
NEWTON-BASED TRAINABLE LEARNING RATE

George Retsinas1 Giorgos Sfikas2 Panagiotis Paraskevas Filntisis1 Petros Maragos1

1School of E.C.E., National Technical University of Athens, 15773, Athens, Greece
2Dept. of Surveying & Geoinformatics Engineering, University of West Attica, 12243, Athens, Greece

Email: gretsinas@central.ntua.gr, gsfikas@uniwa.gr, filby@central.ntua.gr, maragos@cs.ntua.gr

ABSTRACT

Selecting an appropriate learning rate for efficiently training deep
neural networks is a difficult process that can be affected by nu-
merous parameters, such as the dataset, the model architecture or
even the batch size. In this work, we propose an algorithm for au-
tomatically adjusting the learning rate during the training process,
assuming a gradient descent formulation. The rationale behind our
approach is to train the learning rate along with the model weights.
Specifically, we formulate first and second-order gradients w.r.t. the
learning rate as functions of consecutive weight gradients, leading to
a cost-effective implementation. Our extensive experimental evalua-
tion validates the effectiveness of the proposed method for a plethora
of different settings. The proposed method has proven to be robust
to both the initial learning rate and the batch size, making it ideal for
an off-the-shelf optimizing scheme.

Index Terms— gradient descent, adaptive learning rate

1. INTRODUCTION

Deep learning ushered in an era where AI applications are abundant
around us, and yet, despite its great success, an important practical
shortcoming is that at its core lies a very difficult computational op-
timization problem. Training requires optimizing a non-convex loss
over multiple parameters, finding a global optimum over which is
known to be NP-hard [1]. Due to their complex loss structure, exist-
ing algorithms aim to discover well-performing local minima using
a gradient-based optimization scheme, the most common of which
is the Stochastic Gradient Descent (SGD) algorithm.

Arguably, SGD is still widely used for training deep neural net-
works, decades after its inception. Its efficiency is further supported
by recent theoretical developments concerning its stability, as well as
its convergence speed in the context of deep learning [2, 3]. Its sim-
ple rationale is to choose an improvement over current parameters
along the path defined by the loss (sub-)gradient. Other gradient-
based methods such as Adam [4] or momentum-based methods [5,
6, 7, 8, 9] share the logic of first choosing and then moving along
a “good” search direction that is to be understood as an improve-
ment over the direction defined by the gradient. Adam, in particular,
is a recent widely-used algorithm in the genre of adaptive gradient
methods, closely related to other popular algorithms such as RM-
SProp and Adagrad [4, 10, 11], where the search direction is adapted
according to local geometry estimates that are computed as moving
averages. For all these gradient-based algorithms, the choice of the
step size (“learning rate”) is arguably perhaps the weakest point of
these methods, and their performance is known to rely heavily on

This research work was supported by the Hellenic Foundation for Research & In-
novation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Faculty
Members & Researchers” (Project Number:2656, Acronym: TROGEMAL).

its choice. An inappropriate choice of learning rate value can easily
lead to a suboptimal local minimum, leading in practice to inferior
network efficiency.

To address the choice of learning rate, several works have ex-
plored whether a schedule that leads to theoretical guarantees can
be obtained; we know that a constant step size leads to conver-
gence to a neighbourhood of the solution, and using a decreasing
step size can guarantee convergence to an exact optimum [12]. These
ideas led to a variety of effective scheduling algorithms, from multi-
step/exponential decay to more complex ones [13, 14, 15], which
typically require their behavior to be set by the user via a set of
hyper-parameters. Alternate ways of dealing with choosing learn-
ing rate include using backtracking line-search methods [16, 17, 18],
typically relying on the Armijo-Goldstein conditions at the cost of
significantly increasing computational load (requiring multiple func-
tion and gradient computations per search direction iterate). Another
interesting direction towards step size adaptation, is based on the so-
called Polyak’s step size, originally proposed for deterministic pro-
jected subgradient descent [19], where the step size is proportional
to the current loss difference to the global minimum [20, 12, 21].

In this work, we propose a method that casts the learning rate it-
self as a trainable parameter, motivated by line-search and the closely
related hypergradient concept [22, 23]. Thus, the proposed update
employs an explicit derivation of gradients with respect to the learn-
ing rate. Instead of performing several steps within the same search
direction using a line-search approach, we perform only a single
“correction” step towards a better learning rate in a gradient descent
scheme. While related interpretations and formulations concerning
meta-optimization and first-order gradient properties have appeared
in earlier [22, 24] and more recent works [23, 25, 26], we introduce
a novel second-order gradient derivation and analysis (following a
“Newton-Raphson” rationale). The proposed second-order deriva-
tion leads to a simple formula of consecutive weight gradients, im-
plemented as a constant-time operation on the backward pass, avoid-
ing the computationally intensive and impractical Hessian deriva-
tion/approximation (w.r.t. weights), typically used in such settings.

2. TRAINABLE LEARNING RATE

Problem Statement: We develop our algorithm within the frame-
work of gradient descent, where we want to minimize a loss func-
tion L with respect to model parameters w. The generic formula-
tion of an update rule for a gradient descent algorithm is: wt =
wt−1 − αut, where wt are the model parameters at iteration t, u is
the update direction and α is the learning rate hyperparameter. Since
this is a gradient descent paradigm, update direction u is a function
of the gradient: ut = f(gt), where gt = ∇L(wt−1).

Most gradient descent variants can be written in the aforemen-
tioned formulation. For example, GD in its vanilla form assumes

ut = ∇L(wt−1). Respectively, using the sub-gradients gt =
∇Lt(wt−1) at each step, we can describe a variety of widely-used
stochastic versions of GD, such as SGD, momentum-based SGD
(e.g. Nesterov [8]) or even Adam [4]. While typically, α is treated as
a (user-defined) hyper-parameter and does not contribute to the loss,
here, we consider it as a learnable variable through the introduction
of an auxiliary function Lα(wt−1) = L(wt−1 − αut). Follow-
ing this formulation, a straightforward meta-algorithm from learning
rate adaptation can be developed: One can apply gradient descent on
Lα with respect to α as the the update rule of Eq. 1 suggests, where
a meta-learning rate hyper-parameter η is introduced. This way, we
can further optimize the process with finer control over the scale
(α) of the updates ut. In fact, Eq. 1 simply describes the proposed
meta-algorithm as the iteration between the presented equations of
updating the rate and then the model weights with the updated rate.

αt = αt−1 − η
∂Lα(wt−1)

∂α

∣∣∣
α=αt−1

, wt = wt−1 − αtut (1)

The term ∂Lα/∂α of Eq. 1, required for learning rate adap-
tation, can be computed in a cost-effective manner as we will see
in the following subsection, and has been already explored in the
literature [22, 23]. Nonetheless, such an approach relies on the se-
lection of a new hyper-parameter η, albeit less sensitive compared
to manually selecting the learning rate α [23]. Contrary to exist-
ing approaches based on this meta-GD paradigm, often dubbed as
hypergradient-based [23], we aim to provide a cost-effective compu-
tation for the second-order derivative ∂2Lα/∂α

2 in order to design
a Newton-based algorithm for updating αt.
First-order derivative: This step has been thoroughly explored in
previous works [22, 23]. For the sake of completeness, we include
a brief analysis of the computing the first-order derivative via the
chain-rule:

∂Lα(wt−1)

∂α
=
∂L(wt−1 − αut)

∂α

=
〈
∇L(wt−1 − αut) ,

∂(wt−1 − αut)

∂α

〉
=− ⟨∇Lα(wt−1) , ut⟩ (2)

Thus the update term of Eq. 1, can be then written as follows:

∂Lα(wt−1)

∂α

∣∣∣
α=αt−1

= −⟨∇L(ŵt) , ut⟩, (3)

where ŵt is a “look-ahead” term: ŵt = wt−1 −αt−1 ut. Note that
this term differs from the updated parameter wt of Eq. 1, which uses
αt instead of αt−1.

For the case of the vanilla GD algorithm, this expression equals
to the inner product of the two successive gradients, if one assumed
that α is not updated. The derived gradient has an intuitive interpre-
tation:

• ∂Lα/∂α > 0: If two consecutive weight updates move towards
the same direction, the learning rate should be increased.

• ∂Lα/∂α < 0: Conversely, when we have opposite directions (lo-
cal optimum nearby), the learning rate should be decreased.

• ∂Lα/∂α = 0: When the inner product is zero, either we reached
a converged state (||gt|| = 0) or gradient directions are perpen-
dicular. The latter case corresponds to an optimal learning rate
according to the line-search formulation and thus no change on
the learning rate should be made.

Approximation of the Second-order Derivative: A popular di-
rection towards an adaptive and fast converging learning rate is
adopting Newton-based methods, which include the derivation of
second-order gradients. Despite the fact that second-order deriva-
tives typically include computationally demanding Hessian compu-
tations/approximations (multivariate case), the problem at hand has
an intuitive analytical form if we use a Taylor approximation step.
We first write the second-order derivative with respect to α:

∂2Lα(wt−1)

∂α2

(2)
=

∂
(
− ⟨∇Lα(wt−1) , ut⟩

)
∂α

(2)
=〈

∇
(
⟨∇Lα(wt−1) , ut⟩

)
, ut

〉
= uT

t H(Lα(wt−1))ut (4)

Equation 4 corresponds to a quadratic form, where the Hessian
matrix H is required. As we have already mentioned, such a com-
putation is impractical for modern deep learning models that may
consist of millions of parameters. To circumvent this problem, we
use a first-order (linear) Taylor approximation on the multivariate
function f(x) = ∇L(x). We consider that one step of the de-
scent algorithm generates neighboring solution points and thus we
apply the approximation around these successive points, wt−1 and
ŵt = wt−1 − αt−1ut, as Eq. 5 suggests.

∇L(wt−1) ≈ ∇L(ŵt) +H(L(ŵt))
(
wt−1 − ŵt

)
, (5)

where H(L(wt)) is the Hessian matrix of the real-valued loss func-
tion L(x). Using the definition of the look-ahead term ŵt, the ap-
proximation is then written as:

∇L(wt−1) ≈ ∇L(ŵt) + αt−1H(L(ŵt))ut (6)

The derived approximation relies on the matrix-vector product
Ht ut that also exists in the second-order gradient of Eq. 4. There-
fore, we can substitute this term, which contains the “unwelcome”
Hessian matrix, as follows:

∂2Lα(wt−1)

∂α2

∣∣∣
α=αt−1

(4,6)
=

⟨ut , ∇L(wt−1)−∇L(ŵt)⟩
αt−1

(7)

Note that the final form of Eq. 7 does not contain the Hessian
matrix and can be computed with only the dot products of first-order
gradients and their by-products (e.g. ut).
Newton-based Trainable Learning Rate: Having derived analyti-
cal equations for both first- and second-order derivatives, we substi-
tute η in Eq. 1 with

[
∂2Lα/∂α

2
]−1, as follows:

αt = αt−1 − γ
([∂L2

α

∂α2

]−1 ∂Lα

∂α

)∣∣∣
α=αt−1

= αt−1

(
1 + γ

⟨ut , ∇L(ŵt)⟩
⟨ut , ∇L(wt−1)−∇L(ŵt)⟩

)
. (8)

Note that Eq. 8 describes a multiplicative rule. In practice, we
used the damped Newton’s method, with a hyper-parameter γ ∈
(0, 1] to restrict aggressive adaptation. Following the rationale of
the Newton-Raphson method, in order to attain a minimum, the
second derivative should be positive. Nonetheless, Eq. 7 can take
negative values. Moreover, as this derivative is the denominator to
the Newton-Raphson formulation, an impractical update direction
which tends to infinity would arise when it takes values close to zero.

Given the quadratic form of Eq. 4 and the symmetry of the Hes-
sian (a typical term appearing in Taylor expansion of second order),
we can deduce when our approach “miss-behaves”: • ∂2Lα/∂α

2

can be zero if ut belongs to the nullspace of H. If H is full-rank, ut

must be zero which implies convergence. • assuming L to be locally
convex around the point of interest ŵ leads to a (semi-)positive def-
inite Hessian matrix and thus a well-behaving positive denominator.
Negatives values appear when the underlying function is concave
around ŵ, typically during the first steps of the descent process.

In practice, such cases are very rare and we overcome this prob-
lem by keeping the learning rate unchanged when the denominator
is negative, while constraining the multiplicative factor -to avoid ex-
ploding gradients- to a maximum value of 100, i.e. large enough to
quickly adapt to very different settings.

Technical Considerations: The derived update rule of Eq. 8 con-
tains the look-ahead term ∇L(ŵt) which introduces a computa-
tional overhead. Instead of computing this term, which approxi-
mates the gradient at the next step, we consider the gradients of the
two previous consecutive steps, as done in [23]. Moreover, con-
cerning the mini-batch versions of the gradient descent, consecutive
sub-gradients ∇Li would correspond to different batches of data
contrary to the formulation. The inner product of such consecutive
gradients could be negative for the majority of batch pairs (differ-
ent optimization directions for different data), leading to a rapidly
diminishing learning rate. To address this problem, we rely on the
notion of expecting well-performing gradients, in average, after sev-
eral iterations. To this end, we accumulate the calculated gradients
across several consecutive iterations. For this work, we further sim-
plify our method by assuming that despite the underlying optimizer,
we assume that a high-level gradient descent algorithm is approxi-
mated every K steps, i.e. wk = wk−1 − αk−1gk−1, and thus gk−1

can be easily computed as the difference of the model’s weights be-
tween K optimization steps divided by αk−1. In other words, we
update the learning rate every K iterations by averaging the weights’
gradients/update directions. In order to provide finer control over the
whole process, the value of K corresponds to a specific percentage
p of the entire set.

The main advantage of the proposed method is its trivial com-
putational overhead; only pre-calculated values attained by GD are
used. Implementation-wise, we should additionally store the weights
of a previous update step k − 1 and the previous approximated gra-
dient gk−2 as temporary variables.

3. EXPERIMENTAL EVALUATION

Experimental Setup: The proposed methodology is evaluated over
a set of different tasks, datasets and models, focusing on deep learn-
ing and its applications. We select the following four datasets for
the image classification task: MNIST, CIFAR10/100 [27] and Im-
ageNet [28]. For MNIST, we use a multi-layer perceptron (MLP)
with a single hidden layer of width 1000, as in [18] & [12]. For
CIFAR10 and CIFAR100, we selected the Wide-ResNet (WRNET)
architectures [29] which can be modified easily, allowing us to study
the proposed algorithm across various network width and depth set-
tings. Finally, the ResNet50 architecture [30] is selected for the
ImageNet setting. We also evaluated our method on a Seq2Seq
Transformer model with 8 heads and 3 encoder and decoder lay-
ers used for machine translation from German to English (Multi30k
dataset) 1. All tasks are trained using a standard cross-entropy loss.
The proposed method is dubbed TLR -Trainable Learning Rate- in
the upcoming comparisons. Code is publicly available at https:
//github.com/georgeretsi/NTLR .

1We used the implementation in https://github.com/pytorch/
tutorials.

Hyper-parameters Exploration: We start by exploring the impact
of the two user-defined hyperparameters: γ of Eq. 8 and the update
percentage p. We performed a grid-search over possible p and γ
by training the MNIST+MLP setting for 20 epochs over a set of
diverse initial learning rates: lr = 10−i, i = 1, . . . , 5 and batch
sizes bs ∈ {64, 128, 256, 512}. According to this grid search, we
selected default hyper-parameters (used for the rest of the paper) as
p = 0.20 and γ = 0.33.

Concerning p, frequent updates would lead to a fast diminishing
rate that may result to a suboptimal solution; in contrast, updating at
the end of each epoch would slow down the whole procedure. On the
other hand, small γ values lead to slow adaptation, while large ones
correspond to an “aggresive” descent towards the gradient direction,
a behavior related to short-horizon bias [31]. However, for an intu-
itive range of the hyper-parameters values (i.e 0.2 - 0.5) the proposed
method indicates robustness across both initial learning rate α0 and
batch size. For reference, concerning the case of batch size 128, typ-
ical SGD is very sensitive with 0.661± 0.774 loss across the differ-
ent learning rates, compared to 0.095±0.054 of our approach. Note
that the proposed hyper-parameters are intuitive and have a clear in-
terpretation and a constrained range of values, compared to the typ-
ical step size formulation. The effect of these hyper-parameters on
the learning rate adaptation can be seen in Figure 1. Interestingly
enough, the reported behavior resembles an “auto-tuned” scheduler
comprised of two phases: warmup and exponential decay.

0 10 20 30 40
0

0.005

0.01

0.015
0.125
0.200
0.250
0.333
0.500
1.000

0 10 20 30 40
0

0.02

0.04

0.06
0.125
0.200
0.250
0.333
0.500
1.000

Fig. 1: MNIST+MLP: Learning rate curves for different p values when γ =
0.2 (left) and different γ values when p = 0.33 (right)

Next, we report in detail the behavior of the proposed algo-
rithm under a wide range of initial learning rates (α0 = 10−i, i =
1, . . . , 9), showcasing the adaptation ability of the proposed method.
The resulting training curves are depicted in Figure 2 for the
MNIST+MLP setting. It is evident that the proposed method quickly
adapts to this vast variety of initial learning rates. The case of α0

corresponds to an under-performing solution when using SGD (loss:
0.326, acc.: 92.3%) due to the large step size; TLR manages to
improve this performance (loss: 0.095, acc.: 96.0%), but not to
the extent of other initializations since it has already done several
“wrong” steps with a large learning rate.

0 10 20 30 40

−8

−6

−4

−2

0 10 20 30 40
−3

−2

−1

0

1
1e-1
1e-2
1e-3
1e-4
1e-5
1e-6
1e-7
1e-8
1e-9

lr loss

Fig. 2: Loss (left) and learning rate (curve) logarithmic curves of different
initial learning rates α0 for the setting MNIST + MLP.

State-of-the-art Comparisons: Having established the robustness
of the proposed method, we continue by comparing our method to
several existing adaptive methods. First, we compare our approach
to the closely related approach of hypergradients [23]. To promote

a fair comparison, we adopt the first-order method of hypergradients
to our framework of updating the learning rate every K iterations2.
In this experiment, a meta-learning rate η should be set in an additive
formulation, i.e. αk = αk−1 + η gk−1 · gk−2, or in a multiplicative
formulation, i.e. αk = αk−1[1 + η cos(gk−1,gk−2)]. For a set of
different a0 (10−i, i = 1, 2, 3) and batch-sizes (64, 128, 256, 512),
we explore the behavior of this approach for different η values, as
shown in Table 1 in the form of mean/std value. The main drawback
of the first-order hypergradient approach is that different values of η
are required for different settings, even if a relative robustness to α0

is achieved when η is properly selected [23]. This is also evident in
the results of Table 1, where we present the two best-performing η
out of the set 10−i, i = 1, . . . , 5.

additive multiplicative
α0 η = 10−1 η = 10−2 η = 10−4 η = 10−5 TLR

10−1 0.48± 0.07 0.38± 0.26 0.57± 0.08 0.10± 0.03 0.09± 0.01
10−2 0.47± 0.06 0.59± 0.03 1.06± 0.14 0.62± 0.24 0.16± 0.02
10−3 0.36± 0.07 0.49± 0.22 1.61± 0.14 2.02± 0.71 0.18± 0.03

Table 1: Comparison between first-order [23] and second-order (ours-TLR)
α updates. Mean & std values of loss are reported for a range of different α0

and batch-sizes, evaluated over the CIFAR100+WRNET 16 4 setting.

Next, we consider a variety of state-of-the-art adaptive optimiz-
ers: Adam [4], SLS (based on the line-search formulation) [18] and
SPS (based on the Polyak step size) [12]. We also evalute the pop-
ular multistep scheduler with vanilla SGD, denoted as sgd-mstep,
where rates are decayed by 0.1 at 50% and 75% of the total number
of epochs (with α0 = 0.1, a typical well-performing initialization
for CIFAR). A comparison of the loss/accuracy curves for the case
of batch-size 128 is depicted in Figure 3.

The following observations can be made: 1) The proposed ap-
proach achieves fast convergence to well-performing minimum on
par with the fine-tuned sgd-mstep. 2) sgd-mstep provides the best-
performing model in this setting at the cost of manually setting when
the rate should be decreased (and how much) - note that for different
α0, sgd-mstep under-performs since it cannot adapt to such change.
3) SLS produces “trembling” curves for the examined setting, in-
dicating sensitivity. 4) SPS and Adam provide sub-par performance
for this vision task, indicating possible generalization problems [32].

0 20 40 60 80
0

0.5

1

1.5

2

0 20 40 60 80
20

30

40

50

60

70

80

adam sgd_mstep sps sls sgd_tlr

loss acc

Fig. 3: Loss (left) and accuracy (right) curves of different optimiz-
ers/schedulers for the setting CIFAR100 + WRNET 16 4 (128 batch size).

The effectiveness of the proposed method is further validated on
the large-scale ImageNet setting, as shown in Figure 4. The overall
number of epochs were 80 and the batch size was set to 96 for all ex-
periments due to GPU memory constraints. SLS approach diverges
in this setting and thus is not included. Once again, SPS has identical
behavior to Adam. Even though these two approaches exhibit con-
vergence to slightly better overall loss, they have sub-optimal perfor-
mance on the test set, similar to the CIFAR100 case. In contrast, our
approach efficiently converges (we achieve 90% of the maximum

2The implementation of [23] under-performs compared to the considered
gradient-averaging alternative in our experiments and thus it is omitted.

accuracy at around 30 epochs, faster than any other method) into a
well-performing optimum, providing the best accuracy results.

0 20 40 60 80

1

2

3

4

5

6

7
sgd
sgd_mstep
adam
sps
sgd_tlr

0 20 40 60 80
0

20

40

60

sgd
sgd_mstep
adam
sps
sgd_tlr

Fig. 4: Loss (left)/accuracy (right) curves for ImageNet+ResNet50 setting.

To further test our algorithm, we also considered tasks where
Adam optimizer is usually used effectively. Specifically, we evalu-
ated our method on a Seq2Seq Transformer for machine translation
from German to English and the training/validation loss curves can
be found in Figure 5. For both SGD and Adam, the best-performing
learning rate was selected according to a grid-search. Then, we ap-
plied the proposed approach over both SGD and Adam to highlight
its adaptability. It is evident that the proposed method converges to a
very low validation minimum very fast for both cases - typically the
final model is the model with the lowest validation loss/error.

0 20 40 60 80
0

1

2

3

4

5

6 sgd
sgd_tlr
adam
adam_tlr
sls
sps

0 20 40 60 80

2

3

4

5

6
sgd
sgd_tlr
adam
adam_tlr
sls
sps

Fig. 5: Train (left)/validation (right) loss curves for the translation task.

Final Remark: The proposed algorithm cannot provide a conver-
gence guarantee for non-convex loss functions, where the increase
of learning rate may lead to exploding gradients. Moreover, the al-
gorithm could be trapped at local minima if the learning rate de-
creases fast enough (a common problem to such adaptive optimiz-
ers). Nonetheless, the proposed method can achieve accelerated
convergence to the proximity of a well-performing optimum, practi-
cally regardless of the setting or the hyperparameters, reporting only
minor sensitivity to such selections. Even though it cannot replace
modern fine-tuned schedulers [15], it can be an ideal component for
more complex heuristic schedulers, such as restarting schemes.

4. CONCLUSIONS

Our contribution can be summarized as follows: this work aims to
provide a novel, cost-efficient and easy-to-use optimization meta-
algorithm with adaptive learning rate, orthogonal to scheduling ideas
such as restarts [14], able to provide well-performing solutions with-
out the need to carefully tune any optimization hyper-parameters.
Experimental evaluation over a plethora of settings support the ef-
fectiveness of the proposed algorithm, which rapidly converges to
well-performing local minima without any setting-specific tuning re-
quired. This work paves the way towards the following research
steps: 1) assume a finer control over the adaptation by introduc-
ing a different learning rate for each layer - this is straightforward
under our setting, 2) examine how the proposed approach can be
compared/combined with scheduling tactics [14] and 3) analyze the
conditions where such an algorithm can guarantee convergence (con-
sider using Wolfe/Armijo-Goldstein conditions).

5. REFERENCES

[1] Ju Sun, When are nonconvex optimization problems not scary?,
Ph.D. thesis, Columbia University, 2016.

[2] Moritz Hardt, Ben Recht, and Yoram Singer, “Train faster,
generalize better: Stability of stochastic gradient descent,” in
International Conference on Machine Learning. PMLR, 2016,
pp. 1225–1234.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song, “A conver-
gence theory for deep learning via over-parameterization,” in
International Conference on Machine Learning. PMLR, 2019,
pp. 242–252.

[4] Diederik P. Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in Proceedings of the International
Conference on Learning Representations, 2015.

[5] Elijah Polak and Gerard Ribière, “Note sur la conver-
gence de méthodes de directions conjuguées,” ESAIM: Math-
ematical Modelling and Numerical Analysis-Modélisation
Mathématique et Analyse Numérique, vol. 3, no. R1, pp. 35–
43, 1969.

[6] Boris T. Polyak, “The conjugate gradient method in extremal
problems,” USSR Computational Mathematics and Mathemat-
ical Physics, vol. 9, no. 4, pp. 94–112, 1969.

[7] Jonathan Barzilai and Jonathan M. Borwein, “Two-point step
size gradient methods,” IMA journal of numerical analysis,
vol. 8, no. 1, pp. 141–148, 1988.

[8] Yuri Nesterov, “A method of solving a convex programming
problem with convergence rate O(1/k2),” in Sov. Math. Dokl.,
1983, vol. 27.

[9] Jian Zhang and Ioannis Mitliagkas, “Yellowfin and the art of
momentum tuning,” in Proceedings of Machine Learning and
Systems, A. Talwalkar, V. Smith, and M. Zaharia, Eds., 2019,
vol. 1, pp. 289–308.

[10] John Duchi, Elad Hazan, and Yoram Singer, “Adaptive subgra-
dient methods for online learning and stochastic optimization,”
Journal of machine learning research, vol. 12, no. 7, 2011.

[11] Tijmen Tieleman and Geoffrey Hinton, “Lecture 6.5-
RMSProp, Coursera: Neural Networks for machine learning,”
University of Toronto, Technical Report, 2012.

[12] Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Si-
mon Lacoste-Julien, “Stochastic Polyak step-size for SGD: An
adaptive learning rate for fast convergence,” in International
Conference on Artificial Intelligence and Statistics. PMLR,
2021, pp. 1306–1314.

[13] Leslie N Smith, “Cyclical learning rates for training neural
networks,” in 2017 IEEE winter conference on applications of
computer vision (WACV). IEEE, 2017, pp. 464–472.

[14] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient de-
scent with warm restarts,” in Proceedings of the International
Conference on Learning Representations, 2017.

[15] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis,
Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing
Jia, and Kaiming He, “Accurate, large minibatch SGD: Train-
ing Imagenet in 1 hour,” arXiv preprint arXiv:1706.02677,
2017.

[16] Jorge Nocedal and Stephen Wright, Numerical optimization,
Springer Science & Business Media, 2006.

[17] Clément W. Royer and Stephen J. Wright, “Complexity analy-
sis of second-order line-search algorithms for smooth noncon-
vex optimization,” SIAM Journal on Optimization, vol. 28, no.
2, pp. 1448–1477, 2018.

[18] Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark
Schmidt, Gauthier Gidel, and Simon Lacoste-Julien, “Pain-
less stochastic gradient: Interpolation, line-search, and conver-
gence rates,” arXiv preprint arXiv:1905.09997, 2019.

[19] Boris T. Polyak, “Introduction to optimization,” in Optimiza-
tion Software, Publications Division. Citeseer, 1987.

[20] Mathieu Barré, Adrien Taylor, and Alexandre d’Aspremont,
“Complexity guarantees for Polyak steps with momentum,” in
Conference On Learning Theory. PMLR, 2020, pp. 452–478.

[21] Ryan D’Orazio, Nicolas Loizou, Issam Laradji, and Ioannis
Mitliagkas, “Stochastic mirror descent: Convergence analysis
and adaptive variants via the mirror stochastic polyak stepsize,”
arXiv preprint arXiv:2110.15412, 2021.

[22] Luı́s Almeida, Thibault Langlois, D. Amaral José, and Alexan-
der Plakhov, “Parameter adaptation in stochastic optimiza-
tion,” in Publications of the Newton Institute, pp. 111–134.
1999.

[23] Atılım Günes Baydin, Robert Cornish, David Martinez Rubio,
Mark Schmidt, and Frank Wood, “Online learning rate adapta-
tion with hypergradient descent,” in Proceedings of the Inter-
national Conference on Learning Representations, 2018.

[24] Nicol N. Schraudolph, “Local gain adaptation in stochastic
gradient descent,” Tech. Rep. IDSIA-09-99, IDSIA, 1999.

[25] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel
Freeman, and Jascha Sohl-Dickstein, “Understanding and cor-
recting pathologies in the training of learned optimizers,” in
International Conference on Machine Learning. PMLR, 2019,
pp. 4556–4565.

[26] Ehsan Amid, Rohan Anil, Christopher Fifty, and Manfred K.
Warmuth, “Step-size adaptation using exponentiated gradient
updates,” in In ICML Workshop on Beyond First-Order Meth-
ods in ML Systems, 2020.

[27] Alex Krizhevsky and Geoffrey Hinton, “Learning multiple lay-
ers of features from tiny images,” Tech. Rep., Citeseer, 2009.

[28] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg,
and L. Fei-Fei, “Imagenet large scale visual recognition chal-
lenge,” International Journal of Computer Vision (IJCV), vol.
115, no. 3, pp. 211–252, 2015.

[29] Sergey Zagoruyko and Nikos Komodakis, “Wide residual net-
works,” in Proceedings of the British Machine Vision Con-
ference (BMVC), Edwin R. Hancock Richard C. Wilson and
William A. P. Smith, Eds., 2016.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[31] Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger
Grosse, “Understanding short-horizon bias in stochastic meta-
optimization,” in Proceedings of the International Conference
on Learning Representations, 2018.

[32] Nitish Shirish Keskar and Richard Socher, “Improving gener-
alization performance by switching from Adam to SGD,” arXiv
preprint arXiv:1712.07628, 2017.

