no customers of type 0 in the system,

and there exist ﬁs customers of type 1 queued at server Sy. We consider customers with

zero service requirement to be moving instantaneously. So, at the beginning of phase j 4+ 1
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there exist ﬁs = (ﬁ)jsl customers of type 1 at the queue of server S;. Thus, the

induction hypothesis is met for phase j + 1.

It is not hard to prove that the theorem can be generalized for any p arbitrarily close to
l. Let s be the number of customers queued at server Sy at the beginning of phase j. The
duration of phase j is again —s time units, but the adversary injects L%SJ customers.
At the end of phase j the adversary waits for the last customer of type 0 to complete its
service, before entering phase 7+ 1. Consider some # > 0, such that p > l + 6. We select sy
such that [(7£;)s1] > (1 -6)(t5;)s1. This holds if and only if §(7£;)s1 > 1. By induction
hypothesis s > sq; therefore the number of customers of type 1 queued at server Sy at the

beginning of phase j + 1is [(15;)s] > (1 = #)(;£;)s. The number of customers increases
if (1 -0)(15;) > 1, which holds since p > 3 1+ ]

During the phase j the service requirements at servers Vp and Vi are 7 and ]H
These service times can be replaced by any strictly decreasing function f(j), such that
0 < f(j) < p, for all j. Furthermore, the zero service requirements can be replaced by
some appropriately chosen strictly decreasing function ¢(j), such that 0 < ¢(j) < 1 — p. In
this case, during the phase j, the adversary injects customers of type 0 that require service
times ¢(j), i, f(j), and customers of type 1 that require service times g(j+ 1), i, f(7+ 1).
In order for customers of type 0 to have priority over customers of type 1 at server Sy, we

require that

p+fG)>9@+)+p+fE+1) =
fU) =G+ >9(G+1).

Selecting the functions f and g appropriately we can ensure that the instability exam-
ple works for the case that all customers have non-zero service requirements. Since the
customers no longer move instantaneously between servers, the adversary should follow
the sequence of injections described in the instability example for NTG presented in sec-
tion 3.3.1. The rate of the adversary is (1, + ¢g(1)). Selecting g(1) to be arbitrarily small,
we can make the rate of the adversary to be arbitrarily close to =. Possible values for the
functions f and g are f(j) = 7 and g(j) =¢’, where 0 < £ < 1 — p.

For simplicity we chose to present the instability example for MTTG on the graph G

described above. It is not difficult to show that MTTG can be made unstable on the
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2-node ring. Let Sp,S; be the servers of the ring. The adversary injects two types of
customers: customers of type 0 that visit servers Sp, S1, and customers of type 1 that visit
servers S1, Sp. We break the construction of the adversary into phases. In every phase, the
adversary injects customers of both types. The service requirements of the customers are
g(7),u+f(j)and g(j+1), u+ f(j+1) respectively, for g and f previously defined. Following
the analysis of the previous example, and that of the instability example for NTG, it is easy
to prove that if we initialize the system with s; customers of type 1 queued at server Sy,
then at the beginning of phase j there exists (ﬁ)jsl customers of type 7 queued at server
S;, where i = jmod 2. The rate of the adversary is g+ f(1) + g(1), which can be driven
arbitrarily close to % by selecting ¢(1) and f(1) arbitrarily small.



Chapter 4

Instability of NTG for constant

rate injections

In this chapter we will show that the queueing policy Nearest-To-Go (NTG) is unstable on
some network A, when workload is injected at arbitrarily small rate. The NTG queueing
policy gives precedence to the packet whose distance to its destination is minimal. We
will prove that for any ¢ > 0, there exists a network A such that NTG is unstable for
injection rate less than €, in a model significantly weaker than the one described in chapter 3.
In contrast to the examples described in [Bra94a, Bra94b] for FIFO queueing policy, the
customers visit each server at most once, and require unit service times at each server.
The instability example was first described, and informally proven in [BKSW96], and it
was motivated from the study of packet routing networks. We give a formal proof in this
chapter. We also show that the network of servers A’ can be transformed into a packet
routing network that is also unstable for the same rate. For the rest of the discussion we

refer to the customers as packets.

4.1 Model description

For the instability example we want to describe, it is advantageous to have a model that
it is as weak as possible. We consider time to advance in discrete time steps. We assume
that packets require one time step of service time at every server in their path, and that
servers serve one packet at each time step. The packets are injected at constant rate. The

initial configuration of the system is determined by the adversary. The injection process

36
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Packets of type 1
Packets of type 2
Packets of type 3
Packets of type 4

Yovy

Figure 4.1: The 4 x 4 network N.

can be thought of as a collection of paths P on the network A'. Each different path in P
defines a different type of packet. Let K be the number of different types of packets in the
system and 1,..., K a numbering of the different types. We assume that all packet types
are injected in the network at the same rate r, and all packets are injected in the network
simultaneously. Customers are injected at constant rate, that is, one packet of type k is

injected every 1/r steps.

The network A/ we consider is the n x n torus. The servers are marked as (7, j), where
¢ denotes the row and 7 the column, and 0 < ¢,57 < — 1. From now on all additions and
subtractions are considered to be modulo n. There are n types of packets. The packet of

type i is generated at node (7,74 1) and follows the sequence

(i 1), (6,04 2), (5,04 3), ..., (60— 1), (i+1,4), i+ 2,4),..., (i — 1,4),

and then is absorbed. Note that the nodes of the form (7, ¢) are never used and therefore
can be considered as non-existent. An example of the 4 x 4 network A is shown in the

Figure 4.1.

The arrival rate at any server is defined as the summation of the rates of all types of
packets that use that server. The requirement on P is the following: for any server S in
N, the arrival rate at that server should be strictly less than the service rate of S. All

customers are injected in the network at rate r. Since every server is used by exactly two
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types of packets the arrival rate at every server is 2r. We assume that the service rate is
1 for all servers. Therefore, we require that r < % We denote by P(r) this collection of
paths.

Each of the servers (7, 7) is used by exactly two types of packets: packets of type i that
move horizontally, and packets of type j that move vertically. Under the queueing policy
NTG, the packets of type j always have priority over the packets of type i. We will prove
that the system (A, P(r), N'TG), is unstable for r > 2, where n is the number of rows or
columns of A. For the rest of the thesis we assume that n is even.

We now give some intuition of the proof. A packet that moves vertically has priority
over all packets of other types, and it intersects with all other types of packets. Therefore,
if we manage to create a continuous stream of packets that move vertically along a column,
we will cause all other packets to be blocked at this column. We call this a wall. A wall
in the system causes a great number of servers to remain idle, and the number of packets
queued at the column of the wall to increase. When the stream empties out we want a new
wall to be created in the next column. In order for this transition to be done orderly, it
is useful to consider a system with two walls, evenly spaced. We prove that the two walls
move together, and each time they move one column over, the total number of packets in

the system has increased.

4.2 Definitions
We now introduce the notion of a wall.
Definition 4.1 A wall at column i of system (N, P(r),NTG) is defined by:

e a queue of packets of type ¢ at node (i,i — 1), which is called the feeding queue of

the wall,
e one packet of type 1 at every node of column 1,

o queues of packets of type j, 7 =0...n — 1, j # i queued up at node (j,1) that want to

cross column 1.

It should be intuitively obvious why this is called a wall. The packets that move down the

column 7 have priority over all packets that want to cross column i, thereby blocking them
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at column 7. If there is some node in column ¢ that has no packet of type 7, then we say
that a hole is created in the wall. For emphasis, a wall with no holes is said to be solid.
We intend to build a system that most of the time it will have two walls § columns
apart. Let ¢ and j =1+ 7 be the columns of the two walls.
The set of nodes between the wall at column j and the wall at column 7 is called the
span of the wall at column . For some row k, k € {0...n—1} we define the span, span; (k)
to be all the nodes on row k, from the generating node (k+1, k) to the node (k, %) at column

7, which are between the columns j and 7. Formally:

span; (k) = {(k,k+1),...,(k,)}n{(k,j+1),...,(k0)}.
Similarly, for the wall at column j, we define

span; (k) = {(k,k+1),...,(k,))}n{(k,i+1),...,(k, j)}.

Denote by queue(t, j) the packets queued up at node (7, j), and by queueg (7, j) the pack-
ets of type k queued up at node (¢, 7). Obviously, queue(, ) = queue;(i,j) U queue; (i, 7).
For notational convenience, we define queue(i, i) = . We define the effective queue @y of

the wall at column ¢, for the row k, k € {0...n — 1}, as

Qr = U queuer(v).
vEspan; (k)
The effective queues of the wall at column j are defined similarly.

We define the configuration of the wall at column ¢ as the vector (Qo, Q1, ..., Qi—1, @i,
Qit1, .-+, Qn1), where Q; is the feeding queue, and @y, is the effective queue at column £,
where k =0...n—1, k # 7. The queue ;41 is called the secondary queue of the wall. We
call the queues @), .. -7Qz’+§—1 the top queues of the wall, and the queues QH_%, @il
the bottom queues of the wall !.

The packets that do not belong to any effective queue are called runaway packets.

Runaway packets, are the packets that have crossed both column ¢ and j, and are free to

'"The choice of names “top” and “bottom” may seem awkward to the reader. We consider the wall
starting from the feeding queue and going downwards. Thus, the “top” queues are the first  queues, while
the “bottom” queues are the next 7 queues. This choice will be justified later, where we show that the top
queues are the next to become the feeding queues of the wall.
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head to their destination. As soon as they start moving vertically they have priority over
the packets moving horizontally, and they may block packets that belong to the effective
feeding queues.

Now, we introduce the notion of contiguousness of the effective queues. An effective

queue (), for wall 7 is contiguous if,
queueg(k,l) = 0 = queuey(k,l') =0, Y(k,l') € span; (k)\{(k, [+ 1),..., (k,7)}.

Intuitively, this means that the packets are queued up at consecutive nodes and there are
no gaps between the queues.

We now introduce the notion of symmetry.

Definition 4.2 The system (N, P(r), NTG) is in a symmetric state if, Vk,l,m € {0,...,n—
1, 14 m,
n

n
|queuek(l7 m)| = |queuek+%(l + 5777”&—}— §)|

The nodes (/,m) and (I + %, m + %) are called corresponding nodes, and the types
of packets k£ and k£ + 5 are called corresponding types. Definition 4.2 says that the
corresponding nodes have the same number of packets of corresponding types. Note that
if n is even, then the relation defined by correspondence is symmetric: if (z,y) is the
corresponding node of node (/,m), then (I, m) is the corresponding node of (z,y). The
same holds for the types of packets. Corresponding nodes service corresponding types of
packets. Packets of corresponding types move along corresponding nodes, that is, for all i,
the k-th node in the path of a packet of type ¢ is the corresponding node of the k-th node
in the path of a packet of type i + 5.

Consider now a system with two walls at columns i and j. Let (Qo, @1, ..., &@n-1) be the
configuration of the wall at column ¢, and (Zy, Z1,,. .., Z,_1) the configuration of the wall
at column j. If the system is symmetric, then Definition 4.2 implies that the two walls are
5 columns apart, i.e., j = 1+ 5. Otherwise, the corresponding nodes of nodes at columns

2

i and j would have different queue sizes. Furthermore, it holds that, V& € {0,...,n — 1},
o V(k,1) € spany(), (k+ .14 5) € spanyy (k+ 3),
e and Qx| = [Zp1z|.

The queues @ and Zk+% are called corresponding effective queues.
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We now introduce the notion of a phase. We will show that the evolution of the system

in time can be divided into such phases.

Definition 4.3 The system (N, P(r), NTG) enters a phase at column i if the following

conditions are satisfied:

(C0) The system is symmetric.

(C1) There exist two walls at columns i and i 4 7.

(C2) The feeding queues of the two walls are contiguous.
(C3) There exist no runaway packets.

The phase terminates when the feeding queues empty out and there exist no packets of type

i and i + 5 at the nodes of columns i and i + 5 respectively.

A phase breaks into two periods: the solid period and the transition period. The
solid period is the period of time that the two walls remain solid, while the transition period
is the period of time that the two walls collapse and the last packets of the walls drain out
of the system.

We now give a sketch of the proof of instability. We first show that symmetry is preserved
throughout time; if we initialize the system to be symmetric, it will remain symmetric. We
then prove that the walls remain solid, as long as there are packets in the feeding queues.
When the feeding queues empty out the solid period terminates and the system enters the
transition period. In Lemma 4.3 we show that if a set of conditions (C4)-(C5) is satisfied
at the beginning of the phase, then at the end of the transition period the system will enter
a new phase, with the walls one column over. We then prove that in this new phase the
total number of packets has increased. Finally, we show that if the system is initialized
appropriately, then at the beginning of any phase the conditions (C4)-(C5) are always
satisfied.

4.3 System properties

Lemma 4.1 [f there exists some time step to at which the system (N, P(r), NTG) is sym-

metric, then it will remain symmetric for every t, t > tg.
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Proof: We will use induction on time. The system is symmetric at time step f5. Assume
now that the system is symmetric at time ¢. There exist two main types of events that can
happen in time step ¢ in the system: (1) a new packet is injected, (2) a packet is served and
advanced to the next node (a packet that is absorbed can be considered as being advanced
to a null node). New packets that are injected in the system are injected simultaneously
at corresponding nodes. Therefore, the symmetry is preserved. Consider now a node (i, 5)
and the corresponding node (2 + 7,7 4 5). There are two types of packets queued up
at node (i,7): packets of type i that move horizontally, and packets of type j that move
vertically. Packets of type j have priority over packets of type ¢. The corresponding node
(7 + 57+ %) has packets of corresponding types ¢ + 7 and j + 5, with type j + 5 having
higher priority. By definition of symmetry, corresponding nodes have the same number of
packets of corresponding types. Since the queueing policy used at all nodes is the same, the
packets selected to be served next will be of corresponding types.

Packets of corresponding types move along corresponding nodes; therefore the packets
served at nodes (4, ) and (i + %, j+ 5) are advanced to corresponding nodes. Furthermore,
since n is assumed to be even, the corresponding node of (i + 7,7 + 5) is (z, ). Therefore,
when a packet is advanced to the next node, the relations among the queues of corresponding
nodes remain the same; thus symmetry is preserved.

Since all events that happen in time-step ¢ preserve symmetry, at the beginning of time

step t + 1 the system will be symmetric. |

Lemma 4.1 guarantees that in a symmetric system with two walls the corresponding
effective queues always have the same size and change in the same way. Furthermore, it
guarantees that if the system is initialized to be symmetric, then condition (C0) will always
be satisfied. For the rest of this section we assume that the system (N, P(r), NTG) is
initialized to be symmetric.

In the following lemma we consider the behavior of the system during the solid period

of the phase.

Lemma 4.2 Consider a system (N, P(r), NTG) that enters a phase at column i. Let N
be the size of the feeding queues of the two walls. The conditions (C1)-(C3) are satisfied

for the next N steps.
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Proof: Let (Qo,®@1,...,Qn-1) and (Zo, Z1,...,Z,—1) be the configurations of the walls
at columns 7 and 7 + & respectively. We consider only the wall at column i, but since the

system is symmetric the same also hold for the wall at column ¢ + 3.

Let T be the time that the system enters the phase. We claim by induction that for
any time step t € [T,T 4 N] the conditions (C1)-(C3) are satisfied. This holds at time 7.
Now, assume that it holds at the beginning of time step t < T 4+ N. We will prove that the

conditions will be satisfied at the beginning of time step ¢ + 1.

First note that, since the effective feeding queue has initially NV packets, and t < T+ N,
there exists at least one packet at the feeding queue, at the beginning of time step t. There
are two ways a hole can be created in the wall in time step ¢: if the feeding queue @); is
non-contiguous, or if the packets of ); are blocked at node (7,7 —1) by some runaway packet
of type ¢ — 1. From the induction hypothesis, the queue ); is contiguous at the beginning of
time step ¢, and there exist no runaway packets. Thus, at the beginning of time step ¢t 4+ 1,

the condition (C1) is satisfied.

There are two ways that the feeding queue can become non—contiguous in time step ¢:
if a packet is added to the feeding queue, or if some runaway packet blocks the packets of
the feeding queue at some node in span;(7). From the induction hypothesis there exist no
runaway packets at time t. Furthermore, since the two walls are solid at the beginning of
time step ¢, no packets of the queue Z; cross column 7+ 5 to enter queue ;. Consider now

some newly injected packet p of type 7. The packet p follows the sequence

(i +1),0,7+2),0,5+3),-- 0=, 0+1,5),0+2,5),--, (G = 1,9).

If j € {i...i+ 5 — 1}, then the packet p will reach column ¢4 % at node (5,74 %) before
it reaches column 4, and it will be queued at the effective queue Z;. If j € {i+ % ...1 — 1},
then the packet p will reach column 7 at node (j, %) before it reaches column 74 %, and it
will be queued at the effective queue ;. Therefore, the queues fed are the bottom queues
of the walls. No new packets are added to the top queues, including the feeding queues.
Therefore the queue (); is contiguous at the beginning of time step t 4+ 1 and the condition

(C2) is satisfied.

Since the walls are solid in time step ¢, no packets cross columns i and i + 5. From

the above argument, packets injected in time step ¢t are queued at the effective queues
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QH_%, ..., Qi1 and Z;, .. -7Zi+§—1- Therefore, no runaway packets are created in time
step t. The condition (C3) is satisfied at the beginning of time step ¢ 4 1.
The walls will remain solid, as long as there are packets in the feeding queues. Since no

new packets are added to the feeding queues, they will empty out after N steps. |

The duration of the solid period is equal to the size of the feeding queues. When the
feeding queues empty out the system enters the transition period. In the following lemma
we provide a set of conditions (C4) and (C5) that must be satisfied so that, at the end of

the phase, the system enters a new phase at column ¢ + 1.

Lemma 4.3 Consider a system (N, P(r), NTG) that enters a phase at column i at time t.
Let N be the size of the feeding queues of the two walls at time t. The phase is terminated
at time t' = t+ N + n — 1. If the following conditions (C}) and (C5) are satisfied at time

t, then at the end of time step t' + 1 the system enters a new phase at column 1+ 1:
(C4) The secondary queues have size at least n — 1.

(C5) The secondary queues are contiguous.

Proof: First note that if the conditions (C4) and (C5) are satisfied at the beginning
of the phase, then they will also be satisfied at the beginning of the transition period,
since no packets enter or leave the secondary queues during the solid period. Let T =
t + N be the time the solid period ends, i.e., the time that the feeding queues empty out.
Let (Qo,...,Qn-1) and (Zy, ..., Z,—1) be the configurations of the walls at column 7 and
i + 5 respectively. We examine the behavior of the wall at column . Since the system is
symmetric, the same hold for the wall at column ¢ + 7.

At time T there exist n — 1 packets of type 7 at column ¢, one at each node. Denote by p
the packet at node (¢4 1, ), which will be the last of these packets to leave the system. At
time 7'+ 1 the packet p leaves the node (i + 1,1%), and frees the packets in the queue Q;41.
At the next time step the packets of type 7 + 1 start moving vertically along column ¢+ 1.
At time T+ 2 the first of these packets moves to node (i 4 2,74 1). Denote this packet by
g. There are two streams of packets: one of packets of type 7 that drain out of column ¢,
and one of packets of type 7 + 1 that take over column 7 + 1. Packet p is at the tail of the

first stream, while packet ¢ is at the head of the second stream. Packets p and ¢ move in
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parallel. At time T+ k, k > 2, packet ¢ leaves node (i + k,7) and frees the packets of the
queue (Q;+x. At the same time step packet ¢ moves to node (i 4 k,7+ 1) and blocks the
packets of the queue @Q;4+%. At time step T 4+ n — 1 the packet p exits the system and the
phase is terminated. At time step 7'+ n the packet ¢ reaches the node (¢,7+ 1).

From (C4), the queue Q;41 has at least n — 1 packets. If the stream of these packets is
contiguous then at time 7'+ n a wall is formed at column ¢+ 1. From (C5), the queue Q;41
is contiguous. The only way that the stream of packets of type ¢ + 1 can be interrupted is

if some packet blocks the packets of queue ;41 at some node in span;(i + 1).

For the following we think of the effective queues @i, 0 < k < n — 1, as “moving”
from column ¢ to column 7 + 1. Therefore, although the wall at column ¢ collapses, it still
makes sense to talk about the queue Q. The effective queue @)y should be thought of as a
collection of packets that is identified by row k rather than a queue that is located at some

node.

We now claim inductively that the following holds: at the beginning of any time step
t € [T, T 4 n], no packet has crossed both columns i + 1 and ¢ 4+ % 4+ 1. In Lemma 4.2 we
showed that no runaway packets are created during the solid period; therefore the claim
holds at time 7. Assume now that the claim is true for any time ¢’ < ¢, where T' < t < T'+n.
From the induction hypothesis at the beginning of time step t there exists no packet that
has crossed both columns 74+ 1 and 7 + % + 1, that could block the packets of (J;+1. Thus
the stream of packets of type 72+ 1 remains contiguous in time step ¢. From the description
of the transition period, for every row k, k # i 4+ 1, there exists a packet that blocks either
node (k,7) or node (k, i+ 1), with only exception the row i. Therefore, no packet of queues
Qit2,..,(Qi—1 crosses column i+1. Symmetrically, no packet of queues 7, D42y Zz’+§—1
crosses column i+ % 41. New packets injected in the interval [T, T+n], of type i, ...,i+5 -1
are queued at queues 7;, .. .,ZH%_l, while new packets of type i+ %,...,7— 1 are queued
at queues QH_%, ..., @Q;_1. Therefore, the packets of type ¢ that cross column 7 + 1 are
queued at queue ZH—% and do not cross column ¢ + 5 + 1. Symmetrically, the packets of
type © + % that cross column 7 + % + 1 do not cross column 7 4+ 1. Thus, no packets cross
both columns 74+ 1 and 7 + % + 1 in time step ¢.

Since the streams of packets of type 7 + 1 and 7 + % 4+ 1 are not blocked during the

transition period, at the end of time step T + n, there exist two walls at columns 74 1 and

1+ % + 1, and the condition (C1) is satisfied. The feeding queues of the two walls are the
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queues (Q;41 and Zz’-l—%-l-l- The two queues are initially contiguous. During the transition
period no new packets are added to the queues ();4; and 7;, 241 and no runaway packets
block their packets; therefore,they remain contiguous at the end of time step T+ n, and
the condition (C2) is satisfied. From the above argument, there exist no runaway packets
at the end of time step 7'+ n. The conditions (C0)—(C3) are satisfied, so at the end of time

step T + n the system enters a phase at column 7 + 1. |

Consider now the system (A, P(r), NTG) that has entered a phase at column i. Let
(Qo,Q1,...,Qn-1) and (Zy, Z1,..., Zy—1) be the configurations of the walls at columns i
and ¢+ 7 respectively. We make the following observations, which are directly implied by

Lemmas 4.2 and 4.3.

Observation 1 If N is the size of the feeding queue, the duration of the phase is N+n—1

steps.

Observation 2 During the phase only the bottom queues, QH_%, o Qivand Z;, ... Zz’+§—1;

are fed; no packets are added to the top queues Q);, .. -7Qg—1 and Z%, ey Ziq.

Observation 3 During the phase exactly two types of packets are absorbed at each time

step.
The last observation is the heart of the proof of the following theorem.

Theorem 4.1 If r > %, at the end of a phase the total number of packets in the system
(N, P(r), NTG) has increased.

Proof: Consider a system that enters a phase at column ¢. Let N denote the size of the
feeding queues. The total number of packets of type either 7 or i + 3 is M = N +n — 1.
Denote by O the total number of packets of type other than 7 and i+ 3. The total number
of packets in the system T, at the beginning of the phase, is T =2M + O.

The duration of the phase is exactly M steps. During these M steps the total number
of packets injected in the network is nrM. During the phase exactly two types of packets
are absorbed, so the total number of packets absorbed is 2M. The total number of packets
T’ at the end of the phase is T/ =T +nrM — 2M = O + nrM. In order for T’ > T, we
need that nrM > 2M, that is, r > % So, if the rate of injection is greater than %, then

the total number of packets at the end of the phase increases. |
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4.4 The Proof of Instability

In the previous section we examined some phase in isolation. We showed that if the con-
ditions (C4)-(C5) are satisfied at the beginning of the phase, then at the end of the phase
conditions (C0)-(C3) are satisfied, and the system enters a new phase. However, we cannot
guarantee that conditions (C4)—(C5) will be satisfied at the beginning of the new phase. We
will now prove that if we initialize the system appropriately then the conditions (C4)-(C5)
are always satisfied at the beginning of every phase. Thus, once the system enters phase 0,
it goes through successive phases.

We initialize the system (N, P(r), NTG) with two walls, one at node 0 and one at node
5. All queues are contiguous. All queues have size at least n — 1, except for the feeding
queues whose size is chosen arbitrarily, but it is the same for both queues. There exist no
runaway packets. The system is initialized so that it is symmetric. We choose the rate of
injection r to be %, where n is the size of the torus.

Let (Qo,...,Qn-1) and (Zo,..., Z,_1) be the configurations of the two walls. In the
following theorem we will prove that the system goes through a sequence of phases. At each
phase there exist two walls which collapse at the end of the phase and two new walls are
created one column over. Instead of thinking that two new walls are formed at each phase,
we can think of the initial two walls as “moving” from column to column. Together with
the wall “move” the effective queues associated with this wall. An effective queue can be
thought of as a collection of packets identified by the the row index of the queue, and not
by the node at which the queue is located. Thus, it makes sense to consider the evolution
of an effective queue through different phases of the system.

For the proof of the next theorem we assume that all column indices are modulo n.

Theorem 4.2 At time t = 0, the system (N, P(r), NTG) enters phase 0 at column 0. For

every m > 0, at the end of phase m the system enters phase m 4+ 1 at column m + 1.

Proof: The system is initialized so that the conditions (C0)-(C5) are satisfied. Therefore,
at time ¢t = 0 the system enters phase 0. At the end of phase 0, the system enters phase 1
at column 1.

Now assume that, for any j < k, at the end of phase j at column j the system enters
phase j+ 1 at column j+ 1. We will prove that at the beginning of phase &k the conditions
(C4)-(C5) are satisfied; therefore, at the end of phase k the system will enter phase k£ + 1



48 CHAPTER 4. INSTABILITY OF NTG FOR CONSTANT RATE INJECTIONS

at column %k + 1. The secondary queues at phase k are the queues Q41 and 7, 241 For
the rest of the proof we consider only the queue Qg4+1; since the system is symmetric the

same also hold for the queue Z;4 4 2.

We first prove that the queue (Qg4+1 has size at least n — 1. If £ < n — 1, then the
secondary queue is one of the queues that were initialized with size at least n — 1. During
any phase the only packets consumed are the packets that create the walls, so the size of
(r+1 either remains the same, or increases. Therefore, the size of (Jr41 will be at least

n—1.

If £ > n—1, then at phase £k — n + 1 the queue QQx+1 was the feeding queue. At the
beginning of phase kK — n 4+ 2 the queue Q41 is empty. From phase £ — n 4+ 2 to phase
k — % + 1 the queue Q41 is one of the bottom queues; therefore, from Observation 2 it is
fed. From phase £+ 7 + 2, when queue Qk—%-u becomes the feeding queue, to phase k the
queue Qx4 is one of the top queues; therefore, from Observation 2 it is not fed. Thus, the
queue (py1 is fed for exactly & phases. The duration of a phase is N +n — 1 steps, where
N is the size of the feeding queues; therefore, the duration of any phase is at least n — 1
steps. Therefore, at least r(n — 1) packets are queued at Q41 during each phase that it is

fed. Thus, the total size of Qg1 is:

n
|Qrt1] > 57“(" - 1).

2

Choosing r > = guarantees that the size of Qp4; is at least n — 1. For r = %, |Qry1| >

Hon ).

We will now show that the queue QQg41 is contiguous. From Lemmas 4.2 and 4.3, no
runwaway packets are created during a phase that could block the packets of queue Q4.
Therefore, the only way that the queue (Jx41 can become non-contiguous is if a new packet
is added to it. Denote by p the phase k¥ — 5 + 2, the first phase that Qg41 is not fed. If
at the beginning of phase p the queue Qx4 is contiguous, then it will remain contiguous,
since (Qr4+1 is not fed and the queueing policy is work conserving. Suppose now that at
the beginning of the phase p the queue Q41 is not contiguous. We will show that there is
enough time in phase p for the queue Q41 to become contiguous. The span of any effective
queue is at most % nodes. Therefore there can be at most 5 — 1 empty nodes between two

non-empty nodes of an effective queue. Phase p has duration at least n — 1 steps. Since the
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queueing policy is work conserving, at the end of phase p , @x+1 will be contiguous, and it
will remain contiguous until phase k.
At the beginning of phase k the conditions (C/)-(C5) are satisfied; therefore, at the end

of phase k the system enters phase £+ 1 at column k£ + 1. |

We have therefore proved our goal. The following theorem is directly implied from

Theorems 4.2 and 4.1.

Theorem 4.3 The system (N, P(%LNTG) is unstable, starting from a non-empty config-

uration.

The instability example we described has very specific initial conditions. We can prove
that it is possible to achieve instability starting from a less restrictive initial state of the
system. We initialize our system with two queues of packets of type 0 and 5 at nodes (0,7 —
1) and (%, % — 1) respectively. Both queues have size NV, where N is chosen appropriately.
We can prove that after some time the system evolves into a state identical to the initial
state of the instability example we described. Using Theorem 4.2 we can prove that the
system is unstable.

Furthermore, simulation results indicate that it is possible to reach instability starting
from a less “artificial” initial condition. Consider node (i,i—1) and the corresponding node
(t+%5,1— 14+ %). Assume that these servers are out of service for a sufficiently long period
of time. When the two servers resume service the queues build up at these nodes cause the

system to become unstable.

4.5 Instability of packet routing networks

The network N previously described is a network of servers. We are interested in proving
instability in the special case of packet routing. We will prove that there exists a packet
routing network that is unstable under the same rate conditions. A packet routing network
is a directed graph G. The service points of the network are the edges of the graph. The
packets follow paths of edges on G.

In the following, we will present a simple algorithm that takes as input network N and
produces a packet routing network G. However, the packet routing network G is not directly

equivalent to the network A/. That is, at some time ¢, there can be some packet p that
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is not at the same stage of its route in both G and A networks. Thus, we cannot argue
directly for the instability of network G. Instead, we transform the network G back into a
network of servers A’/ that is unstable if and only if G is stable. The network A’ can be

shown to be unstable for injection rate r = %

The algorithm for producing the packet routing network G is the following:

For every server k in A, put an edge e = (ug,vx) in G. If there exists a
packet in the network of servers that moves from server k& to server m, put
an edge erm = (Vk, um) in G. We call edges e “server” edges, and edges ey,

“connecting edges”. A packet of type 2, that follows the path
(e + 1), (6,04 2), ..., (45,0 = 1), (e 4+ 1,9),..., (1 — 1,49)

in network A/, will follow the path

C(i,i+1)€(5,i4+1)(5,i4+2)€(4,i42) 1 -+ -1 €(4,4—1)€(4,i=1)(i4+1,6)s €(i4+1,0)s -+ - €(i—1,0)

in network G.

The resulting system (G, Pg(r), N'TG) is not directly equivalent to the system (A, P(r),
NTG). In this network all edges have processing time 1, including the connecting edges.
In the network of servers the packets move between the servers in zero time. We will show
that it is possible to transform the system (G, Pg(r), N'TG) back into a network of servers

that is unstable, under the same rate conditions.

The transformation of the packet routing network into a network of servers is straight-
forward. For every edge of the network, create a server, and then connect the servers. The
resulting network is an augmented version of the torus N previously described (Figure 4.2).
For every node (i, ) of N there exist two new nodes (i,j’) and (7', ), which represent the
connecting edges €(; j)(; j+1) and € jy(i41,5) respectively in graph G. For the special case of
nodes (i,7— 1) we add a node (', ) which represents the connecting edge e(; ;_1(i41,5)- No
node ([i — 1]’,4) is introduced for the terminal nodes (i — 1,7). We denote this new network

by N'.

There still exist n types of packet in the system. A packet of type 7 in this network
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follows the path

(t,i4+1), (4, [i4+1]), (4, i4+2), (4, [F+2]), ..., (5,0 = 1), (¢, 0), (i +1,2), (F+1],4), ..., (1 —1,1).

Note that the newly introduced nodes are used by exactly one type of packets; therefore no
more than one packet is ever queued at these nodes. All packets are injected simultaneously
at the same rate r. We denote by P’ this collection of paths. We have defined a new system
(N, P'(r),NTG). 1t is easy to see that (G,Pg(r), NTG) is unstable if and only if the
system (N, P'(r), NTG) is unstable.

We consider the network A/ as having n rows and n columns. Row i includes all nodes
(,+), and column j all the nodes (-,7). An example of the 4 x 4 network N’ is shown in

Figure 4.2. The shaded nodes are the newly introduced nodes.

Figure 4.2: The 4 x 4 network N’

The proof of instability for the system (N, P(r), N'TG) can be easily modified to work



52 CHAPTER 4. INSTABILITY OF NTG FOR CONSTANT RATE INJECTIONS

for system (N',P'(r), NTG). The properties of system (N, P(r), N'TG) can be generalized
for the case of the system (N’ P'(r), NTG). Using these properties, we can show that the
system (N, P'(r), N'TG), when initialized appropriately, evolves in phases. At the end of
each phase the number of packets in the system increases. Thus, we reach the following

theorem.

Theorem 4.4 The system (N, P'(2), NTG) is unstable, starting from a non-empty con-
figuration; therefore, the system (g,Pg(%),NTg) is unstable starting from a non-empty

configuration.



Chapter 5

Conclusions

In this work we extended the adversarial model described in [BKR*96] and [AAFT96] to
include general queueing networks. In the new adversarial model we considered four new
queueing policies: Most-Time-To-Go (MTTG), Least-Time-To-Go (LTTG), Most-Service-
Demand (MSD), and Least-Service-Demand (LSD). We proved that in this new model the
ring is no longer universally stable; the queueing policies NTG, FIFO, MSD, LTTG, and
MTTG can be made unstable on the ring against an adversary of rate less than 1. We
showed that the universal stability of FTG, LIS, and SIS queueing policies goes through in
the new adversarial model, while MTTG is universally stable against a class of restricted
adversaries. Furthermore, following the outline in [BKSW96] we provided a complete proof
that the NTG queueing policy can be made unstable against an “adversary” that injects

arbitrarily small workload at constant rate.

This work leaves open several interesting questions. One is to determine the stability of
the LSD queueing policy. The LSD queueing policy gives precedence to the customer that
requires the minimum service time at a given server among those that are queued at that
server. Also, it would be interesting to establish whether LIFO is stable on the ring in the

new model.

The stability results we presented assume that the length of the longest path of any
customer is bounded. It remains an open question whether we can prove stability when the
paths of the customers can become arbitrarily long (but still subject to the rate condition).
Furthermore, we proved that MTTG is stable when the service requirements of any customer

at any server are bounded from below, and unstable when they can become arbitrarily small.

53
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We have seen that MTTG can become unstable in the (0,d)-model against an adversary
that exploits ties among customers with the same remaining service time. We do not know
if it is possible to force instability when there are no ties.

In the instability examples for the ring the same customer requires different service times
at different servers, and different customers require different service times at the same server.
In the proofs we fully exploit the power of the adversary in determining the service times.
For the purposes of analysis of packet routing networks it would be interesting to examine

whether the ring is stable in one of the following weaker adversarial models:

e Different customers may have different service requirements but the same customer
has the same service requirements at every server along its path. (This models the

case that different packets have different sizes).

e A customer may have different service times at different servers, but different cus-
tomers have the same service times at the same server. (This models the case that

different links have different service rates).

o If two different customers use the same two servers then the ratio of their service times
at the different servers is the same. (This models the case that different packets have

different sizes and different links have different service rates).

The above models are not trivial generalizations of the adversarial model defined in [AAFT96].
For example, breaking packets of large size into many packets of unit size, or replacing edges
of large service rate with many edges of unit service rate, does not necessarily yield equiva-
lent systems. However, it seems probable that the universal stability of the ring presented
in [AAFT96] can be extended to these models. A strong indication in this direction is the
proof of stability of the ring under the Cruz model, presented in [TG96], where packets of
different sizes are considered.

The proof of instability of NTG against an adversary of arbitrarily small rate assumes
a symmetric structure of the initial configuration. This simplifies the proof, but simulation
results suggest that it is possible to relax the conditions on symmetry and still force the
system to become unstable. Furthermore, simulation results indicate that it is possible to
force instability when packets are generated by a Poisson process, if the system is initialized
with large enough queues. It would be interesting to obtain formal proofs for these two

cases. Moreover, it would be interesting to investigate if an analogous example can be
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constructed for FIFO queueing policy, or if there exists some rg > 0 such that the FIFO
queueing policy is stable against any adversary of rate ry on every network. The question
was first posed by Andrews et al., for the adversarial model defined in [AAFT96], where
all packets have unit service requirements at each server. In the new model, it would
be interesting to examine if the example presented in [Bra94b] can be translated into the
adversarial context. Furthermore, the instability example in [Bra94b] depends heavily on
the immediate feedback of the servers. It would be interesting to consider the same question
when we do not allow immediate feedback.

It remains an interesting open question to determine a set of general conditions that
are sufficient to guarantee the stability of general multiclass networks. Recent results by
Bramson [Bra96] show that the FIFO and PS queueing policies are stable under generalized
assumptions on the arrival process and the service times, when the service times are class
independent. It would be interesting to examine if these results can be extended to other
policies, especially ones that differentiate among customers of different classes.

Finally, most instability examples consider the initial configuration of the system to be
non-empty. In the adversarial model we proved that for most systems that are unstable
starting from an non-empty configuration, there exists a system that is unstable starting
from an empty configuration. It would be interesting to examine if it is possible to force
instability on any system that starts from an empty configuration when packets are injected

at constant rate.
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