
Efficient Multi-User Indexing for Secure Keyword Search

Eirini C. Micheli, Giorgos Margaritis, Stergios V. Anastasiadis
Department of Computer Science and Engineering

University of Ioannina, Greece
{emicheli,gmargari,stergios}@cs.uoi.gr

ABSTRACT
Secure keyword search in shared infrastructures prevents
stored documents from leaking confidential information to
unauthorized users. We assume that a shared index provides
confidentiality if it can only be used by users authorized to
search all the documents contained in the index. We intro-
duce the Lethe indexing workflow to improve query and up-
date efficiency in secure keyword search. Lethe clusters to-
gether documents with similar sets of authorized users, and
only creates shared indices for configurable volumes of docu-
ments with common users. Based on the published statistics
of an existing dataset, we show that Lethe generates an in-
dexing organization that simultaneously achieves both low
search and update cost.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; K.6 [Management of Computing
and Information Systems]: Security and Protection

General Terms
Design, Experimentation, Measurement, Security

Keywords
inverted index, clustering, full-text search, shared data stor-
age, confidentiality

1. INTRODUCTION
Keyword (or full-text) search is an indispensable service

for the automated retrieval of text documents, whether pro-
prietary within an organization, or public across the web.
Over the years, an enormous amount of accumulated text
has gradually expanded keyword search to several contempo-
rary storage environments, such as personal content archives,
online social networks, and cloud facilities. At the same

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.
7th International Workshop on Privacy and Anonymity in the Information
Society (PAIS’14) March 28, 2014, Athens, Greece

time, the efficiency benefits of storage consolidation increas-
ingly motivate the maintenance of sensitive data over pub-
lic infrastructures. Indeed, the access control enforced at
the storage level is often presumed sufficient for the neces-
sary confidentiality isolation of co-located users and organi-
zations.

An inverted index is the dominant indexing structure in
keyword search. The stored documents are preprocessed
into a posting list per keyword (or term), which provides
the occurrences (or postings) of the term across all the doc-
uments. A single index shared among multiple users offers
search and storage efficiency. However, it can also leak con-
fidential information about documents with access permis-
sions limited to a subset of the users [5, 13, 10, 3]. The
problem persists even if a query is initially evaluated over
the shared index, and later the inaccessible documents are
filtered out from the final result list before it is returned to
the user [5].

A known secure solution applies a shared index by lim-
iting search to term postings of documents searchable by
the user [5]. During query processing it skips dependen-
cies on inaccessible documents through posting filtering at
extra list processing overhead. In online social networks, re-
cent research applies advanced list-processing operators and
cost models to improve secure search efficiency [3]. First,
it organizes the friends of each user into appropriate groups
based on characteristics of the search workload. Then, dur-
ing query handling, it intersects the list of documents that
contain a term against the list of documents authored by
the querying user and the union of her friend groups.

A different secure solution partitions the document collec-
tion by search permissions, and maintains a separate index
for each partition [13]. The collection ends up indexed by
a limited number of indices, and query handling runs over
all the indices that contain documents searchable by the
querying user. However, minor variations in search permis-
sions of different documents increases the number of indices.
Although smaller indices can be completely eliminated by
replicating their contents to private per-user indices, this
approach increases document duplication across the indices
and the respective update cost.

In this study, we aim to achieve low search latency and
index update cost by limiting both the number of indices per
user and the document duplication across the indices. We
group by search permissions the documents into families,
and cluster together the families with similar permissions.
We maintain one index for the documents searchable by a
maximal common subset of users in a cluster. Cluster docu-

Searchers

ClusterFamily

Figure 1: Document families grouped
by searcher similarity Ls into clusters.

Indices

Clusters of
Families

Index
Requests

Searchers & Docs
per Index

Searchers
per Doc

Crawler Clusterer Mapper Indexer

batch1

batch2

batch3

...Searchers

Index Name

User IDs

Doc IDs

Index Name

User IDs

Doc IDs

Index ID

Searcher IDs

Doc IDs

Figure 2: The four stages of the Lethe workflow.

ments whose users lie outside the above subset are inserted
into either per-user private indices or additional multi-user
indices.

Our indexing organization for secure keyword search is
innovative because we (i) skip query-time list filtering via
prebuilt securely-accessible indices, and (ii) effectively re-
duce the number of searched or maintained indices through
configurable partial merging of indices for documents with
common authorized users. In Sections 2 and 3 we present
the Lethe indexing workflow and our prototype implementa-
tion. In Sections 4 and 5 we show some experimental results
and examine previous related work, while in Section 6 we
summarize our conclusions and plans for future work.

2. INDEXING ORGANIZATION
We next provide the basic assumptions and goals of our

work, and describe the stages of the Lethe indexing workflow
that we propose.

2.1 Assumptions and Goals
We target collections of text documents in shared stor-

age environments accessible by multiple users. The system
applies access control to protect the confidentiality and in-
tegrity of the stored documents from actions of unautho-
rized users. We designate as owner the user who creates
a document, and searchers of the document the users who
are authorized to search by keywords for the document and
read its contents. The system preprocesses the documents
content into the necessary indexing structure to enable inter-
active search through keyword criteria set by the searchers.
In our indexing organization we set the following goals:

• Security Ensure that the indexing structure provides
confidentiality of the searched documents with respect
to the document contents and their statistical charac-
teristics (e.g., number of documents, term properties).

• Search Efficiency Minimize the search latency per
query as measured through an appropriate metric (e.g.,
median or high percentile).

• Indexing Cost Minimize the document insertion I/O
activity and indexing storage space required for the
entire collection.

We require that users are authenticated by the system and
authorized to only search documents with the necessary ac-
cess permissions. Accordingly, we build a separate index
for each document subset with common access permissions.
We presently examine secure search in multi-user environ-
ments, but leave outside the study scope the closely related
but complementary problem of search over encrypted stor-
age. In fact, search with encrypted keywords over encrypted

documents conceals the search activity and stored docu-
ments from a storage provider, but it does not necessarily
hide the characteristics of stored content from unauthorized
searchers [13].

2.2 The Lethe workflow
We introduce the Lethe workflow consisting of four basic

stages for crawling, clustering and mapping the documents
to the generated indices.

Crawler In order to realize our goals, we build an appro-
priate indexing organization based on the document search
permissions. Let a text dataset T = (DT , ST), where DT
is the set of all documents, and ST the set of all users
with search permissions over one or more documents of DT .
First we crawl the names (e.g., paths) and permissions (e.g.,
allowed searchers) of documents in T , and assign unique
identifiers to the members of DT and ST . Then we group
into a separate family f = (Df , Sf), each set of documents
Df ⊆ DT with identical set of searchers Sf ⊆ ST .

Clusterer We aim to maintain a single index for the
searchers who are common among similar families. Accord-
ingly, we need to identify those families with substantial
overlap in their searcher sets. We address this issue as a
universal clustering problem over the searcher sets of the
families in the entire dataset (Fig. 1). We parameterize the
clustering method as necessary to assign every family to ex-
actly one cluster, without omitting any families as noise.

Let the searcher similarity Ls ∈ [0, 1] be a configurable
parameter to adjust the number of common searchers across
the families of each created cluster. We generate a set CT
of clusters, where each cluster c ∈ CT contains a set Fc of
families, and each family f ∈ Fc contains the document set
Df ⊆ DT . The document set Dc of cluster c is derived from
the union of the documents contained across all the families
of c, i.e., Dc =

⋃
f∈Fc

Df . Thus, the number of documents
in cluster c is at least as high as the number of families in c,
i.e., |Dc| ≥ |Fc|.

Mapper We strive to map each family f to the mini-
mum number of indices required to securely handle keyword
queries over the documents in Df , but also minimize the
total number of indices in the system. First, we dedicate
to every searcher u ∈ ST the pair Pu = (De

u, {u}), where
De

u ⊆ DT is the set of documents exclusively searchable by
u. Then, we assign to Pu a private index Iu containing the
documents of De

u.
Let the cluster intersection Pc of cluster c ∈ CT be a pair

(Di
c, S

i
c), with Di

c = Dc, and Si
c =

⋂
f∈Fc

Sf the intersection
of searchers in the families of Fc. By family definition, the
documents in Di

c are searchable by all the searchers in Si
c.

If
∣∣Si

c

∣∣ 6= ∅, we dedicate a separate index Ic to the intersec-
tion Pc. For every family f ∈ Fc, we also define a family

difference Pf as the pair (Dd
f , S

d
f), where Dd

f = Df and

Sd
f = Sf −Si

c, i.e., Sd
f corresponds to the searchers of family

f not contained in Si
c of Pc. If Sd

f 6= ∅, we have to allow the

users u ∈ Sd
f to securely search for documents d ∈ Dd

f .
An extreme approach to address the above Pf search prob-

lem is to insert every document d ∈ Dd
f to every private

index Iu, u ∈ Sd
f . However, a difference Pf may contain a

relatively large number
∣∣Dd

f

∣∣ of documents searchable by a

considerable number
∣∣Sd

f

∣∣ of users. Hence, the above ap-
proach would end up to a large number of documents dupli-
cated across the private indices of many users. At the other
extreme, we could dedicate a separate index If to every dif-
ference Pf with

∣∣Sd
f

∣∣ 6= ∅. However, this approach runs the
risk of generating in the system a large number of indices,
each serving a small number of documents and searchers.

We introduce the duplication product Rd
f =

∣∣Dd
f

∣∣ · ∣∣Sd
f

∣∣
to approximate1 the potential document duplication result-
ing from indexing a family difference Pf . Subsequently, the
decision of whether we should create a dedicated index If
depends on how Rd

f compares to the configurable duplication

threshold Td. We assume that Rd
f < Td implies an affordable

cost of inserting the documents d, ∀d ∈ Dd
f , to private in-

dices Iu, ∀u ∈ Sd
f . Instead, Rd

f ≥ Td suggests that devoting
a separate index If to the difference Pf is preferable.

An optimization that we do not examine further due to
its complexity is to pursue additional duplication reduction
by intersecting the searchers of the differences Pf ,∀f ∈ F ′

c,
for appropriate F ′

c ⊂ Fc corresponding to cluster c.
Indexer We insert each document d ∈ DT to the appro-

priate Ic, If , and Iu indices specified by the above map-
ping phase. In order to keep low the necessary I/O activity,
we separately generate each index through a specification
of the contained documents. We experimentally validated
that the alternative approach of specifying to the system
the indices of each document leads to higher I/O activity
due to lower storage locality during the index updates. As
new documents are added to the collection, we look for ex-
isting indices to securely serve all the searchers of each doc-
ument. Periodically, we repeat the previous clustering and
mapping phases to optimize the search over the accumulated
document collection. Deletions or modifications of inserted
documents are handled with the necessary changes of the in-
dex contents and potential reorganization of their mapping
to documents. We summarize the four stages of the Lethe
workflow along with their outputs in Fig. 2.

3. PROTOTYPE IMPLEMENTATION
Based on the above design, our prototype implementation

consists of four components: (i) crawler, (ii) clusterer, (iii)
mapper, and (iv) indexer. The crawler specifies a unique
identifier for each document and gathers information about
the permitted document searchers. The clusterer organizes
the documents into families according to their searchers, and
then clusters the families based on the searcher similarity
Ls. We use the searchers of each document as key to create
the families over a hash table. Thus, all documents with
identical searchers end up at the same entry of the table.

1For increased accuracy of Rd
f over diverse document sizes,

we could replace
∣∣Dd

f

∣∣ with the total number of postings

contained in all documents d ∈ Dd
f .

 1

 10

 100

 1000

 10000

 100000

 1e+06

0 10 20 30 40 50 60 70 80 90 100
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

D
o
c
u
m

e
n
ts

 p
e
r

C
lu

s
te

r

N
u
m

b
e
r

o
f
C

lu
s
te

rs

Searcher Similarity (Ls %)

Documents vs Clusters

Documents
Clusters

Figure 3: For the synthetic dataset based on Do-
cuShare[14], we examine the number of created clus-
ters and the number of documents per cluster across
different Ls values.

Subsequently, we group the families with similar searchers
into the same cluster represented as a vector of family iden-
tifiers. The searchers of a family f are concisely represented
through a searcher bitmap Mf of length equal to the num-
ber of users |ST | in the stored dataset. In bitmap Mf we set
equal to 1 the values at bit positions specified by identifiers
of permitted family searchers u ∈ ST .

Since we do not know in advance the number of clusters,
we use a clustering algorithm that produces this number as
output (e.g., DBSCAN) rather than requiring it as input
(e.g., K-means) [16]. Within each cluster, the mapper iden-
tifies the cluster intersections and family differences. Each
intersection or difference is specified through the contained
documents and authorized searchers. We assign a dedicated
index to each cluster intersection, and we use a dedicated
index or the private indices of the respective searchers for
each family difference according to the duplication threshold
Td. The indexer receives the index specifications from the
mapper, and splits each index into document batches. Then
it communicates with the search engine to insert the docu-
ments of each batch to the respective index, after initializing
it if necessary. Finally, the search engine serves queries by
using the indices permitted to each authorized searcher.

4. EXPERIMENTAL EVALUATION
We use the published statistics of a real dataset to gener-

ate a synthetic workload, and apply a prototype implemen-
tation of the Lethe workflow that we developed. Then we
measure the number of indices per user and document for
different parameters, and analyze the security and efficiency
characteristics of our approach.

4.1 Document Dataset
We generate a synthetic document collection with searcher

lists based on published measurements of an existing dataset
(DocuShare [14]). We set the number of users to 200, user
groups to 131, documents to 50000, and max group size to
50. We specify the sizes of individual groups from the Do-
cuShare statistics, and uniformly pick users as group mem-
bers. Based on the DocuShare statistics, we specify the
number of users and groups allowed to search each docu-

 1

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
In

d
ic

e
s
 p

e
r

S
e
a
rc

h
e
r

Searcher Similarity (Ls %)

Search Cost

Td = 0
Td = 500
Td = 1500
Td → ∞

(a)

 1

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
In

d
ic

e
s
 p

e
r

D
o
c
u
m

e
n
t

Searcher Similarity (Ls %)

Update Cost

Td → ∞
Td = 1500
Td = 500
Td = 0

(b)

 0

 20

 40

 60

 80

 100

 1 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

In
d

ic
e

s
 p

e
r

S
e

a
rc

h
e

r

Number of Indices per Document

Search-Update Tradeoff (Ls = 60%)

Td = 0

Td = 500

Td = 1500
Td → ∞

(c)

Figure 4: For the synthetic dataset based on DocuShare[14], we illustrate the number of indices (a) per
searcher and (b) per document across different Ls and Td values. In addition, we show (c) the search-update
tradeoff for different Td values at fixed Ls=60%.

ment, and then uniformly assign to each document specific
users and groups. We implemented the crawler, clusterer
and mapper in C/C++ with STL, and the indexer in Perl
(v5.10.1). For clustering we applied the DBSCAN algorithm
with MinObjs=1 and Eps=Ls [16]. We run the computa-
tions over Linux v2.6.32 on quad-core x86 2.33GHz proces-
sor, 4GB RAM, and 7.2KRPM SATA disks.

4.2 Measurement Results
We applied the Lethe workflow to organize the examined

dataset into clusters of document families. For different Ls

values, in Fig. 3 we show the average number of documents
per cluster and the total number of clusters. The duplica-
tion threshold Td is not included because it only applies to
the subsequent mapping stage. The ideal similarity should
result into family clusters with common searchers per cluster
to be efficiently served by a single index. For instance, set-
ting Ls=60% generates 929 clusters with 53.82 documents
per cluster. At the extreme case of Ls=0%, there is 1 cluster
containing all 1475 families and 50000 documents. At the
other extreme of Ls=100%, there are 1475 clusters, each
containing 1 family with 33.90 documents on average.

We regard the number of indices per searcher as a proxy
of the search cost, because it specifies the number of doc-
ument lists that have to be merged into the final search
result. Accordingly, in Fig. 4a we examine the sensitivity of
the search cost to the values of the Ls and Td parameters.
We experimented with Td values in the range [0,+∞). The
indices per searcher vary between 35 and 79 at Td=500, and
between 11 and 22 at Td=1500. Setting Ls=0% or 100%
usually maximizes the number of indices per searcher. This
follows from the fact that index sharing is limited in a single
cluster of diverse families, or numerous clusters of one family
each. On the contrary, setting Ls=60% leads to non-empty
cluster intersections, and roughly minimizes the number of
indices per searcher. One exception to the above pattern
occurs with Td → ∞, which prohibits index sharing within
family differences, and minimizes the indices per searcher at
Ls=0% or 100% instead of Ls=60%.

The update cost of the indexing organization can be prox-
ied through the average number of indices that contain each

document, and have to be updated during document inser-
tion. In Fig. 4b we examine the sensitivity of the update cost
to Ls and Td. At Ls=60%, we notice that setting Td=1500
or Td → ∞ minimizes the number of indices per document
to 7.80 and 53.48, respectively. Instead, the curves remain
almost flat across different Ls values when Td=0 or 500. If
we combine this observation with the outcome of the previ-
ous paragraph, we conclude that Ls=60% leads to both low
update and search cost.

A striking difference between Figures 4a and 4b is the
opposite effect of Td to the search and update cost. This
tradeoff is further illustrated in Fig. 4c for different Td val-
ues and fixed Ls=60%. We found Td=1500 to provide a
reasonable choice, because it simultaneously achieves a low
number of 11 indices per searcher and 7.8 per document.
Overall, at Ls=60% and Td=1500, the mapper specifies a
total of 298 indices: 84 and 182 shared indices for intersec-
tions and differences, respectively, and 32 private indices. In
early measurements (not shown) that we did over a search
engine, the above results directly translated to low search
and update latency unlike alternative settings.

4.3 Analysis of Results
Our preliminary experiments provide strong evidence for

an improved method to achieve efficient and secure keyword
indexing. The method is secure because a query can only
use indices of documents that the searcher is permitted to
access [5]. The method is also efficient for several reasons.

First, we guarantee that the result returned by an index
does not require any filtering to remove documents inacces-
sible to the searcher. We only require to merge the results
from multiple indices for ranking purposes, as is typically al-
ready done by parallel or distributed search engines. Thus,
we avoid the extra query-time overhead for list processing
required by previous secure methods [3].

Second, the clustering of document families allows the ser-
vice of common searchers in the cluster intersection with a
single index. Thus, we reduce the average number of indices
per searcher, which translates into smaller number of result
lists to be generated and merged during query handling. To
the best of our knowledge, this is the first time that cluster-

ing is applied for the efficiency of secure keyword search.
Third, the control of indexing duplication through the

threshold Td prevents the insertion of the same document to
an excessive number of multiple private indices, which was
previously required [13]. Instead, we create extra shared in-
dices whenever the number of documents and their common
searchers justify their cost.

5. RELATED WORK
We compare our work with related research results previ-

ously developed for secure text indexing, remote storage of
encrypted documents, and online social networks.

Security-aware Indexing Büttcher and Clarke exam-
ine the problem of filesystem search with relevance ranking
based on the vector space model [5]. A secure search engine
must only deliver query results dependent on files searchable
by the querying user. Thus, a system-wide index to find and
rank all matching files is insecure, because it can leak the
total number of files matching a term, or term statistics nor-
mally unavailable to a user. As a solution, the authors pro-
pose to restrict query processing to the parts of posting lists
that the querying user is permitted to access. The resulting
performance slowdown can be reduced through appropriate
reordering of query operators.

Singh et al. logically organize the filesystem into sets of
files, called access-control barrels, with identical access priv-
ileges of users and groups [13]. The system constructs a
separate index per barrel, and restricts query handling to
permitted barrels. The authors define the access credentials
of users, groups and barrels, and use them as nodes of the
access credentials graph. The graph includes edges that min-
imally connect users to their groups and searchable barrels.
The authors safely reduce the number of maintained indices
by eliminating from the graph each barrel with number of
files less than a configured threshold. Then, they replicate
the respective index across the minimal set of nodes that
can search the files of the eliminated barrel.

A different study aims to improve metadata search effi-
ciency by hierarchically partitioning the filesystem by access
permissions [10]. This approach creates many small parti-
tions, but the authors leave for future study the full merging
of partitions with identical permissions. However, the above
problem is essentially family clustering with Ls=100% in the
context of the present paper.

Encrypted Storage Song et al. describe techniques to
securely search remote documents maintained in encrypted
form [15]. The client queries the server through a key and
a plaintext or encrypted keyword. The server identifies key-
word locations through linear scan of the encrypted docu-
ments. For large datasets, the server may use inverted index
of encrypted keywords, and encrypted or plaintext posting
lists. In contrast, the Mafdet system inserts keyed hashes
of document keywords into a Bloom filter at the server [1].
Thus, a client only submits keyword hashes to search for
documents at the server.

Chang and Mitzenmacher use an encrypted bitmap to en-
code the presence of particular keywords in a document [6].
The user submits a permuted keyword identifier along with
a key to search for the encrypted documents that contain the
keyword. The only information leaked to the server is the
keyword sharing among the documents. Instead, CryptDB
supports keyword search over individually encrypted words
of a text column in a relational database [12]. PRISM trans-

forms the problem of keyword search over encrypted files
into privacy-preserving map and reduce tasks [4].

Pervez et al. assume that both files and inverted indices
are stored in encrypted form at the cloud [11]. Authorized
users submit encrypted search criteria to a third party, which
homomorphically encrypts them before their transmission to
the cloud server. The cloud server uses a user-specific key
to re-encrypt the index for query evaluation.

Online Social Networks Keyword search in social net-
works is possible through a set of inverted indices with each
index containing keyword occurrences (posting lists) of doc-
uments from particular users. Access control is enforced
through intersection of the search result with the identifiers
(author list) of documents authored by a particular set of
users [2]. The authors examine alternative cost models to
optimally include specific friends in the author list of each
user, and introduce the HeapUnion operator to efficiently
process multiple lists of document identifiers [3].

Hummingbird is a microblogging system that cryptograph-
ically hides from a user the topics on which other users follow
her, and from third parties the fact that a user follows an-
other user on a specific topic [8]. More generally, Cheng et
al. enable fine-grain specification of access-control policies
in user-to-user, user-to-resource and resource-to-resource re-
lationships over social networks [7]. Hails provides data-flow
confinement at the client and server side so that mutually-
untrusted web applications can interact safely [9]. These are
more general issues of access control in social networks, and
lie beyond the scope of our present study.

6. CONCLUSIONS AND FUTURE WORK
We use clustering to identify documents with similar sets

of authorized searchers. Accordingly, we generate shared in-
dices for documents with common authorized searchers of
sufficient volume. We experimentally show that with tun-
able parameters we achieve an indexing organization that
combines low number of indices per user with low number
of indices per document. In our future work we plan to in-
tegrate the Lethe workflow into a distributed search engine
and experiment with a broad collection of datasets from col-
laborative environments, cloud storage and social networks.

7. ACKNOWLEDGEMENTS
This research has been co-financed by the European Union

(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund.

8. REFERENCES
[1] S. Artzi, A. Kieżun, C. Newport, and D. Schultz.

Encrypted keyword search in a distributed storage
system. Technical Report MIT-CSAIL-TR-2006-10,
CSAIL, MIT, Feb. 2006.

[2] T. A. Bjørklund, M. Götz, and J. Gehrke. Search in
social networks with access control. In Intl. Work.
Keyword Search on Structured Data (KEYS), pages
4:1–4:6, Indianapolis, IN, June 2010.

[3] T. A. Bjørklund, M. Götz, J. Gehrke, and
N. Grimsmo. Workload-aware indexing for keyword
search in social networks. In ACM Intl. Conf.

Information and Knowledge Management (CIKM),
pages 535–544, Glasgow, UK, Oct. 2011.

[4] E.-O. Blass, R. D. Pietro, R. Molva, and M. Önen.
PRISM - privacy-preserving search in MapReduce. In
Privacy Enhancing Technologies Symposium, pages
180–200, Vigo, Spain, July 2012.

[5] S. Büttcher and C. L. A. Clarke. A security model for
full-text file system search in multi-user environments.
In USENIX Conf. on File and Storage Technologies
(FAST), pages 169–182, San Francisco, CA, Dec. 2005.

[6] Y.-C. Chang and M. Mitzenmacher. Privacy
preserving keyword searches on remote encrypted
data. In Intl. Conf. Applied Cryptography and Network
Security, pages 442–455, New York, NY, June 2005.

[7] Y. Cheng, J. Park, and R. Sandhu. Relationship-based
access control for online social networks: Beyond
user-to-user relationships. In Intl. Conf. Social
Computing/Intl. Conf. Privacy, Security, Risk and
Trust (SocialCom/PASSAT), pages 646–655,
Amsterdam, Netherlands, Sept. 2012.

[8] E. D. Cristofaro, C. Soriente, G. Tsudik, and
A. Williams. Hummingbird: Privacy at the time of
Twitter. In IEEE Symp. Security and Privacy, pages
285–299, San Francisco, CA, May 2012.

[9] D. G. Giffin, A. Levy, D. Stefan, D. Terei, D. Maziéres,
J. C. Mitchell, and A. Russo. Hails: Protecting data
privacy in untrusted web applications. In USENIX
Symp. Operating Systems Design and Implementation
(OSDI), pages 47–60, Hollywood, CA, Oct. 2012.

[10] A. Parker-Wood, C. Strong, E. L. Miller, and D. D.
Long. Security aware partitioning for efficient file
system search. In IEEE Symp. Massive Storage
Systems and Technologies, pages 1–14, Incline Village,
NV, May 2010.

[11] Z. Pervez, A. A. Awan, A. M. Khattak, S. Lee, and
E.-N. Huh. Privacy-aware searching with oblivious
term matching for cloud storage. Journal of
Supercomputing, 63(2):538–560, Feb. 2013.

[12] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: protecting confidentiality
with encrypted query processing. In ACM Symp.
Operating Systems Principles (SOSP), pages 85–100,
Cascais, Portugal, Oct. 2011.

[13] A. Singh, M. Srivatsa, and L. Liu. Search-as-a-service:
Outsourced search over outsourced storage. ACM
Transactions on the Web, 3(4):13:1–13:33, Sept. 2009.

[14] D. K. Smetters and N. Good. How users use access
control. In Symp. On Usable Privacy and Security
(SOUPS), Mountain View, CA, July 2009.

[15] D. X. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In IEEE
Symp. Security and Privacy, pages 44–55, Berkeley,
CA, May 2000.

[16] P.-N. Tan, M. Steinbach, and V. Kumar. Data Mining,
chapter 8. Addison-Wesley, May 2005.

