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Abstract. We present a simple technique that can convert a pretrained
segmentation neural network to a salient object detector. We show that
the pretrained network can be agnostic to the semantic class of the object
of interest, and no further training is required. Experiments were run on
UAV-captured aerial imagery of the “smart home” structure located in
the premises of the CERTH research center. Further experiments were
also run on natural scenes. Our tests validate the usefulness of the pro-
posed technique.
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1 Introduction

Computer vision and pattern recognition today play a role of steadily increasing
importance in various fields of the industry. Constructions, structure surveil-
lance, agricultural productivity applications, autonomous driving are only a few
of the fields that benefit from new pattern recognition technology advances.
For example, as automotive industry is progressing to fully autonomous vehi-
cle, computer vision is a tool for the development of many intelligent systems
and important safety measures. Lane departure warning and lane keeping assis-
tance are two technologies that can identify vehicles entering the current lane
and trigger warnings for the driver and activate automatic braking systems to
avoid a collision. Similar systems can be used to prevent accidents by detecting
and monitoring pedestrians, traffic lights and signs [17]. Another area that takes
advantage of those technologies is the agriculture and food industry. Computer
vision inspection systems can accelerate the increase in agricultural productivity.
Pattern recognition can be applied to detect crop diseases, thus allowing timely
intervention. Vision algorithms are being used to classify the healthy food from
defective, resulting in faster and more reliable harvest [19].
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Fig. 1. Sample test images of the CERTH dataset.

Applications in construction benefit ever-increasingly by solutions provided
by computer vision and pattern recognition. Classification systems can assess
video data from construction sites in real-time, preventing defects and mistakes
in this industry that can be crucial for both saving resources and human lives.
Cameras can track the arrival of materials on a site and compare them to a
project schedule. This process can improving efficiency, quality and safety [18].
Remote cameras and unmanned aerial vehicles (UAVs) can offer non-contact
solutions to civil infrastructure condition assessment. Aerial survey and inspec-
tion of buildings for the purpose of gathering useful information for their assets,
such as solar panels or air condition units, can provide a more comprehensive
picture of their energy performance. Analyzing those data, can contribute to the
development of a framework for energy loss evaluation and building energy ef-
ficiency improvement [10]. Accurate detection of structures of interest can help



Salient object detection with pretrained Deeplab and k-means 3

determine properties that are related to auxiliary sensors, like thermographic
cameras [8].

Fig. 2. Sample test images of the Natural dataset.

With this work we propose a method for salient object detection [2], tested
to a setting where the object of interest is a structure. The base component
of the method is a convolutional neural network that, pretrained for the task of
semantic segmentation. We have used the popular Deeplab network [3], although
in principle any off-the-shelf convolution segmentation network could be used in
its place. Intermediate convolutional layer results, referred to in the literature
as deep features [13] are used as powerful, high-level features. Deep features are
in turn clustered, and the centermost cluster is selected as the salient object
segment. This technique is shown to be succesfully applied where the object of
interest is a building, as well as for a set of natural image scenes. Importantly,
no extra training is required for the off-the-shelf base network. Furthermore, we
show that our method works even when the base network is competely agnostic
to the semantic class of the object of interest.

The paper is structured as follows. In section 2, we briefly review related
work. Semantic segmentation using a state-of-the-art neural network is discussed
in section 3, and in 4 we discuss the concept of deep features and how to use
them for salient object segmentation. Experimental results, which compare the
discussed segmentation methods, are presented in section 5, and close the paper
with our conclusions in section 6.
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2 Related work

The idea of using deep features as powerful image cues has been previously
employed in a diverse range of computer vision tasks. The simplest variant of
deep features is related to creating a holistic image descriptor by computing
the activations of one of the network fully connected layers, typically situated
on the head of convolutional networks [1]. Convolutional layers have also been
used in this regard, creating pixel-level cues out of convolutional layer pointwise
activations. This concept has been further extended to concatenating activations
of a set of convolutional layers, after being resized and interpolated to a common
height and width if required. This type of deep features has been referred to as
hypercolumns [16, 12, 9]. These local cues can then be optionally encoded, with
operations as simple as sum pooling leading to powerful image descriptors [16].

Variants of the idea of using deep features with clustering have been pre-
viously used as a data processing pipeline component to the end of producing
Demand Response potential estimates [8, 15]. In [8], deep features are extracted
from pretrained Deeplab, and used to create a binarization mask with an in-
frared input. This idea is demonstrated on a set of synthetic infrared images,
created on the basis of infrared image statistics. In [15], the same concept is
validated on aligned pairs of colour and real infrared images, captured using a
dual camera mounted on a UAV. In both works, in contrast to the present work,
two important issues are not covered, which are: a) what is the role and effect
of the choice of the dataset used to create the pretrained model weights? b) if
the pretrained model has seen the object class of interest during training, how
does the proposed deeplab-based technique fare in comparison to using Deeplab
output? With the current work, we discuss and attempt to answer these issues.

3 Semantic segmentation with Deeplab

Semantic segmentation as a task combines two long-standing problems in com-
puter vision, that of image segmentation and image classification. In particular,
it is defined as a simultaneous segmentation of the image and classification of
each pixel to a semantic category. DeepLab is a state-of-the-art semantic seg-
mentation model designed and open-sourced by Google. The original network
components [3], employed and popularized “atrous” convolutional and decon-
volutional layers, which act by inserting holes between nonzero filter taps. The
final result was refined using a conditional random field model. In this work, we
use one of the latest reiterations of the Deeplab, namely Deeplab v3+ [4]. This
version of Deeplab uses atrous convolution and an encoder-decoder architecture,
plus a refined decoder module to detect object boundaries. The output layer is
topped by a pointwise softmax layer, giving class predictions for each pixel.

4 Segmentation using Deep features

Deep features are defined as features that are computed as the result of interme-
diate neural network layers, when fed with the test input on which we need to
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compute features [12, 13, 11, 7]. In other words, instead of using a feed-forward
pass to compute the output of a neural network, which would of course require
computation of all intermediate layers, we instead aim to compute the activation
or pre-activation of a layer that stands between the input layer and between the
network output. Powerful features can be obtained in this manner, after having
ensured that the network has been trained on a specific task. In the context of
image processing, convolutional neural networks (CNNs) are the norm when neu-
ral net-based methods are considered. CNNs comprise three main type of layers
that we are interested in with respect to computing deep features: convolutional
layers, deconvolutional layers, and dense or fully-connected layers. Dense lay-
ers feature a standard number of neurons, sharing no specific topology. On the
contrary, convolutional and deconvolutional layers result in feature maps that
consist of neurons arranged in an image-like 2D topology. Deep features are rele-
vant to either dense or convolutional / deconvolutional layers, with dense layers
leading to holistic descriptors and convolutional / deconvolutional layers leading
to localized cues. This stems from the aforementioned topological properties of
the neuron set associated with each type of layer. More formally, we can extract
deep features from a dense layer in the form of a vector x ∈ <D, where D is the
number of layer neurons. On the other hand, deep features from a convolutional
or deconvolutional layer come in the form I ∈ <H×W×C , where H and W are the
height and width of the associated feature map, and C is the number of chan-
nels resulting from the number of convolutional / deconvolutional layer depth.
In other words, we obtain a vector x ∈ <C for each point (i, j) ∈ [1, H]× [1,W ]
in the feature map I. Note that these local cues can be combined to create a
holistic feature using an encoding method [16].

What is of note is the type of deep features obtained as a function of the
“distance” of the associated layer from the input and the output layers. Layers
that are close to the input tend to produce deep features that are more generic
and have little dependence on the training set with the which the network has
been trained with. On the contrary, as our choice of layer moves toward the
output, features become more and more training set-specific. It is frequently
observed that the first convolutional layers after training completes typically
correspond to low-level filters such as edge and blob detectors; subsequent layers
encode more complex filters such as texture detectors; finally, layers that are
situated close to the output act in effect as filters that produce cues with highly
semantic content. The content of these features tends to be a close function of
the training set characteristics, with filters that can be interpreted as e.g. object
part detectors.

In figures 3 and 4 we show visualizations of deep features on sets of images
(images of a structure, natural scenes). These visualizations were created by ap-
plying Principal Component Analysis (PCA) on points x ∈ <C obtained as deep
features by a convolutional feature map. PCA is set to reduce dimension to 3, and
each principal component is set to correspond to one of the RGB channels. Two
different pretrainings are considered (PASCAL VOC20, ADE20k sets), with both
using the same layer to obtain cues (decoder/decoder conv1 pointwise/Relu :
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0). (Pseudo-)color in these visualizations is perhaps difficult to interpret in ab-
solute terms; however, what is highly interpretable is comparing pseudocolors of
one image are to the other. Indeed, areas with similar pseudocolor are perceived
by the network also to be similar in content. This rule also applies vice versa,
with dissimilar color denoting objects/content that is also dissimilar.

In this work, we use Deeplab after assuming that it has already been trained
on a specific set comprising K semantic classes. We aim to exploit the fact that,
while the Deeplab output is a point-wise softmax that produces a K-size prob-
ability vector, deep features from the same model are more flexible; flexibility
here is to be understood in the sense that deep features are not constrained to
be tied to one or more of K semantic classes. Our strategy is first to cluster
(convolutional) deep features into a set of ns segments. We use k-means++ as
our clustering method, after which we choose the cluster that is situated the
most towards the center of the image as the salient object [15]. If the size of the
feature map is different to that of the input, we resize the former to match the
dimensions of the latter. The rest of the pixels are marked as background.

5 Experiments

Our experiments consist of salient object detection trials, executed on a number
of different setups. The setup of the trials is chosen so as to check whether our
main premise holds under a variability of experimental parameters, which is
whether it is beneficial to use Deeplab “as-is”, or use the proposed Deeplab deep
feature-based technique.

We have compared standard Deeplab segmentation against the proposed
technique on two datasets. The first dataset, which we refer to as CERTH in
this paper, is composed of 18 images of the “smart home” building, found in
the premises of the CERTH-ITI institute in Thessaloniki, Greece. All images de-
pict the same structure, captured using a camera mounted on a DJI Unmanned
Aerial Vehicle. The second dataset, which we refer to as Natural, is made up of
34 images that depict a variety of objects in various different scenes and layouts.
We use the CERTH dataset as proof-of-concept that our premise is applica-
ble in the context of structure segmentation, while the Natural dataset is used
to test the method on a different, heterogeneous dataset. Samples of the two
datasets can be seen in Fig. 1 and Fig. 2 respectively. All images have been
manually annotated with corresponding pixel-level binary masks. In this man-
ner, a ground-truth binarization to ’salient object’ and ’background/rest’ classes
was available for evaluation of salient object segmentation.

Two variants of Deeplab were used, with the difference being in the dataset
on which the network was trained at each time. In all cases the Xception archi-
tecture was used as the Deeplab backbone [5], employing depthwise separable
convolutions. The two training sets used were the PASCAL-VOC20 dataset [6]
the ADE20k datasets [21]. These datasets contain a total of 20 and 150 classes
(plus background). What is important for our experiments here is that the PAS-
CAL VOC20 dataset does not have a structure or building class, while ADE20k
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does. This means that a version of Deeplab (or any similar convolutional seman-
tic segmentation network) that is trained on PASCAL VOC20 cannot recognize
image areas that correspond to a building or structure correctly.

Fig. 6. Plots for results on CERTH, using ADE20k (left) and PASCAL VOC20 pre-
trained models (right). Horizontal axis corresponds to image id (1 to 18), vertical axis
corresponds to IoU result (higher is better). Depicted curves are the proposed tech-
nique (green curve with circle markers), Deeplab output for ADE20k building class
(orange curve with ’x’ markers), Deeplab output for the “centermost” class (blue curve
with ’+’ markers).

The proposed method was compared against simply using the output of
Deeplab. In all our experiments, for both pretrained models considered we use
the decoder/decoder conv1 pointwise/Relu : 0. We have chosen this layer as it
is situated close to the output, therefore it is highly semantically “charged”. The
Intersection over Union (IoU) metric was used to evaluate each segmentation.

Visual and numerical results for trials over the CERTH dataset can be ob-
served in Figure 5. Two plots comparing results over all CERTH dataset con-
sidered can be examined in Figure 6. One observation that is notable is that the
proposed technique outperforms vanilla Deeplab, even when the dataset used
to create the pretrained model weight is ADE20k, which does contain a struc-
ture class (this is clearer in the reported statistics of table 1). As PASCAL
VOC20, which does not contain a structure class could not be directly com-
pared in this manner, we have compared our techinique against the Deeplab
output by considering the Deeplab cluster that is situated the most near the
center (this is denoted in table 1 as “Deeplab centermost class”). Again, the
proposed technique outperformed vanilla Deeplab. Commenting on the results
between the pretrained model weights that correspond to the two considered
datasets, ADE20k fares better than PASCAL VOC20. This is perhaps unsur-
prising, as ADE20k is considerably larger and contains more semantic classes
than PASCAL VOC20.

We have run supplementary trials on the Natural dataset, of which visual
and numerical results can be examined in Figure 7. Note that not all classes
were detectable by the softmax output when used with PASCAL; (the available
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classes were ’aeroplane’, ’bicycle’, ’bird’, ’boat’, ’bottle’, ’bus’, ’car’, ’cat’, ’chair’,
’cow’, ’diningtable’, ’dog’, ’horse’, ’motorbike’, ’person’, ’pottedplant’, ’sheep’,
’sofa’, ’train’, ’tv’, plus background). Despite this fact however, our method could
correctly detect object classes that would otherwise be uncategorizable by this
version of the Deeplab model. Finally, statistics over results the CERTH and
Natural datasets can be examined in table 1.

Table 1. Numerical results for the CERTH and Natural dataset trials. All figures are
mean +- st.deviation for IoU scores (higher mean is better).

CERTH Natural
ADE20k PASCAL ADE20k PASCAL

Deeplab centermost class 0.22± 0.4 0.09± 0.1 − −
Deeplab building class 0.57± 0.3 N/A − −

Proposed method 0.78± 0.1 0.66± 0.2 − 0.70± 0.2

6 Conclusion

We have discussed a simple technique in order to perform salient object segmen-
tation, that is based on a pretrained semantic segmentation network. What we
believe that is important here, is that the pretrained network can be agnostic
to the object class that we require to detect. This can be an advantage also
when the object of interest is an outlier in its own class in terms of appearance,
hence the network will normally have a hard time detecting it correctly. We have
shown that the proposed technique can effectively be used to adapt Deeplab for
salient object segmentation. The technique was tested succesfully on our dataset
containing aerial photography of a structure of interest. As future work, we plan
to test our method more extensively and to explore and adapt more advanced
segmentation techniques (e.g. [14, 20]) to apply over deep features.
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Fig. 3. Deep feature visualizations on images from the CERTH dataset. From left to
right column: Original image, result with PASCAL VOC20 pretrained weights, result
with ADE20k pretrained weights.
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Fig. 4. Deep feature visualizations on images from the Natural dataset. From left to
right column: Original image, result with PASCAL VOC20 pretrained weights, result
with ADE20k pretrained weights.
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0.4% 13.9% 73.4% 0.0% 49.5%

72.9% 72.9% 77.7% 23.2% 54.2%

1.4% 59.7% 71.1% 0.0% 54.0%

0.6% 34.3% 51.5% 0.0% 48.9%

0.5% 80.6% 87.0% 0.0% 73.9%

3.5% 80.6% 84.8% 36.9% 80.5%

83.7% 83.7% 89.7% 0.0% 44.0%

53.8% 37.9% 57.3% 0.0% 59.1%

0.03% 76.5% 85.6% 0.0% 46.9%

Fig. 5. Results on the CERTH dataset. From left to right, in each row the following
images are shown: original image, ADE20k result by taking the centermost segment,
ADE20k result by taking the estimated building class, ADE20k result by using the
proposed method, PASCAL VOC20 result by taking the centermost segment, PASCAL
VOC20 result by using the proposed method. Below each row IoU scores are also
presented for the corresponding segmentation estimates.
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74.8% 92.8%

74.3% 77.4%

76.1% 73.1%

89.2% 91.7%

37.0% 65.6%

86.8% 83.8%

92.5% 63.7%

Fig. 7. Results on the Natural dataset. From left to right, in each row the following
images are shown: original image, PASCAL VOC20 result, IoU score for the result of
the current row. Note that objects that would otherwise be undetectable as Deeplab
outputs (i.e. softmax classes) are correctly detected (see text for details).


