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ABSTRACT

Data augmentation is a popular technique with which new dataset
samples are artificially synthesized to the end of assisting training of
learning-based algorithms and avoiding overfitting. Methods based
on generative adversarial networks (GANs) have recently rekindled
interest in research on new techniques for data augmentation. With
the current paper we propose a new GAN-based model for data aug-
mentation, comprising a suitable Markov random field-based spa-
tial constraint that encourages synthesis of spatially smooth outputs.
Oriented towards use with medical imaging sets where a localiza-
tion/segmentation annotation is available, our model can simulta-
neously also produce artificial annotations. We gauge performance
numerically by measuring performance through U-Net trained to de-
tect cells on microscopy images, by taking into account the produced
augmented dataset. Numerical trials, as well as qualitative results
validate the contribution of our model.

Index Terms— Data augmentation, Ising model, Generative
Adversarial Networks, Markov Random Field, Microscopy imaging

1. INTRODUCTION AND RELATED WORK

One of the biggest issues facing the use of machine learning in med-
ical imaging is the lack of availability of large datasets. The an-
notation of medical images is expensive and time consuming, and
typically requires expert medical knowledge to be performed accu-
rately. The limited amount of training data can dramatically affect
the performance of deep neural networks which often need a very
large amount of data on which to train in order to avoid overfit-
ting. “Traditional” data augmentation methods work by applying a
random parameterized transform on the available data, such as sim-
ple affine transforms (translation, rotation, scaling, horizontal shear-
ing), or non-rigid transforms such as elastic deformations [1]. Other
schemes include patch extraction and channel intensity permutation
[2]. An important point is that the type of transforms that may be
suitable always depends on the dataset and/or related inference prob-
lem; for example, flipping inputs may be a suitable strategy for a
natural image dataset, but not suitable for a word image dataset.

GANs are a powerful class of generative models, the training
of which can be viewed as a two-player game between two neural
networks, named the generator and the discriminator [3]. Models
that use image-to-image translations GANs [4, 5] or models clos-
est to the originally proposed (noise to image) GANs [6, 7] have
started been used recently for data augmentation with success. Data
augmentation with GANs has been used in medical imaging appli-
cations in a number of recent works. Methods for generating syn-
thetic computed tomography images that include liver lesions are
presented in [7]. Using Deep Convolutional GANs (DCGANs) and

conditional GANs they manage to subsequently improve the perfor-
mance of medical imaging classification model training on the aug-
mented data. Synthetic CT and FLAIR images were also generated
along with an annotation comprising Cerebrospinal Fluid and White
Matter Hyperintensity masks respectively, for each image instance
[6]. A Progressive Growing of GANs (PGGAN) network has been
proposed in [8] to generate synthetic data in two brain segmentation
tasks, with which improvements of 1 up to 5 Dice Similarity Co-
efficient (DSC) units are achieved. A GAN architecture specific to
data augmentation has been proposed in [9]. The model’s genera-
tor network is composed of an encoder taking an input image and
projecting it down to a lower dimensional feature vector. A random
vector is then transformed and concatenated with the encoder out-
put. The result is passed to a decoder network which generates an
augmentation image.

In this work, a method for data augmentation is presented and
tested succesfully in the context of augmenting sets of microscopy
images. The model is able to produce augmentations of annotated
sets, in the sense of simultaneously generating tuples of synthetic
images and corresponding segmentation masks that localize an ob-
ject, tissue or organ of interest [6, 7]. While GAN-based models
that are capable of producing annotated images have previously been
proposed, in this work we extend the adversarial training loss of
GANs with a Markov random field (MRF)-based loss. By using
the proposed loss function, we are capable of producing more ro-
bust segmentation masks by explicitly requiring them to be locally
homogeneous. Finally, in order to evaluate the proposed model and
the generated cell images, we have used the performance of a U-Net
segmentation model trained with the augmented set as an evaluation
metric, akin to [6], as well as the recently proposed Fréchet Incep-
tion Distance metric [10]. Numerical, as well as qualitative results
show that the proposed MRF-based model indeed produces results
superior to GAN architectures not comprising the proposed loss.

The remainder of the paper is structured as follows. In section
2, we present the proposed model. In section 3 we show samples
produced with our model, as well as validate our model with exten-
sive numerical trials on a microscopy imaging dataset. Finally, we
discuss conclusions and future work in section 4.

2. PROPOSED MODEL

The GAN objective function in its originally proposed form [3] is:

LGAN = Ex logD(x) + Ez log(1−D(G(z))), (1)

where the discriminator network aims to maximize it, while the gen-
erator network aims to minimize it. These terms and their optimiza-
tion objective constitute a two-player game, and training the GAN
amounts to finding a Nash equilibrium for the game. The generator



Fig. 1. Indicative images and annotations generated with the proposed Ising-ResGAN model (top row) juxtaposed to real samples (bottom
row). Cell segmentation annotation is overlayed as a green border on all images.

takes as input a random vector z ∈ <100 sampled from a uniform
distribution in [−1, 1]100, and outputs a colour cell image and a bi-
nary mask with a resolution of 256× 256 pixels for both. Variables
x stand for data sampled from the true distribution of training im-
ages. Both the discriminator and the generator in our model are de-
fined as deep convolutional neural networks. Specifically, the first
part of the network consists of a fully connected layer comprising
4 × 4 × 512 neurons, reshaped as a stack of 4 × 4 feature maps.
These are followed by a series of 3 transpose convolutional layers,
which gradually upsample (double each axis) the feature map un-
til size 32 × 32. This map is fed into two sibling branches. The
first branch is responsible for generating the synthetic colour image
and consists of 3 transpose convolutional layers.The second branch
generates the corresponding binary segmentation mask, it has also 3
transpose convolutional layers. We have experimented with two ver-
sions of the architecture, concerning including residual connections
or not. In the first case, each transpose convolutional layer in both
branches is topped by a stack of 2 convolutional layers with stride 1.
The output of those stacks is fed to a shortcut connection, which in-
troduces neither extra parameter nor computation complexity. Each
upsampling convolutional layer has stride 2 and a 4× 4 kernel size.
Batch normalization is applied to all layers except for the output.

The discriminator network accepts a 4-channel stack as input,
comprising generated RGB channels plus a binary mask. It con-
sists of 7 convolutional layers with a kernel size of 5 × 5, topped
by average pooling, and then followed by a fully connected layer
with a sigmoid activation. The sigmoid-activated output corresponds
to the probability of whether the input tuple of cell image and its
generated mask is perceived by the network as fake or not. Batch-
normalization is applied to all layers except for the input and output
layers, and all all layers are activated by leaky ReLU units [11] (with
leak value set at 0.2) everywhere except the output.

Our model improves on the classical GANs architecture by ex-
tending the classical adversarial loss with a Markov Random Field-
based loss, applied on the generator output. We define an additional
loss term, depending only on the generator output:

Lsmooth(G(z)) =
∑
p∈Ω

∑
q∈A(p)

Esmooth(fp, fq), (2)

where function Esmooth assigns non-negative penalties by compar-

ing values fp and fq at adjacent pixel positions p and q. Ω represents
all values and A(p) is an adjacency function, representing the set of
neighbours for position p. We have assumed 4-adjacency for the
adjacency function in this work.

We have found that high-pass smoothness terms defined over the
cell image easily resulted in over-smoothed outputs of inferior qual-
ity. On the other hand, enforcing smoothness almost consistently
improved the quality of the produced output. We believe that this
happens because the GAN loss can encode the optimal level of ob-
ject smoothness required on the synthetic image, as the discriminator
provides an implicit way to judge how realistic the synthetic image
is as a whole. In the case of the mask however, while again the
GAN loss by itself can create largely coherent object masks, it does
not avoid creating abnormalities such as object holes or producing
over-fragmented masks. A smoothness term over the mask explic-
itly penalizes this case. Therefore, we define the smoothness terms
according to an Ising model [12]:

Esmooth(fp, fq) =

{
0 if fp = fq

1 if fp 6= fq
(3)

The proposed objective is hence written as:

LIsing = LGAN + λLsmooth(G(z)), (4)

extending eq. (1), and where the standard GAN loss plays the role
of the data term, while λ is a hyperparameter that controls the trade-
off between the data and the smoothing term [13]. Implementation-
wise, the Ising loss can be approached via a composition of two dif-
ferentiable operations, namely a convolution and a norm. In partic-
ular, we define it as a convolution with a Laplacian kernel followed
by a l1 norm over the result.

3. EXPERIMENTAL RESULTS

We have run experiments on the microscopy imaging dataset
BBBC038v1, available from the Broad Bioimage Benchmark Col-
lection [14]. These data were used at the annual 2018 Data Science
Bowl competition, hosted on the data science website kaggle. The
data consist of 729 microscopy images, all annotated with segmen-
tation masks by experts, localizing nuclei in each image. Nuclei



have been treated and imaged in a variety of conditions, includ-
ing fluorescent and histology stains, several magnifications, and a
varying quality of illumination.

As the dataset contains many different modalities, we have run
a k-means algorithm on it and subsequently treated each modal-
ity separately. We used the following features [15] to cluster the
dataset: average intensity, average contrast, texture smoothness, tex-
ture uniformity, third moment and entropy in all three colour chan-
nels. For the remainder of the paper we refer to the computed clus-
ters as modalities numbered 1 to 5; these comprise 459, 37, 66, 16
and 85 cell images respectively. Example images from each modal-
ity can be viewed in Fig. 1. Treating the whole set at once would
have been possible with a conditional GAN; however, as shown in
[7], training k separate GANs for k modes gives better results than a
single conditional GAN, and we have chosen to follow this approach
as well. The training process was done iteratively for the generator
and the discriminator, with a mini-batch size of 64. We applied the
ADAM optimizer [11], with parameters β1 = 0.9, β2 = 0.999 and
learning rate 2 × 10−4 for both the generator and the discrimina-
tor, and initialized weights with Xavier initialization. The slope of
the leak for leaky ReLU units was set to 0.2. We cross-validated
the most suitable value for the parameter λ controlling the trade-
off between the standard GAN loss and the MRF loss; this was
found to be λ = 1.5/(D ∗ N), where D stands for total number
of output pixels (256 × 256) and N is the batch size (64). We
have trained all GANs with the available training sets augmented
with simple rotations (rotations at 90,180,270 degrees and left-right
/ up-down flips). We have replaced Ez logD(1 − G(z)) instead
of −Ez logD(G(z)) for optimizing the generator [3]. Concerning
image preprocessing, the only operations involved were scaling to a
fixed spatial size (256×256) and transforming to the range (−1, 1).

We have evaluated the proposed model numerically with two
different evaluation schemes. Furthermore, we have compared two
different network architectures in order to gauge the robustness of
the proposed loss over the underlying network, and also have com-
pared the proposed loss over a standard adversarial loss. We also
compare our model against classical, non GAN-based data augmen-
tation methods. In the first set of evaluations, we measure the useful-
ness of the produced images by comparing how effective they are in
each case in helping train a separate model for a segmentation task.
To this end, we have employed a standard U-Net model [1]. Each
U-Net instance was trained for 30 epochs, with an ADAM optimizer
and learning rate set to 10−4. Intersection over Union (IoU) segmen-
tation results for trained U-Net over different experimental data aug-
mentation setups are presented in Table 1 (IoU threshold set to 0.5).
In all cases, using augmentations provided by the proposed Ising-
based GAN models consistently leads to the best U-Net segmenta-
tion performance. Following the work in [6], we also tested perfor-
mance when only a limited subset (20% of initial images picked at
random) of the training data is available. In this case too, we can see
from the results on Table 1 that again the proposed models fare con-
sistently better. Results are also reported across different estimated
modalities in Fig. 2, where again one of the proposed model versions
leads to the best scores in all cases.

We have furthermore used the Fréchet Inception distance (FID)
to gauge numerically the effectiveness of the proposed model. FID
has been shown to be consistent with human evaluation in assess-
ing the realism and variation of GAN-generated samples [10]. FID
first uses the Inception-v3 network to describe each image as multi-
dimensional vector, then compares the statistics of the training im-
ages against those of the synthetic images. A lower FID value cor-
responds to more realistic synthetic images, hence better GAN per-

Fig. 2. Comparison of data augmentations using the improvement
in performance of a segmentation network (U-Net) as an evaluation
measure. IoU segmentation accuracy figures are shown (vertical
axis, higher results are better) against estimated modality number
(horizontal axis). Tests were run using all original data (bottom plot)
or a fraction of it (top plot). The proposed Ising model-based GANs
consistently gives the best results.

formance. A Fréchet distance metric is used to compare the two
distributions. Assuming that (µx,Σx) and (µg,Σg) are the mean
and covariance of the true and generated samples respectively, the
FID is defined as:

FID(x, g) = ||µx − µg||2 + Tr[Σx + Σg − 2(ΣxΣg)
1
2 ] (5)

All models have been trained for 5000 epochs, and the best FID
values are reported. Numerical values are shown in Table 2. Re-
sults are reported with respect to each estimated modality. Note that
in the majority of the modalities, the proposed models (Ising-GAN,
Ising-ResGAN) outperform their vanilla GAN versions. Also, in ab-
solute terms either Ising-GAN or Ising-ResGAN scores the best FID
in the first three modalities, which combined number approximately
84.7% cell images of the full dataset.

Qualitative results can be seen in figures 1 and 3, where the im-
ages produced with the proposed models can be observed to produce
visually coherent and convincing synthetic segmentations and cell
images.

4. CONCLUSION AND FUTURE WORK

We have presented a new model for data augmentation based on the
GAN paradigm, that is suitable to produce synthetic cell images si-
multaneously with their segmentation maps. The model incorpo-
rates an Ising-based smoothing term that forces the synthesized an-
notations and implicitly their synthesized image counterpart to be
visually coherent. Numerical, as well as qualitative results, validate
the usefulness of our model. Regarding future work, we envisage ex-
ploring other forms of smoothing penalties, including using an edge-



Table 1. Comparison of data augmentations using the improvement
in performance of a segmentation network (U-Net) as an evalua-
tion measure. IoU segmentation accuracy figures are shown (higher
results are better). Tests were run using all original data (column
marked 100%) or a fraction of it (column marked 20%). The pro-
posed Ising model-based GANs have the best performance, in abso-
lute terms (Ising-ResGAN) as well as with respect to their respective
vanilla GANs (Ising-GAN vs GAN, Ising-ResGAN vs ResGAN).

% of original data used 20% 100%
No GAN-based augmentation 0.20 0.57

GAN 0.22 0.63
ResGAN 0.24 0.67

Ising-GAN 0.23 0.63
Ising-ResGAN 0.29 0.69

Table 2. Comparison of GAN performance using Fréchet Inception
Distace (FID). FID evalutes the quality of GAN synthetic images
versus real images (lower value corresponds to better performance).
Results are reported with respect to dataset estimated modalities.
Proposed models (Ising-GAN, Ising-ResGAN) lead to best values
with respect to their vanilla GAN version in the majority of cases.

Model Mod.1 Mod.2 Mod.3 Mod. 4 Mod. 5
GAN 106 129 260 275 98

Ising-GAN 110 125 243 330 92
ResGAN 105 215 146 248 55

Ising-ResGAN 88 201 145 261 58

preserving prior [16] or conditional random fields [13], defined over
the synthesized image and annotation.
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